1
|
García-Martín JM, Muro A, Fernández-Soto P. Diagnosis of Human Endemic Mycoses Caused by Thermally Dimorphic Fungi: From Classical to Molecular Methods. J Fungi (Basel) 2024; 10:637. [PMID: 39330397 PMCID: PMC11432851 DOI: 10.3390/jof10090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Human endemic mycoses are potentially fatal diseases caused by a diverse group of fungi that can alter their morphology in response to an increase in temperature. These thermally dimorphic fungi affect both healthy and immunocompromised hosts, causing a substantial health and economic burden. Despite this, the diagnosis of endemic mycoses is still a formidable challenge for several reasons, including similar symptomatology, limited utility of classical diagnostic methods, inaccessibility to reliable molecular approaches in most endemic areas, and a lack of clinical suspicion out of these regions. This review summarizes essential knowledge on thermally dimorphic fungi and the life-threatening diseases they cause. The principle, advantages and limitations of the methods traditionally used for their diagnosis are also described, along with the application status and future directions for the development of alternative diagnostic strategies, which could help to reduce the disease burden in endemic areas.
Collapse
Affiliation(s)
- Joaquina María García-Martín
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (A.M.); (P.F.-S.)
| | | | | |
Collapse
|
2
|
Puccia R, Taborda CP. The story of Paracoccidiodes gp43. Braz J Microbiol 2023; 54:2543-2550. [PMID: 37052751 PMCID: PMC10689671 DOI: 10.1007/s42770-023-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
This review is about Dr. Luiz Rodolpho Raja Gabaglia Travassos' scientific contributions to paracoccidioidomycosis as told by myself, Rosana Puccia, but co-written with Dr. Carlos P. Taborda, my younger scientific brother, collaborator, and dear friend. Dr. Travassos' pioneer papers and scientific insights covering biochemistry, immunology, cell biology, and molecular biology in the paracoccidiodomycosis area are key contributions that we acknowledge here, with focus on the Paracoccidioides antigen gp43. Importantly, we tell some personal stories behind the scene. Dr. Travassos' contribution to science is available in a number of quality publications, while his influence to hundreds of people who gravitated around him will be kept alive inside each one of us forever.
Collapse
Affiliation(s)
- Rosana Puccia
- Departamento de Microbiologia, Parasitologia e Imunologia, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil.
| | - Carlos Peleschi Taborda
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (ICB-USP), São Paulo, Brazil.
| |
Collapse
|
3
|
Santos SS, Rampazo E, Taborda CP, Nosanchuk JD, Boscardin SB, Almeida SR. Targeting the P10 Peptide in Maturing Dendritic Cells via the DEC205 Receptor In Vivo: A New Therapeutic Strategy against Paracoccidioidomycosis. J Fungi (Basel) 2023; 9:jof9050548. [PMID: 37233259 DOI: 10.3390/jof9050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as the tenth most common cause of death among chronic infectious diseases. Hence, vaccines are in development to combat this insidious pathogen. It is likely that effective vaccines will need to elicit strong T cell-mediated immune responses composed of IFNγ secreting CD4+ helper and CD8+ cytolytic T lymphocytes. To induce such responses, it would be valuable to harness the dendritic cell (DC) system of antigen-presenting cells. To assess the potential of targeting P10, which is a peptide derived from gp43 secreted by the fungus, directly to DCs, we cloned the P10 sequence in fusion with a monoclonal antibody to the DEC205 receptor, an endocytic receptor that is abundant on DCs in lymphoid tissues. We verified that a single injection of the αDEC/P10 antibody caused DCs to produce a large amount of IFNγ. Administration of the chimeric antibody to mice resulted in a significant increase in the levels of IFN-γ and IL-4 in lung tissue relative to control animals. In therapeutic assays, mice pretreated with αDEC/P10 had significantly lower fungal burdens compared to control infected mice, and the architecture of the pulmonary tissues of αDEC/P10 chimera-treated mice was largely normal. Altogether, the results obtained so far indicate that targeting P10 through a αDEC/P10 chimeric antibody in the presence of polyriboinosinic: polyribocytidylic acid is a promising strategy in vaccination and therapeutic protocols to combat PCM.
Collapse
Affiliation(s)
- Suelen S Santos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Eline Rampazo
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Silvia B Boscardin
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Sandro R Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
4
|
Santos Júnior SRD, Barbalho FV, Nosanchuk JD, Amaral AC, Taborda CP. Biodistribution and Adjuvant Effect of an Intranasal Vaccine Based on Chitosan Nanoparticles against Paracoccidioidomycosis. J Fungi (Basel) 2023; 9:jof9020245. [PMID: 36836359 PMCID: PMC9964167 DOI: 10.3390/jof9020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 02/15/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a fungal infection caused by the thermodimorphic Paracoccidioides sp. PCM mainly affects the lungs, but, if it is not contained by the immune response, the disease can spread systemically. An immune response derived predominantly from Th1 and Th17 T cell subsets facilitates the elimination of Paracoccidioides cells. In the present work, we evaluated the biodistribution of a prototype vaccine based on the immunodominant and protective P. brasiliensis P10 peptide within chitosan nanoparticles in BALB/c mice infected with P. brasiliensis strain 18 (Pb18). The generated fluorescent (FITC or Cy5.5) or non-fluorescent chitosan nanoparticles ranged in diameter from 230 to 350 nm, and both displayed a Z potential of +20 mV. Most chitosan nanoparticles were found in the upper airway, with smaller amounts localized in the trachea and lungs. The nanoparticles complexed or associated with the P10 peptide were able to reduce the fungal load, and the use of the chitosan nanoparticles reduced the necessary number of doses to achieve fungal reduction. Both vaccines were able to induce a Th1 and Th17 immune response. These data demonstrates that the chitosan P10 nanoparticles are an excellent candidate vaccine for the treatment of PCM.
