1
|
Kayumov M, Lee KS, Kim D, Kim W, Habimana R, Seong J, Cho HJ, Jeong IS. A Comparative Study Between Cold Static Storage and Normothermic Ex-Situ Donor Heart Preservation in a Rat Model of Heterotopic Heart Transplantation. J Surg Res 2025; 306:437-448. [PMID: 39862726 DOI: 10.1016/j.jss.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Cold static storage (CSS) and normothermic ex-situ preservation are the most widely used donor heart preservation techniques worldwide. The current study compares both CSS and normothermic ex-situ preservation methods in terms of graft performance, morphologic changes, and acute immune response in an experimental model. METHOD AND MATERIALS Twenty rats underwent heterotopic abdominal heart transplantation after 2 h of CSS (group 1; n = 10) or normothermic ex-situ perfusion (group 2; n = 10). Blood samples were obtained from recipients just before and after 4 h of transplantation to analyze surface markers of immune cells and cytokines. Electrocardiography and echocardiography were performed before donor heart harvesting and after heterotopic transplantation. After 4 h of transplantation, donor hearts were extracted for further histologic studies. RESULTS All recipient animals in both groups successfully survived after heterotopic transplantation. The mean ischemic time of the donor heart was 163 ± 8.34 mins in group 1 and 43.8 ± 6.97 mins in group 2 (P < 0.01). Ejection fraction significantly decreased after transplantation in both groups but were less significant in group 2 (the mean difference group 1: -34.3 ± 3.54, P < 0.01; group 2: -14.3 ± 15.47, P = 0.01). The percentage of granulocyte significantly increased in both group 1 and group 2, but the significance was more pronounced in group 1 (the mean difference group 1: 48.7 ± 5.36, P < 0.01; group 2: 39.7 ± 13.1, P < 0.01). CONCLUSIONS Normothermic ex-situ perfusion is associated with well-preserved donor hearts but a similar recipient acute immune response in comparison with CSS in the rat model.
Collapse
Affiliation(s)
- Mukhammad Kayumov
- Department of Medical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea; Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea; Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea; Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kyo Seon Lee
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea; Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Dowan Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea; Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Wangin Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea; Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Reverien Habimana
- Department of Medical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea; Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea; Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jiae Seong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea; Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hwa Jin Cho
- Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Pediatrics, Chonnam National University Children's Hospital and Medical School, Gwangju, Republic of Korea.
| | - In-Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea; Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Schroder JN, Scheuer S, Catarino P, Caplan A, Silvestry SC, Jeevanandam V, Large S, Shah A, MacDonald P, Slaughter MS, Naka Y, Milano CA. The American Association for Thoracic Surgery 2023 Expert Consensus Document: Adult cardiac transplantation utilizing donors after circulatory death. J Thorac Cardiovasc Surg 2023; 166:856-869.e5. [PMID: 37318399 DOI: 10.1016/j.jtcvs.2023.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/16/2023]
Affiliation(s)
- Jacob N Schroder
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Sarah Scheuer
- Department of Surgery, St Vincent's Hospital, Sydney, Australia
| | | | - Arthur Caplan
- Department of Bioethics, New York University Grossman School of Medicine, New York, NY
| | | | | | | | - Ashish Shah
- Department of Cardiothoracic Surgery, Vanderbilt University, Nashville, Tenn
| | - Peter MacDonald
- Department of Surgery, St Vincent's Hospital, Sydney, Australia
| | | | - Yoshifumi Naka
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY
| | - Carmelo A Milano
- Department of Surgery, Duke University Medical Center, Durham, NC.
| |
Collapse
|
3
|
Redd MA, Scheuer SE, Saez NJ, Yoshikawa Y, Chiu HS, Gao L, Hicks M, Villanueva JE, Joshi Y, Chow CY, Cuellar-Partida G, Peart JN, See Hoe LE, Chen X, Sun Y, Suen JY, Hatch RJ, Rollo B, Xia D, Alzubaidi MAH, Maljevic S, Quaife-Ryan GA, Hudson JE, Porrello ER, White MY, Cordwell SJ, Fraser JF, Petrou S, Reichelt ME, Thomas WG, King GF, Macdonald PS, Palpant NJ. Therapeutic Inhibition of Acid Sensing Ion Channel 1a Recovers Heart Function After Ischemia-Reperfusion Injury. Circulation 2021; 144:947-960. [PMID: 34264749 DOI: 10.1161/circulationaha.121.054360] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the build-up of acidic metabolites results in decreased intracellular and extracellular pH that can reach as low as 6.0-6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly impacts cardiac function. Methods: We used genetic and pharmacological methods to investigate the role of acid sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole organ level. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and post-conditioning therapeutic agents. Results: Analysis of human complex trait genetics indicate that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using hiPSC-CMs in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacological inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction (MI) and two models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as pre- or post-conditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no impact on cardiac ion channels regulating baseline electromechanical coupling and physiological performance. Conclusions: Collectively, our data provide compelling evidence for a novel pharmacological strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.
