1
|
Li R, Koh JH, Park WJ, Choi Y, Kim WU. Serum and urine lipidomic profiles identify biomarkers diagnostic for seropositive and seronegative rheumatoid arthritis. Front Immunol 2024; 15:1410365. [PMID: 38765010 PMCID: PMC11099275 DOI: 10.3389/fimmu.2024.1410365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Objective Seronegative rheumatoid arthritis (RA) is defined as RA without circulating autoantibodies such as rheumatoid factor and anti-citrullinated protein antibodies; thus, early diagnosis of seronegative RA can be challenging. Here, we aimed to identify diagnostic biomarkers for seronegative RA by performing lipidomic analyses of sera and urine samples from patients with RA. Methods We performed untargeted lipidomic analysis of sera and urine samples from 111 RA patients, 45 osteoarthritis (OA) patients, and 25 healthy controls (HC). These samples were divided into a discovery cohort (n = 97) and a validation cohort (n = 84). Serum samples from 20 patients with systemic lupus erythematosus (SLE) were also used for validation. Results The serum lipidome profile of RA was distinguishable from that of OA and HC. We identified a panel of ten serum lipids and three urine lipids in the discovery cohort that showed the most significant differences. These were deemed potential lipid biomarker candidates for RA. The serum lipid panel was tested using a validation cohort; the results revealed an accuracy of 79%, a sensitivity of 71%, and a specificity of 86%. Both seropositive and seronegative RA patients were differentiated from patients with OA, SLE, and HC. Three urinary lipids showing differential expression between RA from HC were identified with an accuracy of 84%, but they failed to differentiate RA from OA. There were five lipid pathways that differed between seronegative and seropositive RA. Conclusion Here, we identified a panel of ten serum lipids as potential biomarkers that can differentiate RA from OA and SLE, regardless of seropositivity. In addition, three urinary lipids had diagnostic utility for differentiating RA from HC.
Collapse
Affiliation(s)
- Rong Li
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yongsoo Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
- Division of National Product Applied Science, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Bermejo-Álvarez I, Pérez-Baos S, Gratal P, Medina JP, Largo R, Herrero-Beaumont G, Mediero A. Effects of Tofacitinib on Muscle Remodeling in Experimental Rheumatoid Sarcopenia. Int J Mol Sci 2023; 24:13181. [PMID: 37685986 PMCID: PMC10487422 DOI: 10.3390/ijms241713181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Sarcopenia is a frequent comorbidity of rheumatoid arthritis (RA). Clinical trials have shown that JAK inhibitors (JAKi) produce an asymptomatic increase in serum creatine kinase (CK) in RA, suggesting an impact on muscle. We evaluated the effect of JAKi in muscle remodeling in an experimental RA model. Antigen-induced arthritis (experimental RA, e-RA) was performed in 14 rabbits. Seven rabbits received tofacitinib (TOFA, orally 10 mg/kg/day). Animals were euthanized one day after the last ovalbumin injection, and muscles were prepared for histology, RT-PCR, and WB. C-reactive protein (CRP) and Myostatin (MSTN) serum concentration were determined by ELISA. Creatine and creatine kinase (CK) were analyzed. An increase in body weight as well as tibialis anterior cross-sectional area and diameter was observed in e-RA+TOFA vs. e-RA. e-RA decreased type II fibers and increased the myonuclei number, with all reverted by TOFA. TOFA did not modify CRP levels, neither did MSTN. TOFA significantly reduced IL-6, atrogin-1, and MuRF-1 compared with e-RA. e-RA+TOFA showed higher CK and lower creatine levels compared with e-RA. No differences in PAX-7 were found, while TOFA prevented the increase in MyoD1 in e-RA. Our model reflects the features of rheumatoid sarcopenia in RA. JAKi increased muscle mass through attenuating IL-6/JAK/STAT activation, decreasing atrogenes, and restoring muscle differentiation markers. These data together with an increase in CK support the role of CK as a valuable marker of muscle gain following JAKi treatment.