Collapse
Affiliation(s)
- Samuel Rodrigues Dos Santos Júnior
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
- Correspondence: (S.R.D.S.J.); (C.P.T.)
| | - Filipe Vieira Barbalho
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
| | - Joshua D. Nosanchuk
- Department of Medicine and Department of Microbiology and Immunology—The Bronx, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Andre Correa Amaral
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605050, Brazil
| | - Carlos Pelleschi Taborda
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
- Laboratory of Medical Mycology, School of Medicine/IMT/SP-LIM53, University of São Paulo, São Paulo 05403000, Brazil
- Correspondence: (S.R.D.S.J.); (C.P.T.)
| |
Collapse
|
5
|
Wu S, Guo W, Li B, Zhou H, Meng H, Sun J, Li R, Guo D, Zhang X, Li R, Qu W. Progress of polymer-based strategies in fungal disease management: Designed for different roles. Front Cell Infect Microbiol 2023; 13:1142029. [PMID: 37033476 PMCID: PMC10073610 DOI: 10.3389/fcimb.2023.1142029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Fungal diseases have posed a great challenge to global health, but have fewer solutions compared to bacterial and viral infections. Development and application of new treatment modalities for fungi are limited by their inherent essential properties as eukaryotes. The microorganism identification and drug sensitivity analyze are limited by their proliferation rates. Moreover, there are currently no vaccines for prevention. Polymer science and related interdisciplinary technologies have revolutionized the field of fungal disease management. To date, numerous advanced polymer-based systems have been developed for management of fungal diseases, including prevention, diagnosis, treatment and monitoring. In this review, we provide an overview of current needs and advances in polymer-based strategies against fungal diseases. We high light various treatment modalities. Delivery systems of antifungal drugs, systems based on polymers' innate antifungal activities, and photodynamic therapies each follow their own mechanisms and unique design clues. We also discuss various prevention strategies including immunization and antifungal medical devices, and further describe point-of-care testing platforms as futuristic diagnostic and monitoring tools. The broad application of polymer-based strategies for both public and personal health management is prospected and integrated systems have become a promising direction. However, there is a gap between experimental studies and clinical translation. In future, well-designed in vivo trials should be conducted to reveal the underlying mechanisms and explore the efficacy as well as biosafety of polymer-based products.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongqi Meng
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Junyi Sun
- Changchun American International School, Changchun, China
| | - Ruiyan Li
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Deming Guo
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| |
Collapse
|
6
|
Chechi JL, da Costa FAC, Figueiredo JM, de Souza CM, Valdez AF, Zamith-Miranda D, Camara AC, Taborda CP, Nosanchuk JD. Vaccine development for pathogenic fungi: current status and future directions. Expert Rev Vaccines 2023; 22:1136-1153. [PMID: 37936254 PMCID: PMC11500455 DOI: 10.1080/14760584.2023.2279570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Fungal infections are caused by a broad range of pathogenic fungi that are found worldwide with different geographic distributions, incidences, and mortality rates. Considering that there are relatively few approved medications available for combating fungal diseases and no vaccine formulation commercially available, multiple groups are searching for new antifungal drugs, examining drugs for repurposing and developing antifungal vaccines, in order to control deaths, sequels, and the spread of these complex infections. AREAS COVERED This review provides a summary of advances in fungal vaccine studies and the different approaches under development, such as subunit vaccines, whole organism vaccines, and DNA vaccines, as well as studies that optimize the use of adjuvants. We conducted a literature search of the PubMed with terms: fungal vaccines and genus of fungal pathogens (Cryptococcus spp. Candida spp. Coccidioides spp. Aspergillus spp. Sporothrix spp. Histoplasma spp. Paracoccidioides spp. Pneumocystis spp. and the Mucorales order), a total of 177 articles were collected from database. EXPERT OPINION Problems regarding the immune response development in an immunocompromised organism, the similarity between fungal and mammalian cells, and the lack of attention by health organizations to fungal infections are closely related to the fact that, at present, there are no fungal vaccines available for clinical use.