Collapse
Affiliation(s)
- Meredith A Redd
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
| | - Sarah E Scheuer
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Natalie J Saez
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (N.J.S., G.F.K.), The University of Queensland, St Lucia, Australia
| | - Yusuke Yoshikawa
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Ling Gao
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
| | - Mark Hicks
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Department of Pharmacology (M.H.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Jeanette E Villanueva
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Yashutosh Joshi
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Chun Yuen Chow
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, Faculty of Medicine and Translational Research Institute, Woolloongabba, Australia (G.C.-P.)
| | - Jason N Peart
- School of Medical Science, Griffith University, Southport, Australia (J.N.P.)
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Xiaoli Chen
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Robert J Hatch
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Ben Rollo
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Di Xia
- Genome Innovation Hub (D.X.), The University of Queensland, St Lucia, Australia
| | - Mubarak A H Alzubaidi
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | | | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia (G.A.Q.-R., J.E.H.)
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia (E.R.P.)
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia (E.R.P.)
| | - Melanie Y White
- School of Medical Sciences, School of Life and Environmental Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, Australia (M.Y.W., S.J.C.)
| | - Stuart J Cordwell
- School of Medical Sciences, School of Life and Environmental Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, Australia (M.Y.W., S.J.C.)
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Melissa E Reichelt
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Walter G Thomas
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Glenn F King
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (N.J.S., G.F.K.), The University of Queensland, St Lucia, Australia
| | - Peter S Macdonald
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Nathan J Palpant
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| |
Collapse
|
4
|
Villanueva JE, Chew HC, Gao L, Doyle A, Scheuer SE, Hicks M, Jabbour A, Dhital KK, Macdonald PS. The Effect of Increasing Donor Age on Myocardial Ischemic Tolerance in a Rodent Model of Donation After Circulatory Death. Transplant Direct 2021; 7:e699. [PMID: 34036169 PMCID: PMC8133134 DOI: 10.1097/txd.0000000000001148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 01/16/2023] Open
Abstract
Hearts from older donors or procured via donation after circulatory death (DCD) can alleviate transplant waitlist; however, these hearts are particularly vulnerable to injury caused by warm ischemic times (WITs) inherent to DCD. This study investigates how the combination of increasing donor age and pharmacologic supplementation affects the ischemic tolerance and functional recovery of DCD hearts and how age impacts cardiac mitochondrial respiratory capacity and oxidative phosphorylation.
Collapse
Affiliation(s)
- Jeanette E Villanueva
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, Randwick, NSW, Australia
| | - Hong C Chew
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Ling Gao
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Aoife Doyle
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Sarah E Scheuer
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, Randwick, NSW, Australia
| | - Mark Hicks
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Andrew Jabbour
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, Randwick, NSW, Australia.,Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Kumud K Dhital
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Peter S Macdonald
- Physiology and Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, Randwick, NSW, Australia.,Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
5
|
Dhital K, Ludhani P, Scheuer S, Connellan M, Macdonald P. DCD donations and outcomes of heart transplantation: the Australian experience. Indian J Thorac Cardiovasc Surg 2020; 36:224-232. [PMID: 33061207 DOI: 10.1007/s12055-020-00998-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose There is increasing clinical utilization of hearts from the donation after circulatory death (DCD) pathway with the aim of expanding the donor pool and mitigating the ever-present discrepancy between the inadequate availability of good quality donor hearts and the rising number of patients with end-stage heart failure. Methods This article reviews the rationale, practice, logistical factors, and 5-year experience of DCD heart transplantation at St Vincent's Hospital, Sydney. Findings Between July 2014 and July 2019, 69 DCD donor retrievals were undertaken resulting in 49 hearts being instrumented on an ex situ normothermic cardiac perfusion device. Seventeen (35%) of these hearts were declined and the remaining 32 (65%) were used for orthotopic DCD heart transplantation. At 5 years of follow-up, the 1-, 3-, and 5-year survival was 96%, 94%, and 94% for DCD hearts compared with 89%, 83%, and 82% respectively for donation after brain death (DBD) hearts (n.s). The immediate post-implant requirement for temporary extra-corporeal membrane oxygenation (ECMO) support for delayed graft function was 31% with no difference in rejection rates when compared with the contemporaneous cohort of patients transplanted with standard criteria DBD hearts. Summary DCD heart transplantation has become routine and incorporated into standard clinical practice by a handful of pioneering clinical transplant centres. The Australian experience demonstrates that excellent medium-term outcomes are achievable from the use of DCD hearts. These outcomes are consistent across the other centres and consequently favour a more rapid and wider uptake of heart transplantation using DCD donor hearts, which would otherwise be discarded.
