1
|
Montigné E, Balayssac D. Exploring Cholinergic Compounds for Peripheral Neuropathic Pain Management: A Comprehensive Scoping Review of Rodent Model Studies. Pharmaceuticals (Basel) 2023; 16:1363. [PMID: 37895835 PMCID: PMC10609809 DOI: 10.3390/ph16101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain affects about 7-8% of the population, and its management still poses challenges with unmet needs. Over the past decades, researchers have explored the cholinergic system (muscarinic and nicotinic acetylcholine receptors: mAChR and nAChR) and compounds targeting these receptors as potential analgesics for neuropathic pain management. This scoping review aims to provide an overview of studies on peripheral neuropathic pain (PNP) in rodent models, exploring compounds targeting cholinergic neurotransmission. The inclusion criteria were original articles on PNP in rodent models that explored the use of compounds directly targeting cholinergic neurotransmission and reported results of nociceptive behavioral assays. The literature search was performed in the PubMed and Web of Science databases (1 January 2000-22 April 2023). The selection process yielded 82 publications, encompassing 62 compounds. The most studied compounds were agonists of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR, along with those increasing acetylcholine and targeting mAChRs. Studies mainly reported antinociceptive effects in traumatic PNP models, and to a lesser extent, chemotherapy-induced neuropathy or diabetic models. These preclinical studies underscore the considerable potential of cholinergic compounds in the management of PNP, warranting the initiation of clinical trials.
Collapse
Affiliation(s)
- Edouard Montigné
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - David Balayssac
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Nakamoto K, Matsuura W, Tokuyama S. Nicotine suppresses central post-stroke pain via facilitation of descending noradrenergic neuron through activation of orexinergic neuron. Eur J Pharmacol 2023; 943:175518. [PMID: 36706800 DOI: 10.1016/j.ejphar.2023.175518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Central post-stroke pain (CPSP) is a type of central neuropathic pain, whose underlying mechanisms remain unknown. We previously reported that bilateral carotid artery occlusion (BCAO)-induced CPSP model mice showed mechanical hypersensitivity and decreased mRNA levels of preproorexin, an orexin precursor, in the hypothalamus. Recently, nicotine was shown to regulate the neuronal activity of orexin in the lateral hypothalamus (LH) and suppress inflammatory and neuropathic pain. In this study, we evaluated whether nicotine could suppress BCAO-induced mechanical allodynia through the activation of orexinergic neurons. Mice were subjected to BCAO for 30 min. Mechanical hypersensitivity was assessed by the von Frey test. BCAO mice showed hypersensitivity to mechanical stimuli three days after BCAO surgery. The intracerebroventricular injection of nicotine suppressed BCAO-induced mechanical hypersensitivity in a dose-dependent manner. These effects were inhibited by α7 or α4β2-nicotinic receptor antagonists. After nicotine injection, the level of c-fos, a neuronal activity marker, increased in the LH and locus coeruleus (LC) of Sham and BCAO mice. Increased number of c-Fos-positive cells partly colocalized with orexin A-positive cells in the LH, as well as tyrosine hydroxylase-positive cells in the LC. Orexinergic neurons project to the LC area. Nicotine-induced antinociception tended to cancel by the pretreatment of SB334867, an orexin receptor1 antagonist into the LC. Intra-LH microinjection of nicotine attenuated BCAO-induced mechanical hypersensitivity. Nicotine-induced antinociception was inhibited by intrathecal pre-treatment with yohimbine, an α2 adrenergic receptor antagonist. These results indicated that nicotine may suppress BCAO-induced mechanical hypersensitivity through the activation of the descending pain control system via orexin neurons.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Wataru Matsuura
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
3
|