Collapse
Affiliation(s)
- Jéssica L. Chechi
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Felipe A. C. da Costa
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Julia M. Figueiredo
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Cássia M. de Souza
- Laboratório de Fisiologia e Biologia Molecular de Fungos, Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Brasil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brasil
| | - Alessandro F. Valdez
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Aline C. Camara
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Carlos P. Taborda
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
7
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Kischkel B, Boniche-Alfaro C, Menezes IDG, Rossi SA, Angeli CB, de Almeida SR, Palmisano G, Lopes-Bezerra L, Nosanchuk JD, Taborda CP. Immunoproteomic and Immunopeptidomic Analyses of Histoplasma capsulatum Reveal Promiscuous and Conserved Epitopes Among Fungi With Vaccine Potential. Front Immunol 2021; 12:764501. [PMID: 34880863 PMCID: PMC8645968 DOI: 10.3389/fimmu.2021.764501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
As there are more than 6 million human deaths due to mycoses each year, there is an urgent need to develop fungal vaccines. Moreover, given the similarities among pathogenic fungi, it may be possible to create a multi-fungi vaccine. In this study, we combined immunoproteomic and immunopeptidomic methods, for which we have adapted a technique based on co-immunoprecipitation (Co-IP) that made it possible to map Histoplasma capsulatum epitopes for the first time in a natural context using murine dendritic cells (DCs) and macrophages (Mφ). Although polysaccharide epitopes exist, this research focused on mapping protein epitopes as these are more immunogenic. We used different algorithms to screen proteins and peptides identified by two-dimensional electrophoresis (2-D) and Co-IP. Seventeen proteins were revealed by 2-D gels, and 45 and 24 peptides from distinct proteins were presented by DCs and Mφ, respectively. We then determined which epitopes were restricted to MHC-I and II from humans and mice and showed high promiscuity, but lacked identity with human proteins. The 4 most promising peptides were synthesized, and the peptides with and without incorporation into glucan particles induced CD4+ and CD8+ T cell proliferation and produced a Th1 and Th17 response marked by the secretion of high levels of IFN-γ, IL-17 and IL-2. These epitopes were from heat shock protein 60, enolase, and the ATP-dependent molecular chaperone HSC82, and they each have a high degree of identity with proteins expressed by other medically important pathogenic fungi. Thus, the epitopes described in this study have the potential for use in the development of vaccines that could result in cross-protection among fungal species.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Camila Boniche-Alfaro
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Isabela de Godoy Menezes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suelen Andreia Rossi
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Tropical Medicine Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Leila Lopes-Bezerra
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Tropical Medicine Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI JOURNAL 2021; 20:562-584. [PMID: 33883983 PMCID: PMC8056051 DOI: 10.17179/excli2020-3068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Currently, the significance of fungi as human pathogens is not medically concealed in the world. Consequently, suitable recognition and treatment of such infections are of great importance and necessitate the need for comprehensive information in this regard. The introduction of new antifungals and their use today, especially in the last two decades, have revolutionized the treatment of fungal infections. On the other hand, increasing drug resistance in the world has overshadowed such developments. The use of NPs results in the treatment of fungal infections and owing to their specific properties, these particles, unlike the pure antibiotics, can exert a greater inhibitory power although with less concentration compared with conventional drugs. Important reasons that have led to the use of antifungal drugs in delivery systems include reduced drug efficacy, limited penetration through tissue, poor aqueous solubility, decreased bioavailability, and poor drug pharmacokinetics. It is therefore hoped that unfavorable properties of antifungal drugs be mitigated via their incorporation into different types of NPs. This review summarizes the different types of NPs as delivery systems of antifungal as well as their advantages over pure drugs.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Khan AA, Alanazi AM, Alsaif N, Algrain N, Wani TA, Bhat MA. Enhanced Efficacy of Thiosemicarbazone Derivative-Encapsulated Fibrin Liposomes against Candidiasis in Murine Model. Pharmaceutics 2021; 13:pharmaceutics13030333. [PMID: 33806702 PMCID: PMC7998974 DOI: 10.3390/pharmaceutics13030333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Candida albicans is the most studied species for the candidiasis infection and is becoming resistant towards existing antifungal drugs. Considering this, in the current study, we developed and characterized a fibrin liposome-based formulation encapsulating a novel thiosemicarbazone derivative, 2C, and evaluated its antifungal efficacy against murine candidiasis. The 2C-containing formulation was prepared by encapsulating 2C within the liposomes (2C-L) that were further encapsulated in the fibrin beads (2C-FL). The in-house synthesized 2C-FLs were spherical with a zeta potential of −34.12 ± 0.3 mV, an entrapment efficiency of 72.6 ± 4.7%, and a loading efficiency of 9.21 ± 2.3%, and they showed a slow and sustained release of 2C. Compared to free 2C, the formulation was non-toxic and exhibited serum stability, increased tissue specificity, and penetration. The 2C-FL formulation had a minimum inhibitory concentration (MIC) value of 4.92 ± 0.76 µg/mL and was able to induce apoptosis and necrosis in C. albicans in vitro. The administration of 2C-FL in C. albicans-infected mice prolonged their survival and antifungal effects when compared with the free 2C. The 2C-FL antifungal therapy significantly reduced the fungal burden and displayed an improved survival rate. In conclusion, the 2C thiosemicarbazone derivative possesses a potent antifungal activity that became more advantageous upon its encapsulation in the fibrin liposome delivery system.