Collapse
Affiliation(s)
- Kumud Dhital
- Department of Cardiothoracic Surgery & Transplantation, Alfred Hospital, 55 Commercial Road, Melbourne, VIC 3004 Australia.,Transplant Laboratory, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010 Australia
| | - Prakash Ludhani
- Department of Cardiothoracic Surgery, MIOT Hospital, Chennai, India
| | - Sarah Scheuer
- Transplant Laboratory, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010 Australia.,Department of Cardiothoracic Surgery, St Vincent's Hospital, Darlinghurst, Sydney, NSW 2010 Australia
| | - Mark Connellan
- Department of Cardiothoracic Surgery, St Vincent's Hospital, Darlinghurst, Sydney, NSW 2010 Australia
| | - Peter Macdonald
- Transplant Laboratory, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010 Australia.,Department of Cardiothoracic Surgery, St Vincent's Hospital, Darlinghurst, Sydney, NSW 2010 Australia
| |
Collapse
|
6
|
Wang K, Liu Z, Zhao M, Zhang F, Wang K, Feng N, Fu F, Li J, Li J, Liu Y, Zhang S, Fan R, Guo H, Pei J. κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to ischemia and reperfusion injury via STAT3-OPA1 pathway. Eur J Pharmacol 2020; 874:172987. [PMID: 32032598 DOI: 10.1016/j.ejphar.2020.172987] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial dynamics, determining mitochondrial morphology, quality and abundance, have recently been implicated in myocardial ischemia and reperfusion (MI/R) injury. The roles of κ-opioid receptor activation in cardioprotection have been confirmed in our previous studies, while the underlying mechanism associated with mitochondrial dynamics remains unclear. This study aims to investigate the effect of κ-opioid receptor activation on the pathogenesis of MI/R and its underlying mechanisms. MI/R mouse model and hypoxia-reoxygenation cardiomyocyte model were established in this study. Mitochondrial dynamics were analyzed with transmission electron microscopy in vivo and confocal microscopy in vitro. STAT3 phosphorylation and OPA1 expression were detected by Western blotting. We show here that κ-opioid receptor activation with its selective receptor agonist U50,488H promoted mitochondrial fusion and enhanced myocardial resistance to MI/R injury, while these protective effects were blockaded by nor-BNI, a selective κ-opioid receptor antagonist. In addition, κ-opioid receptor activation increased STAT3 phosphorylation and OPA1 expression, which were blockaded by nor-BNI. Furthermore, inhibition of STAT3 phosphorylation by stattic, a specific STAT3 inhibitor, repressed the effects of κ-opioid receptor activation on promoting OPA1 expression and mitochondrial fusion, as well as inhibiting cell apoptosis and oxidative stress both in vivo and in vitro during MI/R injury. Overall, our data for the first time provide evidence that κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to MI/R injury via STAT3-OPA1 pathway. Targeting the pathway regulated by κ-opioid receptor activation may be a potential therapeutic strategy for MI/R injury.