Akinola LS, Bagdas D, Alkhlaif Y, Jackson A, Gurdap CO, Rahimpour E, Carroll FI, Papke RL, Damaj MI. Pharmacological characterization of 5-iodo-A-85380, a β2-selective nicotinic receptor agonist, in mice. J Psychopharmacol 2022; 36:1280-1293. [PMID: 36321267 PMCID: PMC9817006 DOI: 10.1177/02698811221132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Because of their implications in several pathological conditions, α4β2* nicotinic acetylcholine receptors (nAChRs) are potential targets for the treatment of nicotine dependence, pain, and many psychiatric and neurodegenerative diseases. However, they exist in various subtypes, and finding selective tools to investigate them has proved challenging. The nicotinic receptor agonist, 5-iodo-A-85380 (5IA), has helped in delineating the function of β2-containing subtypes in vitro; however, much is still unknown about its behavioral effects. Furthermore, its effectiveness on α6-containing subtypes is limited. AIMS To investigate the effects of 5IA on nociception (formalin, hot-plate, and tail-flick tests), locomotion, hypothermia, and conditioned reward after acute and repeated administration, and to examine the potential role of β2 and α6 nAChR subunits in these effects. Lastly, its selectivity for expressed low sensitivity (LS) and high sensitivity (HS) α4β2 receptors is investigated. RESULTS 5IA dose-dependently induced hypothermia, locomotion suppression, conditioned place preference, and antinociception (only in the formalin test but not in the hot-plate or tail-flick tests). Furthermore, these effects were mediated by β2 but not α6 nicotinic subunits. Finally, we show that 5-iodo-A-85380 potently activates both stoichiometries of α4β2 nAChRs with differential efficacies, being a full agonist on HS α4(2)β2(3) nAChRs, and a partial agonist on LS α4(3)β2(2) nAChRs and α6-containing subtypes as well.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Asti Jackson
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
| | - Elnaz Rahimpour
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, USA
| |
Collapse
|
4
|
Hamouda AK, Bautista MR, Akinola LS, Alkhlaif Y, Jackson A, Carper M, Toma WB, Garai S, Chen YC, Thakur GA, Fowler CD, Damaj MI. Potentiation of (α4)2(β2)3, but not (α4)3(β2)2, nicotinic acetylcholine receptors reduces nicotine self-administration and withdrawal symptoms. Neuropharmacology 2021; 190:108568. [PMID: 33878302 PMCID: PMC8169606 DOI: 10.1016/j.neuropharm.2021.108568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/28/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
The low sensitivity (α4)3(β2)2 (LS) and high sensitivity (α4)2(β2)3 (HS) nAChR isoforms may contribute to a variety of brain functions, pathophysiological processes, and pharmacological effects associated with nicotine use. In this study, we examined the contributions of the LS and HS α4β2 nAChR isoforms in nicotine self-administration, withdrawal symptoms, antinociceptive and hypothermic effects. We utilized two nAChR positive allosteric modulators (PAMs): desformylflustrabromine (dFBr), a PAM of both the LS and HS α4β2 nAChRs, and CMPI, a PAM selective for the LS nAChR. We found that dFBr, but not CMPI, decreased intravenous nicotine self-administration in male mice in a dose-dependent manner. Unlike dFBr, which fully reverses somatic and affective symptoms of nicotine withdrawal, CMPI at doses up to 15 mg/kg in male mice only partially reduced nicotine withdrawal-induced somatic signs, anxiety-like behavior and sucrose preference, but had no effects on nicotine withdrawal-induced hyperalgesia. These results indicate that potentiation of HS α4β2 nAChRs is necessary to modulate nicotine's reinforcing properties that underlie nicotine intake and to reverse nicotine withdrawal symptoms that influence nicotine abstinence. In contrast, both dFBr and CMPI enhanced nicotine's hypothermic effect and reduced nicotine's antinociceptive effects in male mice. Therefore, these results indicate a more prevalent role of HS α4β2 nAChR isoforms in mediating various behavioral effects associated with nicotine, whereas the LS α4β2 nAChR isoform has a limited role in mediating body temperature and nociceptive responses. These findings will facilitate the development of more selective, efficacious, and safe nAChR-based therapeutics for nicotine addiction treatment.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA.