Collapse
|
11
|
Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021; 7:106. [PMID: 33540749 PMCID: PMC7913102 DOI: 10.3390/jof7020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília (UnB), Brasilia, Distrito Federal 70910-900, Brazil;
| | - Isis Regina Grenier Capoci
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - André Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Bruna Lauton Simões
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Ana Karina Rodrigues Abadio
- Faculty of Agricultural Social Sciences, Mato Grosso State University, Nova Mutum, Mato Grosso 78450-000, Brazil;
| | - Larissa Fernandes Matos
- Faculty of Ceilandia, University of Brasília (UnB), Brasília, Distrito Federal 72220-275, Brazil;
- Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| |
Collapse
|
12
|
Tejada G, Barrera MG, García P, Sortino M, Lamas MC, Lassalle V, Alvarez V, Leonardi D. Nanoparticulated Systems Based on Natural Polymers Loaded with Miconazole Nitrate and Lidocaine for the Treatment of Topical Candidiasis. AAPS PharmSciTech 2020; 21:278. [PMID: 33033939 DOI: 10.1208/s12249-020-01826-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
People with weakened immune systems are at risk of developing candidiasis which is a fungal infection caused by several species of Candida genus. In this work, polymeric nanoparticles containing miconazole nitrate and the anesthetic lidocaine clorhydrate were developed. Miconazole was chosen as a typical drug to treat buccopharyngeal candidiasis whereas lidocaine may be useful in the management of the pain burning, and pruritus caused by the infection. Nanoparticles were synthesized using chitosan and gelatin at different ratios ranging from 10:90 to 90:10. The nano-systems presented nanometric size (between 80 and 300 nm in water; with polydispersion index ranging from 0.120 to 0.596), and positive Z potential (between 20.11 and 37.12 mV). The determined encapsulation efficiency ranges from 65 to 99% or 34 to 91% for miconazole nitrate and lidocaine clorhydrate, respectively. X-ray diffraction and DSC analysis suggested that both drugs were in amorphous state in the nanoparticles. Finally, the systems fitted best the Korsmeyer-Peppas model showing that the release from the nanoparticles was through diffusion allowing a sustained release of both drugs and prolonged the activity of miconazole nitrate over time against Candida albicans for at least 24 h.
Collapse
|
13
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Intranasal Vaccine Using P10 Peptide Complexed within Chitosan Polymeric Nanoparticles as Experimental Therapy for Paracoccidioidomycosis in Murine Model. J Fungi (Basel) 2020; 6:jof6030160. [PMID: 32887256 PMCID: PMC7560165 DOI: 10.3390/jof6030160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a granulomatous fungal disease caused by the dimorphic fungal species of Paracoccidioides, which mainly affects the lungs. Modern strategies for the treatment and/or prevention of PCM are based on a Th1-type immune response, which is important for controlling the disease. One of the most studied candidates for a vaccine is the P10 peptide, derived from the 43 kDa glycoprotein of Paracoccidioides brasiliensis. In order to improve its immune modulatory effect, the P10 peptide was associated with a chitosan-conjugated nanoparticle. The nanoparticles presented 220 nm medium size, poly dispersion index (PDI) below 0.5, zeta potential of +20 mV and encapsulation efficiency around 90%. The nanoparticles' non-toxicity was verified by hemolytic test and cell viability using murine macrophages. The nanoparticles were stable and presented physicochemical characteristics desirable for biological applications, reducing the fungal load and the usual standard concentration of the peptide from 4 to 20 times.
Collapse
|
15
|
Vaccine Development to Systemic Mycoses by Thermally Dimorphic Fungi. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf B Biointerfaces 2019; 174:409-415. [DOI: 10.1016/j.colsurfb.2018.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
|
17
|
Jannuzzi GP, Souza NDA, Françoso KS, Pereira RH, Santos RP, Kaihami GH, Almeida JRFD, Batista WL, Amaral AC, Maranhão AQ, Almeida SRD, Ferreira KS. Therapeutic treatment with scFv-PLGA nanoparticles decreases pulmonary fungal load in a murine model of paracoccidioidomycosis. Microbes Infect 2017; 20:48-56. [PMID: 28951317 DOI: 10.1016/j.micinf.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis with lymphatic dissemination that is caused by Paracoccidioides species. Treatment of PCM consists of chemotherapeutics such as itraconazole, trimethoprim, sulfamethoxazole or amphotericin B. However, several studies are aiming to develop therapeutic alternatives for the treatment of fungal infection using new molecules as adjuvants. The single-chain variable fragments (scFv) from an antibody that mimics the main fungal component incorporated within poly(lactide-co-glycolic) acid (PLGA) nanoparticles helped treat the fungal disease. After expressing the scFv in Picchia pastoris (P. pastoris), the recombinant molecules were coupled with PLGA, and the BALB/c mice were immunized before or after infection with yeast Paracoccidioides brasiliensis (P. brasiliensis). Our results showed decreased disease progression and decreased fungal burden. Taken together, our results showed an increased of IFN-γ and IL-12 cytokine production and an increased number of macrophages and dendritic cells in the pulmonary tissue of BALB/c mice treated with a high concentration of our molecule. Our data further confirm that the scFv plays an important role in the treatment of experimental PCM.