Collapse
Affiliation(s)
- Kaiyan Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fuyang Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Haitao Guo
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
7
|
Cyclosporine A as a Cardioprotective Agent During Donor Heart Retrieval, Storage, or Transportation: Benefits and Limitations. Transplantation 2019; 103:1140-1151. [DOI: 10.1097/tp.0000000000002629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Functional recovery after dantrolene-supplementation of cold stored hearts using an ex vivo isolated working rat heart model. PLoS One 2018; 13:e0205850. [PMID: 30312353 PMCID: PMC6185861 DOI: 10.1371/journal.pone.0205850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022] Open
Abstract
The ryanodine receptor antagonist dantrolene inhibits calcium release from the sarcoplasmic reticulum and reduces cardiac ischaemia-reperfusion injury (IRI) in global warm ischaemia models however the cardioprotective potential of dantrolene under hypothermic conditions is unknown. This study addresses whether the addition of dantrolene during cardioplegia and hypothermic storage of the donor heart can improve functional recovery and reduce IRI. Using an ex vivo isolated working heart model, Wistar rat (3 month and 12 month) hearts were perfused to acquire baseline haemodynamic measurements of aortic flow, coronary flow, cardiac output, pulse pressure and heart rate. Hearts were arrested and stored in Celsior preservation solution supplemented with 0.2–40 μM dantrolene for 6 hours at 4°C, then reperfused (15 min Langendorff, 30 min working mode). In 3-month hearts, supplementation with 1 μM dantrolene significantly improved aortic flow and cardiac output compared to unsupplemented controls however lactate dehydrogenase (LDH) release and contraction bands were comparable. In contrast, 40 μM dantrolene-supplementation yielded poor cardiac recovery, increased post-reperfusion LDH but reduced contraction bands. All 3-month hearts stored in dantrolene displayed significantly reduced cleaved-caspase 3 intensities compared to controls. Analysis of cardioprotective signalling pathways showed no changes in AMPKα however dantrolene increased STAT3 and ERK1/2 signaling in a manner unrelated to functional recovery and AKT activity was reduced in 1 μM dantrolene-stored hearts. In contrast to 3-month hearts, no significant improvements were observed in the functional recovery of 12-month hearts following prolonged storage in 1 μM dantrolene. Conclusions: Dantrolene supplementation at 1 μM during hypothermic heart preservation improved functional recovery of young, but not older (12 month) hearts. Although the molecular mechanisms responsible for dantrolene-mediated cardioprotection are unclear, our studies show no correlation between improved functional recovery and SAFE and RISK pathway activation.
Collapse
|
9
|
White CW, Messer SJ, Large SR, Conway J, Kim DH, Kutsogiannis DJ, Nagendran J, Freed DH. Transplantation of Hearts Donated after Circulatory Death. Front Cardiovasc Med 2018; 5:8. [PMID: 29487855 PMCID: PMC5816942 DOI: 10.3389/fcvm.2018.00008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac transplantation has become limited by a critical shortage of suitable organs from brain-dead donors. Reports describing the successful clinical transplantation of hearts donated after circulatory death (DCD) have recently emerged. Hearts from DCD donors suffer significant ischemic injury prior to organ procurement; therefore, the traditional approach to the transplantation of hearts from brain-dead donors is not applicable to the DCD context. Advances in our understanding of ischemic post-conditioning have facilitated the development of DCD heart resuscitation strategies that can be used to minimize ischemia-reperfusion injury at the time of organ procurement. The availability of a clinically approved ex situ heart perfusion device now allows DCD heart preservation in a normothermic beating state and minimizes exposure to incremental cold ischemia. This technology also facilitates assessments of organ viability to be undertaken prior to transplantation, thereby minimizing the risk of primary graft dysfunction. The application of a tailored approach to DCD heart transplantation that focuses on organ resuscitation at the time of procurement, ex situ preservation, and pre-transplant assessments of organ viability has facilitated the successful clinical application of DCD heart transplantation. The transplantation of hearts from DCD donors is now a clinical reality. Investigating ways to optimize the resuscitation, preservation, evaluation, and long-term outcomes is vital to ensure a broader application of DCD heart transplantation in the future.
