1
|
Mendes-Silverio CB, Lescano CH, Zaminelli T, Sollon C, Anhê GF, Antunes E, Mónica FZ. Activation of soluble guanylyl cyclase with inhibition of multidrug resistance protein inhibitor-4 (MRP4) as a new antiplatelet therapy. Biochem Pharmacol 2018; 152:165-173. [PMID: 29605625 DOI: 10.1016/j.bcp.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
The intracellular levels of cyclic GMP are controlled by its rate of formation through nitric oxide-mediated stimulation of soluble guanylate cyclase (sGC) and its degradation by phosphodiesterases. Multidrug resistance protein 4 (MRP4) expressed in human platelets pumps cyclic nucleotides out of cells. In search for new antiplatelet strategies, we tested the hypothesis that sGC activation concomitant with MRP4 inhibition confers higher antiplatelet efficacy compared with monotherapy alone. This study was undertaken to investigate the pharmacological association of the sGC activator BAY 60-2770 with the MRP4 inhibitor MK571 on human washed platelets. Collagen- and thrombin-induced platelet aggregation and ATP-release reaction assays were performed. BAY 60-2770 (0.001-10 µM) produced significant inhibitions of agonist-induced platelet aggregation accompanied by reduced ATP-release. Pre-incubation with 10 µM MK571 alone had no significant effect on platelet aggregation and ATP release, but it produced a left displacement by about of 10-100-fold in the concentration-response curves to BAY 60-2770. Pre-incubation with MK571increased and decreased, respectively, the intracellular and extracellular levels of cGMP to BAY 60-2770, whereas the cAMP levels remained unchanged. The increased VASP-serine 239 phosphorylation in BAY 60-2770-treated platelets was enhanced by MK571. In Fluo-4-loaded platelets, BAY 60-2770 reduced the intracellular Ca2+ levels, an effect significantly potentiated by MK571. Flow cytometry assays showed that BAY 60-2770 reduces the αIIbβ3 integrin activation, which was further reduced by MK571 association. Blocking the MRP4-mediated efflux of cGMP may be a potential mechanism to enhance the antiplatelet efficacy of sGC activators.
Collapse
Affiliation(s)
- Camila B Mendes-Silverio
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Caroline H Lescano
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Tiago Zaminelli
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Carolina Sollon
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Gabriel F Anhê
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil.
| |
Collapse
|
2
|
DiNicolantonio JJ, O'Keefe JH, McCarty MF. Targeting aspirin resistance with nutraceuticals: a possible strategy for reducing cardiovascular morbidity and mortality. Open Heart 2017; 4:e000642. [PMID: 28912955 PMCID: PMC5589004 DOI: 10.1136/openhrt-2017-000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - James H O'Keefe
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, USA
| | | |
Collapse
|
3
|
Stimulators of the soluble guanylyl cyclase: promising functional insights from rare coding atherosclerosis-related GUCY1A3 variants. Basic Res Cardiol 2016; 111:51. [PMID: 27342234 DOI: 10.1007/s00395-016-0570-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Stimulators of the soluble guanylyl cyclase (sGC) are emerging therapeutic agents in cardiovascular diseases. Genetic alterations of the GUCY1A3 gene, which encodes the α1 subunit of the sGC, are associated with coronary artery disease. Studies investigating sGC stimulators in subjects with CAD and carrying risk-related variants in sGC are, however, lacking. Here, we functionally investigate the impact of coding GUCY1A3 variants on sGC activity and the therapeutic potential of sGC stimulators in vitro. In addition to a known loss-of-function variant, eight coding variants in GUCY1A3 were cloned and expressed in HEK 293 cells. Protein levels and dimerization capability with the β1 subunit were analysed by immunoblotting and co-immunoprecipitation, respectively. All α1 variants found in MI patients dimerized with the β1 subunit. Protein levels were reduced by 72 % in one variant (p < 0.01). Enzymatic activity was analysed using cGMP radioimmunoassay after stimulation with a nitric oxide (NO) donor. Five variants displayed decreased cGMP production upon NO stimulation (p < 0.001). The addition of the sGC stimulator BAY 41-2272 increased cGMP formation in all of these variants (p < 0.01). Except for the variant leading to decreased protein level, cGMP amounts reached the wildtype NO-induced level after addition of BAY 41-2272. In conclusion, rare coding variants in GUCY1A3 lead to reduced cGMP formation which can be rescued by a sGC stimulator in vitro. These results might therefore represent the starting point for discovery of novel treatment strategies for patients at risk with coding GUCY1A3 variants.