Collapse
Affiliation(s)
- Grasielle Pereira Jannuzzi
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Nicole de Araújo Souza
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Kátia Sanches Françoso
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Roney Henrique Pereira
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Raquel Possemozer Santos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | | | | | - Wagner Luiz Batista
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - André Corrêa Amaral
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Karen Spadari Ferreira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
18
|
Arruda DC, de Oliveira TD, Cursino PHF, Maia VSC, Berzaghi R, Travassos LR, Tada DB. Inhibition of melanoma metastasis by dual-peptide PLGA NPS. Biopolymers 2017; 108. [DOI: 10.1002/bip.23029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Denise Costa Arruda
- Integrated Group of Biotechnology, University of Mogi das Cruzes, UMC; Mogi das Cruzes SP Brazil
| | | | | | | | - Rodrigo Berzaghi
- Experimental Oncology Unit (UNONEX), Universidade Federal de São Paulo (UNIFESP); São Paulo SP 04023-062 Brazil
| | - Luiz R. Travassos
- Experimental Oncology Unit (UNONEX), Universidade Federal de São Paulo (UNIFESP); São Paulo SP 04023-062 Brazil
| | - Dayane Batista Tada
- Institute of Science and Technology, Federal University of São Paulo; São José dos Campos SP Brazil
| |
Collapse
|
19
|
Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm 2017; 2017:9870679. [PMID: 28694566 PMCID: PMC5485324 DOI: 10.1155/2017/9870679] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.
Collapse
|
20
|
Souza ACO, Amaral AC. Antifungal Therapy for Systemic Mycosis and the Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity. Front Microbiol 2017; 8:336. [PMID: 28326065 PMCID: PMC5340099 DOI: 10.3389/fmicb.2017.00336] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/17/2017] [Indexed: 01/11/2023] Open
Abstract
Fungal diseases have been emerging as an important public health problem worldwide with the increase in host predisposition factors due to immunological dysregulations, immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis is limited, most of times expensive and causes important toxic effects. Nanotechnology has become an interesting strategy to improve efficacy of traditional antifungal drugs, which allows lower toxicity, better biodistribution, and drug targeting, with promising results in vitro and in vivo. In this review, we provide a discussion about conventional antifungal and nanoantifungal therapies for systemic mycosis.
Collapse
Affiliation(s)
- Ana C. O. Souza
- Laboratory of Pathogenic Dimorphic Fungi, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Andre C. Amaral
- Laboratory of Nano and Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| |
Collapse
|
21
|
Abstract
The chapter reviews methods utilized for the isolation and characterization of a promising immunogen candidate, aiming at a human vaccine against paracoccidioidomycosis. Peptide P10 carries a T-CD4+ epitope and was identified as an internal sequence of the major diagnostic antigen known as gp43 glycoprotein. It successfully treated massive intratracheal infections by virulent Paracoccidioides brasiliensis in combination with chemotherapy.An introduction about the systemic mycosis was found essential to understand the various options that were considered to design prophylactic and therapeutic vaccine protocols using peptide P10.
Collapse
Affiliation(s)
- Carlos P Taborda
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
- Laboratory of Medical Mycology IMTSP/LIM53/HCFMUSP, University of São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Rua Botucatu 862, 8th floor, São Paulo, 04021-001, Brazil.
| |
Collapse
|
22
|
Voltan AR, Quindós G, Alarcón KPM, Fusco-Almeida AM, Mendes-Giannini MJS, Chorilli M. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? Int J Nanomedicine 2016; 11:3715-30. [PMID: 27540288 PMCID: PMC4982498 DOI: 10.2147/ijn.s93105] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Invasive mycoses are a major problem for immunocompromised individuals and patients in intensive care units. Morbidity and mortality rates of these infections are high because of late diagnosis and delayed treatment. Moreover, the number of available antifungal agents is low, and there are problems with toxicity and resistance. Alternatives for treating invasive fungal infections are necessary. Nanostructured systems could be excellent carriers for antifungal drugs, reducing toxicity and targeting their action. The use of nanostructured systems for antifungal therapy began in the 1990s, with the appearance of lipid formulations of amphotericin B. This review encompasses different antifungal drug delivery systems, such as liposomes, carriers based on solid lipids and nanostructure lipids, polymeric nanoparticles, dendrimers, and others. All these delivery systems have advantages and disadvantages. Main advantages are the improvement in the antifungal properties, such as bioavailability, reduction in toxicity, and target tissue, which facilitates innovative therapeutic techniques. Conversely, a major disadvantage is the high cost of production. In the near future, the use of nanosystems for drug delivery strategies can be used for delivering peptides, including mucoadhesive systems for the treatment of oral and vaginal candidiasis.
Collapse
Affiliation(s)
- Aline Raquel Voltan
- Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | - Guillermo Quindós
- Immunology, Microbiology, and Parasitology Department, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Spain
| | - Kaila P Medina Alarcón
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
23
|
Taborda CP, Urán ME, Nosanchuk JD, Travassos LR. PARACOCCIDIOIDOMYCOSIS: CHALLENGES IN THE DEVELOPMENT OF A VACCINE AGAINST AN ENDEMIC MYCOSIS IN THE AMERICAS. Rev Inst Med Trop Sao Paulo 2016; 57 Suppl 19:21-4. [PMID: 26465365 PMCID: PMC4711196 DOI: 10.1590/s0036-46652015000700005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioidomycosis (PCM), caused by Paracoccidioides spp, is an
important endemic mycosis in Latin America. There are two recognized
Paracoccidioides species, P. brasiliensis and
P. lutzii, based on phylogenetic differences; however, the
pathogenesis and disease manifestations of both are indistinguishable at present.