Collapse
Affiliation(s)
| | - Simon J Messer
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Stephen R Large
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Daniel H Kim
- Cardiology, University of Alberta, Edmonton, AB, Canada
| | | | - Jayan Nagendran
- Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H Freed
- Cardiac Surgery, University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Abstract
Although total body perfusion with extracorporeal life support (ECLS) can be maintained for weeks, individual organ perfusion beyond 12 hours has yet to be achieved clinically. Normothermic ex situ heart perfusion (ESHP) offers the potential for prolonged cardiac preservation. We developed an ESHP system to study the effect of perfusate variables on organ preservation, with the ultimate goal of extending organ perfusion for ≥24 hours. Forty porcine hearts were perfused for a target of 12 hours. Hearts that maintained electromechanical activity and had a <3× increase in vascular resistance were considered successful preservations. Perfusion variables, metabolic byproducts, and histopathology were monitored and sampled to identify factors associated with preservation failure. Twenty-two of 40 hearts were successfully preserved at 12 hours. Successful 12 hour experiments demonstrated lower potassium (4.3 ± 0.8 vs. 5.0 ± 1.2 mmol/L; p = 0.018) and lactate (3.5 ± 2.8 vs. 4.5 ± 2.9 mmol/L; p = 0.139) levels, and histopathology revealed less tissue damage (p = 0.003) and less weight gain (p = 0.072). Results of these early experiments suggest prolonged ESHP is feasible, and that elevated lactate and potassium levels are associated with organ failure. Further studies are necessary to identify the ideal perfusate for normothermic ESHP.
Collapse
|
11
|
Li J, Ruffenach G, Kararigas G, Cunningham CM, Motayagheni N, Barakai N, Umar S, Regitz-Zagrosek V, Eghbali M. Intralipid protects the heart in late pregnancy against ischemia/reperfusion injury via Caveolin2/STAT3/GSK-3β pathway. J Mol Cell Cardiol 2016; 102:108-116. [PMID: 27847332 DOI: 10.1016/j.yjmcc.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND We recently demonstrated that the heart of late pregnant (LP) rodents is more prone to ischemia/reperfusion (I/R) injury compared to non-pregnant rodents. Lipids, particularly polyunsaturated fatty acids, have received special attention in the field of cardiovascular research. Here, we explored whether Intralipid (ITLD) protects the heart against I/R injury in LP rodents and investigated the mechanisms underlying this protection. METHODS AND RESULTS In-vivo female LP rat hearts or ex-vivo isolated Langendorff-perfused LP mouse hearts were subjected to ischemia followed by reperfusion with PBS or ITLD (one bolus of 5mg/kg of 20% in in-vivo and 1% in ex-vivo). Myocardial infarct size, mitochondrial calcium retention capacity, genome-wide expression profiling, pharmacological inhibition and co-immunoprecipitation were performed. One bolus of ITLD at reperfusion significantly reduced the in-vivo myocardial infarct size in LP rats (23.3±2% vs. 55.5±3.4% in CTRL, p<0.01). Postischemic administration of ITLD also protected the LP hearts against I/R injury ex-vivo. ITLD significantly increased the threshold for the opening of the mitochondrial permeability transition pore in response to calcium overload (nmol-calcium/mg-mitochondrial protein: 290±17 vs. 167±10 in CTRL, p<0.01) and significantly increased phosphorylation of STAT3 (1.8±0.08 vs. 1±0.16 in CTRL, p<0.05) and GSK-3β (2.63±0.55 vs. 1±0.0.34 in CTRL, p<0.05). The ITLD-induced cardioprotection was fully abolished by Stattic, a specific inhibitor of STAT3. Transcriptome analysis revealed caveolin 2 (Cav2) was significantly upregulated by ITLD in hearts of LP rats under I/R injury. Co-immunoprecipitation experiments showed that Cav2 interacts with STAT3. CONCLUSIONS ITLD protects the heart in late pregnancy against I/R injury by inhibiting the mPTP opening through Cav2/STAT3/GSK-3β pathway.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Gregoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Georgios Kararigas
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite University Hospital, Germany; DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Germany
| | - Christine M Cunningham
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Negar Motayagheni
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Neusha Barakai
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite University Hospital, Germany; DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Germany
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1778, United States.