Collapse
|
4
|
Frey R, Reber M, Krätzschmar J, Unger S, Mück W, Wensing G. Riociguat (BAY 63-2521) and aspirin: a randomized, pharmacodynamic, and pharmacokinetic interaction study. Pulm Circ 2016; 6:S35-42. [PMID: 27162625 PMCID: PMC4860533 DOI: 10.1086/685014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/05/2015] [Indexed: 11/03/2022] Open
Abstract
In preclinical studies, drugs that increase cyclic guanosine monophosphate levels have been shown to influence platelet function/aggregation; however, the effect of riociguat on human platelets is unclear. Aspirin, a platelet inhibitor, is likely to be given concomitantly in patients receiving riociguat. It is therefore important to establish clinically whether (1) riociguat affects platelet function and (2) aspirin and riociguat interact. This randomized, open-label, crossover study investigated potential pharmacodynamic and pharmacokinetic interactions between these drugs in healthy male volunteers (N = 18). There were 3 treatment regimens: a single morning dose of riociguat 2.5 mg, aspirin 500 mg on 2 consecutive mornings, and both treatments together, with riociguat given on the second morning. Fifteen participants were available for pharmacodynamic/pharmacokinetic analysis. There was no effect of riociguat alone on bleeding time, platelet aggregation, and serum thromboxane B2 levels. The effects of aspirin on these parameters were not influenced by concomitant administration of riociguat. The pharmacokinetic profile of riociguat showed interindividual variability, which was independent of aspirin coadministration. Six of 17 participants available for safety evaluation reported at least 1 treatment-emergent adverse event. All adverse events were of mild severity, apart from 1 report of moderate headache. No serious adverse events occurred. In conclusion, riociguat demonstrated no clinically relevant pharmacodynamic or pharmacokinetic interactions with aspirin at the doses used in this study in healthy men; coadministration of riociguat and aspirin should therefore not require any dose adjustment for either drug.
Collapse
Affiliation(s)
- Reiner Frey
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Michael Reber
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Jörn Krätzschmar
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Sigrun Unger
- Global Biostatistics, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Wolfgang Mück
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Georg Wensing
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| |
Collapse
|
5
|
Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm. Pflugers Arch 2014; 467:1945-63. [PMID: 25385304 DOI: 10.1007/s00424-014-1644-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023]
Abstract
Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-L-arginine-methyl-ester (L-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress.
Collapse
|
6
|
Kobsar A, Klinker E, Kuhn S, Koessler A, Yilmaz P, Boeck M, Koessler J. Increasing susceptibility of nitric oxide-mediated inhibitory platelet signaling during storage of apheresis-derived platelet concentrates. Transfusion 2014; 54:1782-9. [DOI: 10.1111/trf.12584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Kobsar
- Institute of Transfusion Medicine and Haemotherapy; University of Wuerzburg; Wuerzburg Germany
| | - Erdwine Klinker
- Institute of Transfusion Medicine and Haemotherapy; University of Wuerzburg; Wuerzburg Germany
| | - Sabine Kuhn
- Institute of Transfusion Medicine and Haemotherapy; University of Wuerzburg; Wuerzburg Germany
| | - Angela Koessler
- Institute of Transfusion Medicine and Haemotherapy; University of Wuerzburg; Wuerzburg Germany
| | - Pinar Yilmaz
- Institute of Transfusion Medicine and Haemotherapy; University of Wuerzburg; Wuerzburg Germany
| | - Markus Boeck
- Institute of Transfusion Medicine and Haemotherapy; University of Wuerzburg; Wuerzburg Germany
| | - Juergen Koessler
- Institute of Transfusion Medicine and Haemotherapy; University of Wuerzburg; Wuerzburg Germany
| |
Collapse
|
7
|
Miyaoka R, Mendes C, Schenka A, Gonzalez PG, de Nucci G, Antunes E, Monga M, Levi D'Ancona CA, Mónica FZ. BAY 41-2272, a Soluble Guanylate Cyclase Stimulator, Relaxes Isolated Human Ureter in a Standardized In Vitro Model. Urology 2014; 83:256.e1-7. [DOI: 10.1016/j.urology.2013.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
8
|
Nossaman BD, Kadowitz PJ. Stimulators of soluble guanylyl cyclase: future clinical indications. Ochsner J 2013; 13:147-156. [PMID: 23532174 PMCID: PMC3603178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Soluble guanylyl cyclase (sGC) is expressed in mammalian cytoplasm and catalyzes the synthesis of the second messenger guanosine 3',5'-monophosphate (cGMP) involved in important physiological functions such as relaxation of vascular smooth muscle, inhibition of platelet aggregation, modulation of inflammation, and control of vascular permeability. sGC is the intracellular receptor for nitric oxide (NO) and the active moiety in traditional organic nitrate therapy, recently as an inhalant in the intensive care unit and experimentally in improving microcirculatory flow in shock. However, dysfunction of the heme moiety on sGC occurs in a number of cardiovascular diseases, which reduces NO effectiveness. METHODS In this review, we examine animal studies and early clinical trials on agents that can directly stimulate sGC and may have future clinical application in cardiovascular disease and in perioperative care. CONCLUSIONS Animal and early clinical studies have shown that sGC stimulator agents have great promise for treating cardiopulmonary disorders and may also have a role in modulating the inflammatory response observed in perioperative care.