Collapse
Affiliation(s)
| | | | | | | | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain
| | | | | |
Collapse
|
3
|
Yang Y, Luo S, Peng X, Zhao T, He Q, Wu M, Zhang W, Gong T, Zhang Z. An intra-articular injectable phospholipids-based gel for the treatment of rheumatoid arthritis. Asian J Pharm Sci 2023; 18:100777. [PMID: 36818955 PMCID: PMC9932361 DOI: 10.1016/j.ajps.2023.100777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and destructive arthropathy with a high deformity rate. Despite numerous studies and clinical trials, no curative treatment is available for large weight-bearing joints. Intra-articular (IA) injections could deliver high concentrations of drug to the afflicted joint and improve the drug efficacy while reducing systemic toxicity. However, free drugs are rapidly cleared from synovial fluid and do not significantly halt the progression of joint disease. Herein, a phospholipids-based controlled-release gel was prepared for sustained IA delivery of celastrol (CEL) and the therapeutic efficiency was evaluated in a rheumatoid arthritis rabbit model. The CEL-loaded gel (CEL-gel) contained up to 70% phospholipids yet was easy to inject. After injecting into the joint cavity, CEL-gel achieved sol to gel phase transition without special stimuli and gelling agent. In vitro release and in vivo pharmacokinetic studies evidenced the stable and sustained release action of CEL-gel. A single IA injection of CEL-gel could maintain therapeutic efficiency for about 25 d and showed much better anti-arthritic efficacy compared to repeated injections of free drug solution (CEL-sol). Furthermore, the IA injection of CEL-gel greatly reduced the systemic toxicity of CEL. With good biocompatibility and biodegradability, CEL-gel might be a promising IA drug delivery system.
Collapse
Affiliation(s)
- Yuping Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Shiqin Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Xiong Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Ting Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China,Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, 610000, China
| | - Mengying Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Wei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China,Corresponding author.
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Gong C, Qi Y, Xu Y, Tang X, Liang F, Chen L. Parecoxib improves atherosclerotic plaque stability by suppressing inflammation and inhibiting matrix metalloproteinases production. Biomed Pharmacother 2021; 138:111423. [PMID: 33740522 DOI: 10.1016/j.biopha.2021.111423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022] Open
Abstract
With the aging population, coronary syndrome is one of the leading causes of mortality. Atherosclerosis is the pathophysiological basis of coronary syndrome, which is caused by plaque rupture and predisposed or aggravated by many perioperative complications. Parecoxib is one of the most widely used nonsteroidal anti-inflammatory perioperative drugs. This study aims to evaluate the potential benefits of parecoxib on atherosclerosis progression. Apolipoprotein E-deficient (Apo E-/-) mice were intraperitoneally injected by parecoxib (par group) or saline (control group) and, meanwhile, were given a western diet for 12 weeks. The aorta and aortic root were examined by oil red O (ORO) staining for atherosclerotic lesions. The expression level of matrix metalloproteinases (MMPs), was investigated using immunofluorescence and western blot. Macrophage inflammation was investigated by Q-PCR. Parecoxib treatment increased the number of vascular smooth muscle cells (VSMC) and amount of collagen, while and decreased the number of macrophages in murine aortic walls. The expression of MMP1, 2, 9, and 13 as well as IL- 1β and IL-6 were also decreased in the par group. However, there was no statistical difference in lipid infiltration between the two groups. Parecoxib could improve plaque stability by suppressing inflammation and inhibiting MMPs production.
Collapse
Affiliation(s)
- Chao Gong
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yu Qi
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yang Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiruo Tang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Liang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lianhua Chen
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
5
|
Wang J, Xue J, Zhang L, Zhang S, Li J, Cao X. Pharmacokinetics of vitacoxib in rabbits after intravenous and oral administration. J Vet Pharmacol Ther 2019; 42:368-371. [PMID: 30761557 DOI: 10.1111/jvp.12745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/20/2023]
Abstract
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC-MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin™ 6.4 software. The mean concentration area under curve (AUClast ) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half-life (T1/2λz ) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady-state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast ) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.