| |
Collapse
|
12
|
Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning. Eur J Pharmacol 2016; 784:129-36. [PMID: 27215146 DOI: 10.1016/j.ejphar.2016.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023]
Abstract
This experiment was designed to explore the protection of sphingosine1-phosphate (S1P) postconditioning on rat myocardial cells injured by hypoxia/reoxygenation acting via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signal pathway. The data showed that S1P could significantly increase cell viability, lower the rate of apoptosis, decrease the content of lactate dehydrogenase (LDH) and caspase3 activity in the culture medium, increase the activity of total superoxide dismutase (T-SOD) and manganese superoxide dismutase (Mn-SOD), reduce the loss of mitochondrial membrane potential and the fluorescence intensity of intracellular calcium, as well as increase the phosphorylation of JAK2 and STAT3 in comparison with the H/R group. When the JAK inhibitor AG490 or the STAT inhibitor stattic were added, the effects of S1P were inhibited. Our date shows that S1P protects H9c2 cells from hypoxia/reoxygenation injury and that the protection by S1P was inhibited by AG490 and stattic. Therefore S1P protects H9c2 cells against hypoxia/reoxygenation injury via the JAK-STAT pathway.
Collapse
|
13
|
Kumarasinghe G, Gao L, Hicks M, Villanueva J, Doyle A, Rao P, Ru Qiu M, Jabbour A, Iyer A, Chew HC, Hayward CS, Macdonald P. Improved heart function from older donors using pharmacologic conditioning strategies. J Heart Lung Transplant 2016; 35:636-46. [DOI: 10.1016/j.healun.2015.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/22/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022] Open
|
14
|
Elatoside C protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes through the reduction of endoplasmic reticulum stress partially depending on STAT3 activation. Apoptosis 2015; 19:1727-35. [PMID: 25326083 DOI: 10.1007/s10495-014-1039-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis has been suggested to contribute to myocardial ischemia-reperfusion (I/R) injury. Elatoside C is one of the major triterpenoid compounds isolated from Aralia elata that is known to be cardioprotective. However, its effects on I/R injury to cardiac myocytes have not been clarified. This study aimed to investigate the possible protective effect of Elatoside C against hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocyte injury and its underlying mechanisms. H9c2 cardiomyocytes were subjected to H/R in the presence of Elatoside C. Our results showed that Elatoside C (25 μM) treatment provided significant protection against H/R-induced cell death, as evidenced by improved cell viability, maintained mitochondrial membrane potential, diminished mitochondrial ROS, and reduced apoptotic cardiomyocytes (P < 0.05). These changes were associated with the inhibition of ER stress-associated apoptosis markers (GRP78, CHOP, Caspase-12 and JNK), as well as the increased phosphorylation of STAT3 and an increased Bcl2/Bax ratio. Moreover, these effects of Elatoside C were prevented by the STAT3 inhibitor Stattic. Taken together, these results suggested that Elatoside C can alleviate H/R-induced cardiomyocyte apoptosis most likely by activating the STAT3 pathways and reducing ER stress-associated apoptosis.
Collapse
|
15
|
Fatullayev J, Samak M, Sabashnikov A, Weymann A, Mohite PN, García-Sáez D, Patil NP, Dohmen PM, Popov AF, Simon AR, Zeriouh M. Non-Heart-Beating Donor Heart Transplantation: Breaking the Taboo. Med Sci Monit Basic Res 2015; 21:153-6. [PMID: 26174972 PMCID: PMC4515934 DOI: 10.12659/msmbr.894985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/02/2015] [Indexed: 11/09/2022] Open
Abstract
Roughly 60% of hearts offered for transplantation are rejected because of organ dysfunction. Moreover, hearts from circulatory-dead patients have long been thought to be non-amenable for transplantation, unlike other organs. However, tentative surgical attempts inspired by the knowledge obtained from preclinical research to recover those hearts have been performed, finally culminating in clinically successful transplants. In this review we sought to address the major concerns in non-heart-beating donor heart transplantation and highlight recently introduced developments to overcome them.