Collapse
Affiliation(s)
- Bobby D. Nossaman
- Department of Anesthesiology, Section of Critical Care Medicine, Ochsner Clinic Foundation, and
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA
| | - Philip J. Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
9
|
Mendes-Silverio CB, Leiria LOS, Morganti RP, Anhê GF, Marcondes S, Mónica FZ, De Nucci G, Antunes E. Activation of haem-oxidized soluble guanylyl cyclase with BAY 60-2770 in human platelets lead to overstimulation of the cyclic GMP signaling pathway. PLoS One 2012; 7:e47223. [PMID: 23144808 PMCID: PMC3493568 DOI: 10.1371/journal.pone.0047223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIMS Nitric oxide-independent soluble guanylyl cyclase (sGC) activators reactivate the haem-oxidized enzyme in vascular diseases. This study was undertaken to investigate the anti-platelet mechanisms of the haem-independent sGC activator BAY 60-2770 in human washed platelets. The hypothesis that sGC oxidation potentiates the anti-platelet activities of BAY 60-2770 has been tested. METHODS Human washed platelet aggregation and adhesion assays, as well as flow cytometry for α(IIb)β(3) integrin activation and Western blot for α1 and β1 sGC subunits were performed. Intracellular calcium levels were monitored in platelets loaded with a fluorogenic calcium-binding dye (FluoForte). RESULTS BAY 60-2770 (0.001-10 µM) produced significant inhibition of collagen (2 µg/ml)- and thrombin (0.1 U/ml)-induced platelet aggregation that was markedly potentiated by the sGC inhibitor ODQ (10 µM). In fibrinogen-coated plates, BAY 60-2770 significantly inhibited platelet adhesion, an effect potentiated by ODQ. BAY 60-2770 increased the cGMP levels and reduced the intracellular Ca(2+) levels, both of which were potentiated by ODQ. The cell-permeable cGMP analogue 8-Br-cGMP (100 µM) inhibited platelet aggregation and Ca(2+) levels in an ODQ-insensitive manner. The cAMP levels remained unchanged by BAY 60-2770. Collagen- and thrombin-induced α(IIb)β(3) activation was markedly inhibited by BAY 60-2770 that was further inhibited by ODQ. The effects of sodium nitroprusside (3 µM) were all prevented by ODQ. Incubation with ODQ (10 µM) significantly reduced the protein levels of α1 and β1 sGC subunits, which were prevented by BAY 60-2770. CONCLUSION The inhibitory effects of BAY 60-2770 on aggregation, adhesion, intracellular Ca(2+) levels and α(IIb)β(3) activation are all potentiated in haem-oxidizing conditions. BAY 60-2770 prevents ODQ-induced decrease in sGC protein levels. BAY 60-2770 could be of therapeutic interest in cardiovascular diseases associated with thrombotic complications.
Collapse
Affiliation(s)
- Camila B. Mendes-Silverio
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Luiz O. S. Leiria
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Rafael P. Morganti
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Gabriel F. Anhê
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Fabíola Z. Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Irvine JC, Ganthavee V, Love JE, Alexander AE, Horowitz JD, Stasch JP, Kemp-Harper BK, Ritchie RH. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy. PLoS One 2012; 7:e44481. [PMID: 23144773 PMCID: PMC3492396 DOI: 10.1371/journal.pone.0044481] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/07/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC) activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•)-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272. METHODS Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1), 60nmol/L) in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined. RESULTS We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L) elicited concentration-dependent antihypertrophic actions, inhibiting ET(1)-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1)-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP), without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272. CONCLUSIONS Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar) concentrations. Thus this distinctive sGC ligand may potentially represent an alternative therapeutic approach for limiting myocardial hypertrophy.