| | - Malia R Bautista
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Wisam B Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Deba F, Ramos K, Vannoy M, Munoz K, Akinola LS, Damaj MI, Hamouda AK. Examining the Effects of (α4)3(β2)2 Nicotinic Acetylcholine Receptor-Selective Positive Allosteric Modulator on Acute Thermal Nociception in Rats. Molecules 2020; 25:molecules25122923. [PMID: 32630476 PMCID: PMC7355939 DOI: 10.3390/molecules25122923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptor (nAChR)-based therapeutics are sought as a potential alternative strategy to opioids for pain management. In this study, we examine the antinociceptive effects of 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrazol-4-yl)isoxazole (CMPI), a novel positive allosteric modulator (PAM), with preferential selectivity to the low agonist sensitivity (α4)3(β2)2 nAChR and desformylflustrabromine (dFBr), a PAM for α4-containing nAChRs. We used hot plate and tail flick tests to measure the effect of dFBr and CMPI on the latency to acute thermal nociceptive responses in rats. Intraperitoneal injection of dFBr, but not CMPI, dose-dependently increased latency in the hot plate test. In the tail flick test, the effect achieved at the highest dFBr or CMPI dose tested was only <20% of the maximum possible effects reported for nicotine and other nicotinic agonists. Moreover, the coadministration of dFBr did not enhance the antinociceptive effect of a low dose of nicotine. Our results show that the direct acute effect of dFBr is superior to that for CMPI, indicating that selectivity to (α4)3(β2)2 nAChR is not advantageous in alleviating responses to acute thermal nociceptive stimulus. However, further studies are necessary to test the suitability of (α4)3(β2)2 nAChR-selective PAMs in chronic pain models.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX 75799, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Kara Ramos
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Matthew Vannoy
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Kemburli Munoz
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Lois S. Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Kontos Medical Science Building, 1217 E. Marshall St., P.O. Box 980613, Richmond, VA 23298, USA; (L.S.A.); (M.I.D.)
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Kontos Medical Science Building, 1217 E. Marshall St., P.O. Box 980613, Richmond, VA 23298, USA; (L.S.A.); (M.I.D.)
| | - Ayman K. Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX 75799, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
- Correspondence: ; Tel.: +1-903-565-6578
| |
Collapse
|
6
|
Wilkerson JL, Deba F, Crowley ML, Hamouda AK, McMahon LR. Advances in the In vitro and In vivo pharmacology of Alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology 2020; 168:108008. [PMID: 32113032 DOI: 10.1016/j.neuropharm.2020.108008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
Receptors containing α4 and β2 subunits are a major neuronal nicotinic acetylcholine receptor (nAChR) subtype in the brain. This receptor plays a critical role in nicotine addiction, with potential smoking cessation therapeutics producing modulation of α4β2 nAChR. In addition, compounds that act as agonists at α4β2 nAChR may be useful for the treatment of pathological pain. Further, as the α4β2 nAChR has been implicated in cognition, therapeutics that act as α4β2 nAChR agonists are also being examined as treatments for cognitive disorders and neurological diseases that impact cognitive function, such as Alzheimer's disease and schizophrenia. This review will cover the molecular in vitro evidence that allosteric modulators of the α4β2 neuronal nAChR provide several advantages over traditional α4β2 nAChR orthosteric ligands. Specifically, we explore the concept that nAChR allosteric modulators allow for greater pharmacological selectivity, while minimizing potential deleterious off-target effects. Further, here we discuss the development and preclinical in vivo behavioral assessment of allosteric modulators at the α4β2 neuronal nAChR as therapeutics for smoking cessation, pathological pain, as well as cognitive disorders and neurological diseases that impact cognitive function. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| | - Farah Deba
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States
| | - Morgan L Crowley
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States.