Approximately 1,853 (~51,2%) of 3,583 confirmed deaths in Brazil due to systemic
mycoses from 1996-2006 were caused by PCM. Antifungal treatment is required for
patients with PCM. The initial treatment lasts from two to six months and sulfa
derivatives, amphotericin B, azoles and terbinafine are used in clinical practice;
however, despite prolonged therapy, relapses are still a problem. An effective
Th1-biased cellular immune response is essential to control the disease, which can be
induced by exogenous antigens or modulated by prophylactic or therapeutic vaccines.
Stimulation of B cells or passive transference of monoclonal antibodies are also
important means that may be used to improve the efficacy of paracoccidioidomycosis
treatment in the future. This review critically details major challenges facing the
development of a vaccine to combat PCM.
Collapse
Affiliation(s)
| | - M E Urán
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brasil
| | - J D Nosanchuk
- Departments of Medicine, Division of Infectious Diseases and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - L R Travassos
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
24
|
Portuondo DLF, Ferreira LS, Urbaczek AC, Batista-Duharte A, Carlos IZ. Adjuvants and delivery systems for antifungal vaccines: Current state and future developments. Med Mycol 2014; 53:69-89. [DOI: 10.1093/mmy/myu045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
25
|
Bocca AL, Amaral AC, Teixeira MM, Sato PK, Shikanai-Yasuda MA, Soares Felipe MS. Paracoccidioidomycosis: eco-epidemiology, taxonomy and clinical and therapeutic issues. Future Microbiol 2013; 8:1177-91. [DOI: 10.2217/fmb.13.68] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acquired by inhalation of the thermal dimorphic fungi Paracoccidioides spp. conidia, paracoccidioidomycosis ranges from symptomatic to severe and potentially fatal disseminated disease. The main focus of this review is to highlight clinical aspects of paracoccidioidomycosis and, its pathogens’ diversity ecology and particularities. In addition, we present strategies for therapy, including DNA vaccines and nanostructured drugs. Molecular and morphological data supported the split of the Paracoccidioides genus into two species, Paracoccidioides brasiliensis and Paracoccidioides lutzii. An acute form of the disease affects approximately 5% of cases and involves the phagocytic mononuclear system, resulting in progressive lymphadenopathy. The chronic form affects adult men and frequently involves lungs, skin and mucous membranes, lymph nodes, and adrenal glands. The clinical manifestations depend on the ability of the host to control the fungal multiplication and dissemination. The long survival time of the fungus in the host tissues allows it to evade immune responses; therefore, successful treatment often requires long-time therapy. The consensus for treatment must consider the severity of the disease and includes sulfone derivatives, amphotericin B and azoles. Novel strategies for therapy, based on DNA vaccines and nanostructured drugs are also presented and discussed in this review.
Collapse
Affiliation(s)
| | - André Corrêa Amaral
- Biotechnology, Institute of Tropical Pathology & Public Health, Universidade Federal de Goiás, Goiania, GO, Brazil
| | | | - Paula Keiko Sato
- Laboratory of Clinical Immunology, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, Brazil
| | - Maria Aparecida Shikanai-Yasuda
- Laboratory of Clinical Immunology, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, Brazil
- Department of Infectious & Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
26
|
de Amorim J, Magalhães A, Muñoz JE, Rittner GMG, Nosanchuk JD, Travassos LR, Taborda CP. DNA vaccine encoding peptide P10 against experimental paracoccidioidomycosis induces long-term protection in presence of regulatory T cells. Microbes Infect 2012. [PMID: 23201596 DOI: 10.1016/j.micinf.2012.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paracoccidioidomycosis is a granulomatous systemic mycosis endemic in Brazil and other Latin America countries. A DNA vaccine encoding the immunoprotective peptide 10 (P10) significantly reduced the fungal burden in mice when given prior to or after intratracheal challenge with Paracoccidioides brasiliensis. Presently, the generation/expansion of CD4+ CD44hi memory T cells as well as Foxp3+ Treg cells in mice immunized with the DNA vaccine (pcDNA3-P10) before and after infection with P. brasiliensis was investigated. Memory CD4+ CD44hi T cells simultaneously with Foxp3+ Treg cells increased in the spleens and lungs of pcDNA3-P10 immunized mice on day 0, 30, 60 and 120 postinfection. Histopathology of the lung tissue showed minimal inflammation in immunized mice compared with the unimmunized group, suggesting a role for regulatory T cells in controlling the immunopathology. The DNA vaccine shows that the repeated immunization generates memory cells and regulatory T cells that replace the initially protective pro-inflammatory T cells conferring a long term protection while preserving the integrity of the infected tissue.