Collapse
Affiliation(s)
- Jennifer C. Irvine
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Virat Ganthavee
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Jane E. Love
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Amy E. Alexander
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - John D. Horowitz
- Cardiology Unit, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | | | | | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Cosyns SMR, Lefebvre RA. Mechanism of relaxation and interaction with nitric oxide of the soluble guanylate cyclase stimulator BAY 41-2272 in mouse gastric fundus and colon. Eur J Pharmacol 2012; 686:104-15. [PMID: 22575520 DOI: 10.1016/j.ejphar.2012.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/07/2012] [Accepted: 04/24/2012] [Indexed: 11/16/2022]
Abstract
BAY 41-2272 is a heme-dependent nitric oxide-independent soluble guanylate cyclase (sGC) stimulator, but its relaxant effect in vascular, respiratory and urogenital tissue is only partially dependent on sGC activation. As its mechanism of action has not been studied in the gastrointestinal tract, it was investigated in mouse gastric fundus and colon. Circular smooth muscle strips were mounted in organ baths under non-adrenergic non-cholinergic (NANC) conditions for isometric force recording and cGMP levels were determined using an enzyme immunoassay kit. BAY 41-2272 induced concentration-dependent relaxation in both tissues and increased cGMP levels. The sGC inhibitor ODQ totally inhibited this BAY 41-2272-induced increase of cGMP, but only partially reduced the corresponding relaxation. The PDE-5 inhibitor sildenafil had no effect on BAY 41-2272-induced responses. The NO synthase inhibitor L-NAME caused a significant decrease in BAY 41-2272-induced responses in colonic strips. Electrical field stimulation in the presence of BAY 41-2272 induced increased NANC relaxation in fundus, while in colon, rebound contraction at the end of the stimulation train was no longer visible. This suggests synergy with endogenously released NO. Responses to BAY 41-2272 were not significantly influenced by apamin, charybdotoxin or ouabain, excluding interaction with small, intermediate and large conductance Ca(2+)-activated K(+) channels and with Na(+)-K(+)-ATPase. Under depletion of intracellular calcium, CaCl(2)-induced contractions were significantly reduced by BAY 41-2272 in an ODQ-insensitive way. The present study demonstrates that BAY 41-2272 exerts its relaxing effect in mouse gastric fundus and colon partially through a cGMP-dependent mechanism and at least one additional cGMP-independent mechanism involving Ca(2+)-entry blockade.
Collapse
Affiliation(s)
- Sarah M R Cosyns
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, Ghent, Belgium
| | | |
Collapse
|
12
|
Adderley SP, Joshi CN, Martin DN, Tulis DA. Phosphodiesterases Regulate BAY 41-2272-Induced VASP Phosphorylation in Vascular Smooth Muscle Cells. Front Pharmacol 2012; 3:10. [PMID: 22347188 PMCID: PMC3273712 DOI: 10.3389/fphar.2012.00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/18/2012] [Indexed: 11/13/2022] Open
Abstract
BAY 41-2272 (BAY), a stimulator of soluble guanylyl cyclase, increases cyclic nucleotides and inhibits proliferation of vascular smooth muscle cells (VSMCs). In this study, we elucidated mechanisms of action of BAY in its regulation of vasodilator-stimulated phosphoprotein (VASP) with an emphasis on VSMC phosphodiesterases (PDEs). BAY alone increased phosphorylation of VASP(Ser239) and VASP(Ser157), respective indicators of PKG and PKA signaling. IBMX, a non-selective inhibitor of PDEs, had no effect on BAY-induced phosphorylation at VASP(Ser239) but inhibited phosphorylation at VASP(Ser157). Selective inhibitors of PDE3 or PDE4 attenuated BAY-mediated increases at VASP(Ser239) and VASP(Ser157), whereas PDE5 inhibition potentiated BAY-mediated increases only at VASP(Ser157). In comparison, 8Br-cGMP increased phosphorylation at VASP(Ser239) and VASP(Ser157) which were not affected by selective PDE inhibitors. In the presence of 8Br-cAMP, inhibition of either PDE4 or PDE5 decreased VASP(Ser239) phosphorylation and inhibition of PDE3 increased phosphorylation at VASP(Ser239), while inhibition of PDE3 or PDE4 increased and PDE5 inhibition had no effect on VASP(Ser157) phosphorylation. These findings demonstrate that BAY operates via cAMP and cGMP along with regulation by PDEs to phosphorylate VASP in VSMCs and that the mechanism of action of BAY in VSMCs is different from that of direct cyclic nucleotide analogs with respect to VASP phosphorylation and the involvement of PDEs. Given a role for VASP as a critical cytoskeletal protein, these findings provide evidence for BAY as a regulator of VSMC growth and a potential therapeutic agent against vasculoproliferative disorders.