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| |
Collapse
|
7
|
Influence of neuropathic pain on nicotinic acetylcholine receptor plasticity and behavioral responses to nicotine in rats. Pain 2019; 159:2179-2191. [PMID: 29939964 DOI: 10.1097/j.pain.0000000000001318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tobacco smoking is particularly evident in individuals experiencing chronic pain. This complex relationship is poorly understood at both molecular and behavioral levels. Here, we describe experiments aimed at understanding whether a chronic pain state induces neuroadaptations into the brain or peripheral nerves that involve nicotinic acetylcholine receptors (nAChRs) and whether these neuroadaptations directly lead to increased vulnerability to nicotine addiction or to the development of coping strategies to relieve pain symptoms. We found that ligation of the rat L5 spinal nerve led to a dramatic downregulation in the mRNA expression levels of all nAChR subunits examined in dorsal root ganglia and a time-dependent downregulation of discrete subunits, particularly in the cingulate cortex and the amygdala. Spinal nerve ligation and sham-operated rats showed minor or no changes in patterns of acquisition and motivation for nicotine taking. Spinal nerve ligation rats also showed similar vulnerability to nicotine seeking as sham animals when reinstatement was induced by nicotine-associated cues, but failed to reinstate lever pressing when relapse was induced by nicotine priming. Spinal nerve ligation and sham rats were equally sensitive to nicotine-induced anxiety-like behavior and antinociception; however, nicotine produced a potent and long-lasting antiallodynic effect in spinal nerve ligation rats. These results demonstrate that chronic pain leads to plasticity of nAChRs that do not directly facilitate nicotine addictive behaviors. Instead, nicotine potently decreases allodynia, an effect that could lead to increased nicotine consumption in chronic pain subjects.
Collapse
|
8
|
Ghasemi H, Tamaddonfard E, Soltanalinejad F. Role of thalamic ventral posterolateral nucleus histamine H 2 and opiate receptors in modulation of formalin-induced muscle pain in rats. Pharmacol Rep 2017; 69:1393-1401. [DOI: 10.1016/j.pharep.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023]
|
9
|
Affiliation(s)
- Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
- Kyoto University Research Administration Office
| |
Collapse
|
10
|
Jareczek FJ, White SR, Hammond DL. Plasticity in Brainstem Mechanisms of Pain Modulation by Nicotinic Acetylcholine Receptors in the Rat. eNeuro 2017; 4:ENEURO.0364-16.2017. [PMID: 28197544 PMCID: PMC5286660 DOI: 10.1523/eneuro.0364-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/03/2023] Open
Abstract
Individuals with chronic pain may be driven to smoke more because the analgesic efficacy of nicotine diminishes. To determine whether persistent pain diminishes the actions of a nicotinic acetylcholine receptor (nAChR) agonist in pain modulatory pathways, we examined the effects of epibatidine in the rostral ventromedial medulla (RVM) of rats with and without inflammatory injury induced by intraplantar injection of complete Freund's adjuvant (CFA). In uninjured rats, epibatidine produced a dose-dependent antinociception that was completely blocked by dihydro-β-erythroidine (DHβE; α4β2 antagonist) and partially blocked by methyllycaconitine (MLA; α7 antagonist). Epibatidine reversed heat hyperalgesia when microinjected in the RVM 4 h, 4 d, or 2 weeks after CFA treatment. Although DHβE completely blocked epibatidine's antihyperalgesic effect at 4 h, at 2 weeks it elicited only partial antagonism. Methyllycaconitine was ineffective at both time points. Epibatidine's antinociceptive efficacy in the uninjured hind paw progressively declined, and it was without effect 2 weeks after CFA. Moreover, as early as 4 h after CFA, the antinociceptive effect of epibatidine was no longer antagonized by DHβE. Neither antagonist alone altered paw withdrawal latency in uninjured or CFA-treated rats, suggesting that neither α4β2 nor α7 nAChRs are tonically active in the RVM. The Bmax and Kd of α4β2 nAChRs in the RVM were unchanged after CFA treatment. These observations provide the first evidence of pharmacological plasticity of the actions of α4β2 nAChR agonists in a critical brainstem pain modulatory pathway and may in part explain why people with chronic pain smoke more than the general population.