Collapse
Affiliation(s)
- Jianzhong Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture, Beijing, China.,Biomedical Sciences, SMART Pharmacology at Iowa State University College of Veterinary Medicine, Ames, Iowa
| | - Jiao Xue
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture, Beijing, China
| | - Lu Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture, Beijing, China
| | - Suxia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture, Beijing, China
| | - Jing Li
- Beijing Orbiepharm Co. Ltd., Beijing, China
| | - Xingyuan Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture, Beijing, China.,Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture, Beijing, China
| |
Collapse
|
6
|
Pérez-Baos S, Prieto-Potin I, Román-Blas JA, Sánchez-Pernaute O, Largo R, Herrero-Beaumont G. Mediators and Patterns of Muscle Loss in Chronic Systemic Inflammation. Front Physiol 2018; 9:409. [PMID: 29740336 PMCID: PMC5928215 DOI: 10.3389/fphys.2018.00409] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Besides its primary function in locomotion, skeletal muscle (SKM), which represents up to half of human's weight, also plays a fundamental homeostatic role. Through the secretion of soluble peptides, or myokines, SKM interacts with major organs involved in metabolic processes. In turn, metabolic cues from these organs are received by muscle cells, which adapt their response accordingly. This is done through an intricate intracellular signaling network characterized by the cross-talking between anabolic and catabolic pathways. A fine regulation of the network is required to protect the organism from an excessive energy expenditure. Systemic inflammation evokes a catabolic reaction in SKM known as sarcopenia. In turn this response comprises several mechanisms, which vary depending on the nature of the insult and its magnitude. In this regard, aging, chronic inflammatory systemic diseases, osteoarthritis and idiopathic inflammatory myopathies can lead to muscle loss. Interestingly, sarcopenia may persist despite remission of chronic inflammation, an issue which warrants further research. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) system stands as a major participant in muscle loss during systemic inflammation, while it is also a well-recognized orchestrator of muscle cell turnover. Herein we summarize current knowledge about models of sarcopenia, their triggers and major mediators and their effect on both protein and cell growth yields. Also, the dual action of the JAK/STAT pathway in muscle mass changes is discussed. We highlight the need to unravel the precise contribution of this system to sarcopenia in order to design targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sandra Pérez-Baos
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Iván Prieto-Potin
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Jorge A Román-Blas
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Olga Sánchez-Pernaute
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Endothelium-derived contraction in a model of rheumatoid arthritis is mediated via angiotensin II type 1 receptors. Vascul Pharmacol 2018; 100:51-57. [DOI: 10.1016/j.vph.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
8
|
Sakuma K, Yamaguchi A. Drugs of Muscle Wasting and Their Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:463-481. [PMID: 30390265 DOI: 10.1007/978-981-13-1435-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness such as cachexia, atrophy, and sarcopenia are characterized by marked decreases in the protein content, myonuclear number, muscle fiber size, and muscle strength. This chapter focuses on the recent advances of pharmacological approach for attenuating muscle wasting.A myostatin-inhibiting approach is very intriguing to prevent sarcopenia but not muscular dystrophy in humans. Supplementation with ghrelin is also an important candidate to combat sarcopenia as well as cachexia. Treatment with soy isoflavone, trichostatin A (TSA), and cyclooxygenase 2 (Cox2) inhibitors seems to be effective modulators attenuating muscle wasting, although further systematic research is needed on this treatment in particular concerning side effects.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
9
|
Pérez‐Baos S, Barrasa JI, Gratal P, Larrañaga‐Vera A, Prieto‐Potin I, Herrero‐Beaumont G, Largo R. Tofacitinib restores the inhibition of reverse cholesterol transport induced by inflammation: understanding the lipid paradox associated with rheumatoid arthritis. Br J Pharmacol 2017; 174:3018-3031. [PMID: 28646516 PMCID: PMC5573422 DOI: 10.1111/bph.13932] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/06/2017] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with active rheumatoid arthritis (RA) have increased cardiovascular mortality, paradoxically associated with reduced circulating lipid levels. The JAK inhibitor tofacitinib ameliorates systemic and joint inflammation in RA with a concomitant increase in serum lipids. We analysed the effect of tofacitinib on the lipid profile of hyperlipidaemic rabbits with chronic arthritis (CA) and on the changes in reverse cholesterol transport (RCT) during chronic inflammation. EXPERIMENTAL APPROACH CA was induced in previously immunized rabbits, fed a high-fat diet, by administering four intra-articular injections of ovalbumin. A group of rabbits received tofacitinib (10 mg·kg-1 ·day-1 ) for 2 weeks. Systemic and synovial inflammation and lipid content were evaluated. For in vitro studies, THP-1-derived macrophages were exposed to high lipid concentrations and then stimulated with IFNγ in the presence or absence of tofacitinib in order to study mediators of RCT. KEY RESULTS Tofacitinib decreased systemic and synovial inflammation and increased circulating lipid levels. Although it did not modify synovial macrophage density, it reduced the lipid content within synovial macrophages. In foam macrophages in culture, IFNγ further stimulated intracellular lipid accumulation, while the JAK/STAT inhibition provoked by tofacitinib induced lipid release by increasing the levels of cellular liver X receptor α and ATP-binding cassette transporter (ABCA1) synthesis. CONCLUSIONS AND IMPLICATIONS Active inflammation could be associated with lipid accumulation within macrophages of CA rabbits. JAK inhibition induced lipid release through RCT activation, providing a plausible explanation for the effect of tofacitinib on the lipid profile of RA patients.