Collapse
Affiliation(s)
- Shaquria P Adderley
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | | | | | | |
Collapse
|
13
|
Monteiro PF, Morganti RP, Delbin MA, Calixto MC, Lopes-Pires ME, Marcondes S, Zanesco A, Antunes E. Platelet hyperaggregability in high-fat fed rats: a role for intraplatelet reactive-oxygen species production. Cardiovasc Diabetol 2012; 11:5. [PMID: 22248260 PMCID: PMC3320560 DOI: 10.1186/1475-2840-11-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/16/2012] [Indexed: 12/27/2022] Open
Abstract
Background Adiposity greatly increases the risk of atherothrombotic events, a pathological condition where a chronic state of oxidative stress is reported to play a major role. This study aimed to investigate the involvement of (NO)-soluble guanylyl cyclase (sGC) signaling pathway in the platelet dysfunction from high fat-fed (HFF) rats. Methods Male Wistar rats were fed for 10 weeks with standard chow (SCD) or high-fat diet (HFD). ADP (10 μM)- and thrombin (100 mU/ml)-induced washed platelet aggregation were evaluated. Measurement of intracellular levels of ROS levels was carried out using flow cytometry. Cyclic GMP levels were evaluated using ELISA kits. Results High-fat fed rats exhibited significant increases in body weight, epididymal fat, fasting glucose levels and glucose intolerance compared with SCD group. Platelet aggregation induced by ADP (n = 8) and thrombin from HFD rats (n = 8) were significantly greater (P < 0.05) compared with SCD group. Platelet activation with ADP increased by 54% the intraplatelet ROS production in HFD group, as measured by flow cytometry (n = 6). N-acetylcysteine (NAC; 1 mM) and PEG-catalase (1000 U/ml) fully prevented the increased ROS production and platelet hyperaggregability in HFD group. The NO donors sodium nitroprusside (SNP; 10 μM) and SNAP (10 μM), as well as the NO-independent soluble guanylyl cyclase stimulator BAY 41-2272 (10 μM) inhibited the platelet aggregation in HFD group with lower efficacy (P < 0.05) compared with SCD group. The cGMP levels in response to these agents were also markedly lower in HFD group (P < 0.05). The prostacyclin analogue iloprost (1 μM) reduced platelet aggregation in HFD and SCD rats in a similar fashion (n = 4). Conclusions Metabolic abnormalities as consequence of HFD cause platelet hyperaggregability involving enhanced intraplatelet ROS production and decreased NO bioavailability that appear to be accompanied by potential defects in the prosthetic haem group of soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Priscila F Monteiro
- Department of Pharmacology, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Frey R, Mück W, Unger S, Reber M, Krätzschmar J, Becker C, Wensing G. No pharmacodynamic (PD) and pharmacokinetic (PK) interaction of riociguat (BAY 63-2521) and aspirin. BMC Pharmacol 2011. [PMCID: PMC3363218 DOI: 10.1186/1471-2210-11-s1-p25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
|
17
|
Anti-aggregating effect of BAY 58-2667, an activator of soluble guanylyl cyclase. Vascul Pharmacol 2010; 53:281-7. [PMID: 20933607 DOI: 10.1016/j.vph.2010.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/21/2010] [Accepted: 09/30/2010] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to determine whether an activator of soluble guanylyl cyclase (sGC), BAY 58-2667, inhibits platelet aggregation and to clarify its mechanism of action. Blood was collected from anesthetized WKY rats. The aggregation of washed platelet was measured and the production of cAMP and cGMP was determined. BAY 58-2667 produced a partial inhibition of the ADP- and collagen-induced platelet aggregation, but did not significantly affect thrombin-induced aggregation. In ADP-induced platelet aggregation, the inhibitory effects of BAY 58-2667 were associated with an increased level of both cGMP and cAMP while that of the prostacyclin analogue, beraprost, was correlated only with an increase in cAMP. The inhibitor of sGC, ODQ, enhanced the effects of BAY 58-2667. The presence of L-nitroarginine, an inhibitor of NO-synthase, hydroxocobalamin, a scavenger of NO, or that of three different NO-donors did not affect the anti-aggregating effect of BAY 58-2667. However, the anti-aggregating effects of beraprost were potentiated by BAY 58-2667. Therefore, the platelet inhibitory effects of BAY 58-2667 are associated with the generation of cGMP and a secondary increase in cAMP, both being totally NO-independent. When the sGC is oxidized, BAY 58-2667 becomes a relevant anti-aggregating agent, which synergizes with the cAMP-dependent pathway.
Collapse
|