Collapse
Affiliation(s)
- Juliana de Amorim
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
DNA-hsp65 vaccine as therapeutic strategy to treat experimental chromoblastomycosis caused by Fonsecaea pedrosoi. Mycopathologia 2012. [PMID: 23179449 DOI: 10.1007/s11046-012-9599-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chromoblastomycosis (CBM) is a chronic subcutaneous mycosis, caused by several dimorphic, pigmented dematiaceous fungi. Patients with the disease are still considered a therapeutic challenge, mainly due to its recalcitrant nature. There is no "gold standard" treatment for this neglected mycosis, but rather there are several treatment options. Chemotherapy alternatives include 5-flucytosine, itraconazole, terbinafine, fluconazole, thiabendazole, ketoconazole and amphotericin B, although the healing of severe cases is still uncommon. However, several studies have reported the DNA vaccine to be promising in the treatment for fungal infections; this vaccine allows the host to restore depressed cellular immunity, minimizing the toxic effects from conventional antifungal therapies. This work was therefore carried out aiming to establish a suitable model for experimental CBM, suggesting also new therapies, including DNA-hsp65 vaccine. By analyzing the morphometrical and histopathological aspects and by quantifying the fungal burden, the results showed the establishment of a chronic, although transitory, experimental CBM model with lesions similar to those presented in humans. A treatment regimen using intralesional itraconazole or amphotericin B was effective in treating experimental CBM, as was a therapy using naked DNA-hsp65 vaccine. It has also been shown that chemotherapy associated with DNA-hsp65 vaccine is promising in the treatment for CBM.
Collapse
|
28
|
Abstract
Paracoccidioidomycosis is a granulomatous pulmonary infection that is generally controlled by chemotherapy. The efficacy of treatment, however, is limited by the status of the host immune response. The inhibition of a Th-2 immunity or the stimulation of Th-1 cytokines generally increases the efficacy of antifungal drugs. ( 1) This has been achieved by immunization with an internal peptide of the major diagnostic antigen gp43 of Paracoccidioides brasiliensis. Peptide 10 (QTLIAIHTLAIRYAN) elicits an IFN-γ rich Th-1 immune response that protects against experimental intratracheal infection by this fungus. The combination of chemotherapy with P10 immunization showed additive protective effect even after 30 d of infection or in anergic mice, rendering in general, increased production of IL-12 and IFN-γ and reduction of IL-4 and IL-10. Immunotherapy with P10 even in the absence of simultaneous chemotherapy has been effective using various protocols, adjuvants, nanoparticles, P10-primed dendritic cells, and especially a combination of plasmids encoding the P10 minigene and IL-12. Gene therapy, in a long-term infection protocol succeeded in the virtual elimination of the fungus, preserving the lung structure, free from immunopathological side effects.
Collapse
Affiliation(s)
- Luiz R Travassos
- Cell Biology Division, Department of Microbiology, Federal University of São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
29
|
Travassos LR, Taborda CP. New advances in the development of a vaccine against paracoccidioidomycosis. Front Microbiol 2012; 3:212. [PMID: 22701452 PMCID: PMC3373149 DOI: 10.3389/fmicb.2012.00212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/24/2012] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is an endemic Latin American mycosis caused by Paracoccidioides brasiliensis and also by the recently described P. lutzii. The systemic mycosis is the 10th leading cause of death due to infectious diseases in Brazil. As published, 1,853 patients died of PCM in the 1996–2006 decade in this country. The main diagnostic antigen of P.brasiliensis is the 43 kDa glycoprotein gp43, and its 15-mer peptide QTLIAIHTLAIRYAN, known as P10, contains the T-CD4+ epitope that elicits an IFN-γ-mediated Th1 immune response, which effectively treats mice intratracheally infected with PCM. The association of peptide P10 with antifungal drugs rendered an additive protective effect, even in immunosuppressed animals, being the basis of a recommended treatment protocol. Other immunotherapeutic tools include a peptide carrying a B cell epitope as well as protective anti-gp43 monoclonal antibodies. New delivery systems and gene therapy have been studied in prophylactic and therapeutic protocols to improve the efficacy of the recognized antigens aiming at a future vaccine as co-adjuvant therapy in patients with PCM.