Collapse
Affiliation(s)
- S Pérez‐Baos
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - J I Barrasa
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
| | - P Gratal
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - A Larrañaga‐Vera
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - I Prieto‐Potin
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - G Herrero‐Beaumont
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - R Largo
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| |
Collapse
|
10
|
Little RD, Prieto-Potin I, Pérez-Baos S, Villalvilla A, Gratal P, Cicuttini F, Largo R, Herrero-Beaumont G. Compensatory anabolic signaling in the sarcopenia of experimental chronic arthritis. Sci Rep 2017; 7:6311. [PMID: 28740214 PMCID: PMC5524910 DOI: 10.1038/s41598-017-06581-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/14/2017] [Indexed: 01/06/2023] Open
Abstract
Inflammatory activity in rheumatoid arthritis may alter the regulation of muscle mass leading to a secondary sarcopenia, commonly termed rheumatoid cachexia (RC). We characterized alterations to muscle structure and various pro-inflammatory, catabolic and regenerative markers in an animal model of RC. Antigen induced arthritis (AiA) was performed in 20 male adult rabbits. AiA animals exhibited significantly less weight gain, a markedly elevated serum C-reactive protein (CRP), lighter muscles with shorter cross-sectional diameter and increased myonuclei when compared to controls. Atrogin-1 and MuRF-1 were up-regulated alongside an increase in IL-1β, active NF-κB and a higher ratio of phosphorylated to inactive p38 MAPK. CCL-2 and TNF levels were reduced and IL-6 was unchanged between groups. We observed decreased pSTAT3, unchanged pSTAT1 and Myf5, but increased Pax7, MyoD and myogenin. AiA rabbits had a reduction in myostatin from gastrocnemii and synovium with a congruent decrease in serum myostatin compared to controls. Chronic arthritis induced an RC-like secondary sarcopenia with increased muscle protein breakdown. Elevated IL-1β may trigger proteolysis via elevated NF-κB and p38 MAPK signaling with a compensatory anabolic response suggested by myonuclear expansion, increased Pax7, MyoD and myogenin, reduced pSTAT3 as well as reduced serum, synovial and muscular myostatin.
Collapse
Affiliation(s)
- Robert D Little
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Iván Prieto-Potin
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
- Red Temática de Investigación Cooperativa de Envejecimiento y Fragilidad (RETICEF)-Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Pérez-Baos
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Amanda Villalvilla
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Paula Gratal
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Raquel Largo
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain.
- Red Temática de Investigación Cooperativa de Envejecimiento y Fragilidad (RETICEF)-Instituto de Salud Carlos III, Madrid, Spain.