Collapse
Affiliation(s)
- Francis J. Jareczek
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
| | | | - Donna L. Hammond
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Department of Anesthesia, University of Iowa, Iowa City, IA 52242
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
11
|
Noninvasive evaluation of nicotinic acetylcholine receptor availability in mouse brain using single-photon emission computed tomography with [123I]5IA. Nucl Med Biol 2016; 43:372-8. [DOI: 10.1016/j.nucmedbio.2016.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/31/2016] [Accepted: 02/22/2016] [Indexed: 11/20/2022]
|
12
|
Ueda M. Development of Radiolabeled Molecular Imaging Probes for in Vivo Analysis of Biological Function. YAKUGAKU ZASSHI 2016; 136:659-68. [DOI: 10.1248/yakushi.15-00279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masashi Ueda
- Department of Pharmaceutical Analytical Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
13
|
Boadas-Vaello P, Castany S, Homs J, Álvarez-Pérez B, Deulofeu M, Verdú E. Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 2016; 54:330-40. [DOI: 10.1038/sc.2015.225] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
14
|
Xanthos DN, Beiersdorf JW, Thrun A, Ianosi B, Orr-Urtreger A, Huck S, Scholze P. Role of α5-containing nicotinic receptors in neuropathic pain and response to nicotine. Neuropharmacology 2015; 95:37-49. [PMID: 25725336 DOI: 10.1016/j.neuropharm.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
Abstract
Nicotinic receptors in the central nervous system (nAChRs) are known to play important roles in pain processing and modulate behavioral responses to analgesic drugs, including nicotine. The presence of the α5-neuronal nicotinic accessory subunit in the nicotinic receptor complex is increasingly understood to modulate reward and aversive states, addiction, and possibly pathological pain. In the current study, using α5-knockout (KO) mice and subunit-specific antibodies, we assess the role of α5-containing neuronal nicotinic receptors in neuropathic pain and in the analgesic response to nicotine. After chronic constriction injury (CCI) or partial sciatic nerve ligation (PSNL), no differences in mechanical, heat, or cold hyperalgesia were found in wild-type (WT) versus α5-KO littermate mice. The number of α5-containing nAChRs was decreased (rather than increased) after CCI in the spinal cord and in the thalamus. Nevertheless, thermal analgesic response to nicotine was marginally reduced in CCI α5-KO mice at 4 days after CCI, but not at later timepoints or after PSNL. Interestingly, upon daily intermittent nicotine injections in unoperated mice, WT animals developed tolerance to nicotine-induced analgesia to a larger extent than α5-KO mice. Our results suggest that α5-containing nAChRs mediate analgesic tolerance to nicotine but do not play a major role in neuropathic pain.
Collapse
Affiliation(s)
- Dimitris N Xanthos
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria.
| | - Johannes W Beiersdorf
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Ariane Thrun
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Bogdan Ianosi
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Avi Orr-Urtreger
- The Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria.
| |
Collapse
|
15
|
Umana IC, Daniele CA, McGehee DS. Neuronal nicotinic receptors as analgesic targets: it's a winding road. Biochem Pharmacol 2013; 86:1208-14. [PMID: 23948066 DOI: 10.1016/j.bcp.2013.08.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Along with their well known role in nicotine addiction and autonomic physiology, neuronal nicotinic receptors (nAChRs) also have profound analgesic effects in animal models and humans. This is not a new idea, even in the early 1500s, soon after tobacco was introduced to the new world, its proponents listed pain relief among the beneficial properties of smoking. In recent years, analgesics that target specific nAChR subtypes have shown highly efficacious antinociceptive properties in acute and chronic pain models. To date, the side effects of these drugs have precluded their advancement to the clinic. This review summarizes the recent efforts to identify novel analgesics that target nAChRs, and outlines some of the key neural substrates that contribute to these physiological effects. There remain many unanswered mechanistic questions in this field, and there are still compelling reasons to explore neuronal nAChRs as targets for the relief of pain.