Collapse
Affiliation(s)
- Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, são Paulo, Brazil
| | | |
Collapse
|
30
|
Mayorga O, Muñoz JE, Lincopan N, Teixeira AF, Ferreira LCS, Travassos LR, Taborda CP. The role of adjuvants in therapeutic protection against paracoccidioidomycosis after immunization with the P10 peptide. Front Microbiol 2012; 3:154. [PMID: 22586420 PMCID: PMC3343455 DOI: 10.3389/fmicb.2012.00154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/03/2012] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM), a common chronic mycosis in Latin America, is a granulomatous systemic disease caused by the thermo-dimorphic fungus Paracoccidioides brasiliensis. The glycoprotein gp43 is the main antigen target of P. brasiliensis and a 15-mer internal peptide (QTLIAIHTLAIRYAN), known as P10, defines a major CD4(+)-specific T cell epitope. Previous results have indicated that, besides having a preventive role in conventional immunizations prior to challenge with the fungus, protective anti-fungal effects can be induced in P. brasiliensis-infected mice treated with P10 administered with complete Freund's adjuvant (CFA). The peptide elicits an IFN-γ-dependent Th1 immune response and is the main candidate for effective immunotherapy of patients with PCM, as an adjunctive approach to conventional chemotherapy. In the present study we tested the therapeutic effects of P10 combined with different adjuvants [aluminum hydroxide, CFA, flagellin, and the cationic lipid dioctadecyl-dimethylammonium bromide (DODAB)] in BALB/c mice previously infected with the P. brasiliensis Pb18 strain. Significant reductions in the number of colony forming units of the fungus were detected in lungs of mice immunized with P10 associated with the different adjuvants 52 days after infection. Mice treated with DODAB and P10, followed by mice treated with P10 and flagellin, showed the most prominent effects as demonstrated by the lowest numbers of viable yeast cells as well as reductions in granuloma formation and fibrosis. Concomitantly, secretion of IFN-γ and TNF-α, in contrast to interleukin (IL)-4 and IL-10, was enhanced in the lungs of mice immunized with P10 in combination with the tested adjuvants, with the best results observed in mice treated with P10 and DODAB. In conclusion, the present results demonstrate that the co-administration of the synthetic P10 peptide with several adjuvants, particularly DODAB, have significant therapeutic effects in experimental PCM.
Collapse
Affiliation(s)
- Oriana Mayorga
- Department of Microbiology, Biomedical Sciences Institute of University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Kang H, Sung J, Jung HM, Woo KM, Hong SD, Roh S. Insulin-Like Growth Factor 2 Promotes Osteogenic Cell Differentiation in the Parthenogenetic Murine Embryonic Stem Cells. Tissue Eng Part A 2012; 18:331-41. [DOI: 10.1089/ten.tea.2011.0074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hoin Kang
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jihye Sung
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hong-Moon Jung
- Department of Cell and Developmental Biology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyung Mi Woo
- Department of Cell and Developmental Biology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
32
|
Prophylactic and therapeutic vaccination using dendritic cells primed with peptide 10 derived from the 43-kilodalton glycoprotein of Paracoccidioides brasiliensis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:23-9. [PMID: 22089247 DOI: 10.1128/cvi.05414-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination with peptide 10 (P10), derived from the Paracoccidioides brasiliensis glycoprotein 43 (gp43), induces a Th1 response that protects mice in an intratracheal P. brasiliensis infection model. Combining P10 with complete Freund's adjuvant (CFA) or other adjuvants further increases the peptide's antifungal effect. Since dendritic cells (DCs) are up to 1,000-fold more efficient at activating T cells than CFA, we examined the impact of P10-primed bone-marrow-derived DC vaccination in mice. Splenocytes from mice immunized with P10 were stimulated in vitro with P10 or P10-primed DCs. T cell proliferation was significantly increased in the presence of P10-primed DCs compared to the peptide. The protective efficacy of P10-primed DCs was studied in an intratracheal P. brasiliensis model in BALB/c mice. Administration of P10-primed DCs prior to (via subcutaneous vaccination) or weeks after (via either subcutaneous or intravenous injection) P. brasiliensis infection decreased pulmonary damage and significantly reduced fungal burdens. The protective response mediated by the injection of primed DCs was characterized mainly by an increased production of gamma interferon (IFN-γ) and interleukin 12 (IL-12) and a reduction in IL-10 and IL-4 compared to those of infected mice that received saline or unprimed DCs. Hence, our data demonstrate the potential of P10-primed DCs as a vaccine capable of both the rapid protection against the development of serious paracoccidioidomycosis or the treatment of established P. brasiliensis disease.
Collapse
|
33
|
Murugeshu A, Astete C, Leonardi C, Morgan T, Sabliov CM. Chitosan/PLGA particles for controlled release of α-tocopherol in the GI tract via oral administration. Nanomedicine (Lond) 2011; 6:1513-28. [DOI: 10.2217/nnm.11.44] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: The physiochemical properties, controlled release characteristics, stability and cellular uptake of chitosan (Chi)/poly(D,L-lactide-co-glycolide) (PGLA) and PLGA particles with entrapped α-tocopherol were investigated to understand the behavior of these nanoparticles in the GI tract. Materials & Methods: Chi/PLGA and PLGA particles stabilized by lecithin were synthesized and fully characterized for oral gastrointestinal delivery via transmission electron microscopy, dynamic light scattering, high-performance liquid chromatography and fluorescence microscopy. Results: Particle stability was pH- and system-dependent. In vitro release profiles showed a higher percentage of drug released in the intestinal domain by Chi/PLGA as opposed to the PLGA nanoparticles. Fluorescent counterparts of these particles were confirmed to associate with the surface of the intestinal villi, and penetrate deep in the endothelial lining of rabbit intestinal explants, indicating uptake. Conclusion: In vitro and ex vivo results showed that PLGA and Chi/PLGA nanoparticles were efficiently taken up by the GI tract and could be optimized to deliver αtocopherol to the intestine and improve its bioavailability.
Collapse
Affiliation(s)
- Abitha Murugeshu
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Carlos Astete
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Claudia Leonardi
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Timothy Morgan
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
34
|
|