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
- Red Temática de Investigación Cooperativa de Envejecimiento y Fragilidad (RETICEF)-Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res 2015; 99:86-100. [DOI: 10.1016/j.phrs.2015.05.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 05/24/2015] [Indexed: 12/11/2022]
|
12
|
Prieto-Potín I, Roman-Blas JA, Martínez-Calatrava MJ, Gómez R, Largo R, Herrero-Beaumont G. Hypercholesterolemia boosts joint destruction in chronic arthritis. An experimental model aggravated by foam macrophage infiltration. Arthritis Res Ther 2013; 15:R81. [PMID: 23941259 PMCID: PMC3978700 DOI: 10.1186/ar4261] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023] Open
Abstract
Objective The aim of this study was to determine whether hypercholesterolemia increases articular damage in a rabbit model of chronic arthritis. Methods Hypercholesterolemia was induced in 18 rabbits by administrating a high-fat diet (HFD). Fifteen rabbits were fed normal chow as controls. Chronic antigen-induced arthritis (AIA) was induced in half of the HFD and control rabbits, previously immunized, by intra-articular injections of ovalbumin. After sacrifice, lipid and systemic inflammation markers were analyzed in blood serum. Synovium was analyzed by Krenn score, multinucleated cell counting, immunohistochemistry of RAM11 and CD31, and TNF-α and macrophage chemoattractant protein-1 (MCP-1) gene expression. Active bone resorption was assessed by protein expression of receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) and quantification of cathepsin K, contact surface and the invasive area of pannus into bone. Results Rabbits receiving the HFD showed higher total serum cholesterol, HDL, triglycerides and CRP levels than rabbits fed a normal diet. Synovitis score was increased in HFD, and particularly in AIA and AIA + HFD groups. AIA + HFD synovium was characterized by a massive infiltration of RAM11+ cells, higher presence of multinucleated foam cells and bigger vascularization than AIA. Cathepsin K+ osteoclasts and the contact surface of bone resorbing pannus were also increased in rabbits with AIA + HFD compared with AIA alone. Synovial TNF-α and MCP-1 gene expression was increased in AIA and HFD rabbits compared with healthy animals. RANKL protein expression in AIA and AIA + HFD groups was higher compared with either HFD or normal groups. Conclusions This experimental model demonstrates that hypercholesterolemia increments joint tissue damage in chronic arthritis, with foam macrophages being key players in this process.
Collapse
|
13
|
Gómez-SanMiguel AB, Martín AI, Nieto-Bona MP, Fernández-Galaz C, López-Menduiña M, Villanúa MÁ, López-Calderón A. Systemic α-melanocyte-stimulating hormone administration decreases arthritis-induced anorexia and muscle wasting. Am J Physiol Regul Integr Comp Physiol 2013; 304:R877-86. [PMID: 23515620 DOI: 10.1152/ajpregu.00447.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rheumatoid cachexia is associated with rheumatoid arthritis and it increases mortality and morbidity. Adjuvant-induced arthritis is an experimental model of rheumatoid arthritis that causes anorexia and muscle wasting. α-Melanocyte-stimulating hormone (α-MSH) has anti-inflammatory actions, and it is able to decrease inflammation in several inflammatory diseases including experimental arthritis. In this study we tested whether systemic α-MSH treatment is able to ameliorate cachexia in arthritic rats. On day 8 after adjuvant injection control and arthritic rats were treated with α-MSH (50 μg/rat ip) twice a day, until day 16 when all rats were euthanized. Arthritis decreased food intake, but it increased hypothalamic expression of neuropeptide Y (NPY) and Agouti-related peptides (AgRP) as well as interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) mRNA. In arthritic rats, α-MSH decreased the external signs of arthritis and increased food intake (P < 0.01). In addition, α-MSH decreased hypothalamic expression of IL-1β, COX-2, proopiomelanocortin, and prohormone-converting (PC) enzymes PC1/3 and PC2 mRNA in arthritic rats. In control rats, α-MSH did not modify food intake or hypothalamic expression of aforementioned mRNA. α-MSH prevented arthritis-induced increase in gastrocnemius COX-2, muscle-specific RING-finger protein-1 (MuRF1), and atrogin-1 expression, and it increased fast myofiber size. In conclusion our data show that in arthritic rats peripheral α-MSH treatment has an anti-cachectic action increasing food intake and decreasing muscle wasting.
Collapse
|
14
|
Zhao M, He X, Zhao M, Bi XY, Zhang HL, Yu XJ, Liu JJ, Li DL, Ma X, Zang WJ. Low-dose celecoxib improves coronary function after acute myocardial ischaemia in rabbits. Clin Exp Pharmacol Physiol 2012; 39:233-40. [DOI: 10.1111/j.1440-1681.2011.05664.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ming Zhao
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Xi He
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Mei Zhao
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Xue-Yuan Bi
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Hong-Li Zhang
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Xiao-Jiang Yu
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Jin-Jun Liu
- Department Physiology and Pathophysiology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Dong-Ling Li
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Xin Ma
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| | - Wei-Jin Zang
- Department of Pharmacology; Xi'an Jiaotong University; College of Medicine; Xi'an; China
| |
Collapse
|