Collapse
Affiliation(s)
- Iboro C Umana
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
16
|
Saab CY. Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci 2012; 35:629-37. [DOI: 10.1016/j.tins.2012.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
17
|
Ueda M, Kudo T, Mutou Y, Umeda IO, Miyano A, Ogawa K, Ono M, Fujii H, Kizaka-Kondoh S, Hiraoka M, Saji H. Evaluation of [125I]IPOS as a molecular imaging probe for hypoxia-inducible factor-1-active regions in a tumor: comparison among single-photon emission computed tomography/X-ray computed tomography imaging, autoradiography, and immunohistochemistry. Cancer Sci 2011; 102:2090-6. [PMID: 21824221 DOI: 10.1111/j.1349-7006.2011.02057.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To image hypoxia-inducible factor-1 (HIF-1)-active tumors, we previously developed a chimeric protein probe ([(123/125) I]IPOS) that is degraded in the same manner as HIF-1α under normoxic conditions. In the present study, we aim to show that the accumulation of radioiodinated POS reflects the expression of HIF-1. In vivo single-photon emission computed tomography (SPECT)/X-ray CT (CT) imaging, autoradiography, and double-fluorescent immunostaining for HIF-1α and pimonidazole (PIMO) were carried out 24 h after the injection of [(125) I]IPOS. Tumor metabolite analysis was also carried out. A tumor was clearly visualized by multi-pinhole, high-resolution SPECT/CT imaging with [(125) I]IPOS. The obtained images were in accordance with the corresponding autoradiograms and with the results of ex vivo biodistribution. A metabolite analysis revealed that 77% of the radioactivity was eluted in the macromolecular fraction, suggesting that the radioactivity mainly existed as [(125) I]IPOS in the tumors. Immunohistochemistry revealed that the HIF-1α-positive areas and PIMO-positive areas were not always identical, only some of the regions were positive for both markers. The areas showing [(125) I]IPOS accumulation were positively and significantly correlated with the HIF-1α-positive areas (R = 0.75, P < 0.0001). The correlation coefficient between [(125) I]IPOS-accumulated areas and HIF-1α-positive areas was significantly greater than that between the [(125) I]IPOS-accumulated areas and the PIMO-positive areas (P < 0.01). These findings indicate that [(125) I]IPOS accumulation reflects HIF-1 expression. Thus, [(123/125) I]IPOS can serve as a useful probe for the molecular imaging of HIF-1-active tumors.
Collapse
Affiliation(s)
- Masashi Ueda
- Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 2011; 1381:187-201. [DOI: 10.1016/j.brainres.2011.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 02/07/2023]
|
19
|
Kudo T, Ueda M, Konishi H, Kawashima H, Kuge Y, Mukai T, Miyano A, Tanaka S, Kizaka-Kondoh S, Hiraoka M, Saji H. PET Imaging of Hypoxia-Inducible Factor-1-Active Tumor Cells with Pretargeted Oxygen-Dependent Degradable Streptavidin and a Novel 18F-Labeled Biotin Derivative. Mol Imaging Biol 2010; 13:1003-10. [DOI: 10.1007/s11307-010-0418-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Ueda M, Iida Y, Yoneyama T, Kawai T, Ogawa M, Magata Y, Saji H. In vivo relationship between thalamic nicotinic acetylcholine receptor occupancy rates and antiallodynic effects in a rat model of neuropathic pain: Persistent agonist binding inhibits the expression of antiallodynic effects. Synapse 2010; 65:77-83. [DOI: 10.1002/syn.20819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Ueda M, Kudo T, Kuge Y, Mukai T, Tanaka S, Konishi H, Miyano A, Ono M, Kizaka-Kondoh S, Hiraoka M, Saji H. Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1alpha. Eur J Nucl Med Mol Imaging 2010; 37:1566-74. [PMID: 20428865 DOI: 10.1007/s00259-010-1467-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/29/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-(123)I-iodobenzoyl)norbiotinamide ((123)I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and (123)I-IBB for rapid imaging of HIF-1-active tumours. METHODS Tumour-implanted mice were pretargeted with POS. After 24 h, (125)I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between (125)I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of (125)I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1alpha immunohistochemistry. RESULTS (125)I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from (125)I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of (125)I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of (125)I-IBB was heterogeneous and was significantly correlated with HIF-1alpha-positive regions (R=0.58, p<0.0001). CONCLUSION POS pretargeting with (123)I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours.
Collapse
Affiliation(s)
- Masashi Ueda
- Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|