Collapse
Affiliation(s)
- Javid Fatullayev
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| | - Mostafa Samak
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Anton Sabashnikov
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| | - Alexander Weymann
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| | - Prashant N. Mohite
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| | - Diana García-Sáez
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| | - Nikhil P. Patil
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| | - Pascal M. Dohmen
- Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic Surgery, University of the Free State, Bloemfontein, South Africa
| | - Aron-Frederik Popov
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| | - André R. Simon
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| | - Mohamed Zeriouh
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, U.K
| |
Collapse
|
16
|
Cardio-protective signalling by glyceryl trinitrate and cariporide in a model of donor heart preservation. Heart Lung Circ 2014; 24:306-18. [PMID: 25459486 DOI: 10.1016/j.hlc.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Storage of donor hearts in cardioplegic solutions supplemented with agents that mimic the ischaemic preconditioning response enhanced their post-reperfusion function. The present study examines the minimisation of cell death and activation of pro-survival signalling directed towards maintenance of mitochondrial homeostasis in hearts arrested and stored in two such agents, glyceryl-trinitrate, a nitric oxide donor and cariporide, (a sodium-hydrogen exchange inhibitor). METHODS After baseline functional measurement, isolated working rat hearts were arrested and stored for 6h at 4°C in either Celsior(®), Celsior(®) containing 0.1mg/ml glyceryl-trinitrate, 10μM cariporide or both agents. After reperfusion, function was remeasured. Hearts were then processed for immunoblotting or histology. RESULTS Necrotic and apoptotic markers present in the Celsior(®) group post-reperfusion were abolished by glyceryl-trinitrate, cariporide or both. Increased phosphorylation of ERK and Bcl2, after reperfusion in groups stored in glyceryl-trinitrate, cariporide or both along with increased phospho-STAT3 levels in the glyceryl-trinitrate/cariporide group correlated with functional recovery. Inhibition of STAT3 phosphorylation blocked recovery. No phospho-Akt increase was seen in any treatment. CONCLUSIONS Activation of signalling pathways that favour mitophagy activation (ERK and Bcl2 phosphorylation) and maintenance of mitochondrial transition pore closure after reperfusion (STAT3 and ERK phosphorylation) were crucial for functional recovery of the donor heart.
Collapse
|
17
|
Iyer A, Gao L, Doyle A, Rao P, Jayewardene D, Wan B, Kumarasinghe G, Jabbour A, Hicks M, Jansz PC, Feneley MP, Harvey RP, Graham RM, Dhital KK, Macdonald PS. Increasing the tolerance of DCD hearts to warm ischemia by pharmacological postconditioning. Am J Transplant 2014; 14:1744-52. [PMID: 25040306 DOI: 10.1111/ajt.12782] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/10/2014] [Accepted: 03/30/2014] [Indexed: 01/25/2023]
Abstract
Donation after circulatory death (DCD) offers a potential additional source of cardiac allografts. We used a porcine asphyxia model to evaluate viability of DCD hearts subjected to warm ischemic times (WIT) of 20–40 min prior to flushing with Celsior (C) solution. We then assessed potential benefits of supplementing C with erythropoietin, glyceryl trinitrate and zoniporide (Cs), a combination that we have shown previously to activate ischemic postconditioning pathways. Hearts flushed with C/Cs were assessed for functional, biochemical and metabolic recovery on an ex vivo working heart apparatus. Hearts exposed to 20-min WIT showed full recovery of functional and metabolic profiles compared with control hearts (no WIT). Hearts subjected to 30- or 40-min WIT prior to C solution showed partial and no recovery, respectively. Hearts exposed to 30-min WIT and Cs solution displayed complete recovery, while hearts exposed to 40-min WIT and Cs solution demonstrated partial recovery. We conclude that DCD hearts flushed with C solution demonstrate complete recovery up to 20-min WIT after which there is rapid loss of viability. Cs extends the limit of WIT tolerability to 30 min. DCD hearts with ≤30-min WIT may be suitable for transplantation and warrant assessment in a transplant model.
Collapse
|
18
|
Samsonov A, Zenser N, Zhang F, Zhang H, Fetter J, Malkov D. Tagging of genomic STAT3 and STAT1 with fluorescent proteins and insertion of a luciferase reporter in the cyclin D1 gene provides a modified A549 cell line to screen for selective STAT3 inhibitors. PLoS One 2013; 8:e68391. [PMID: 23950841 PMCID: PMC3732202 DOI: 10.1371/journal.pone.0068391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/29/2013] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogenic protein that is constitutively activated in numerous cancer cell lines and human cancers. Another STAT family member, STAT1, possesses cancer-inhibitory properties and can promote apoptosis in tumor cells upon activation. To better characterize these important cancer related genes, we tagged STAT3 and STAT1 loci with fluorescent protein (FP) sequences (RFP and GFP respectively) by targeted integration via zinc finger nuclease (ZFN)--mediated homologous recombination in A549 cells that express aberrantly activated STAT3. We inserted the FP transgenes at the N-terminus of the STAT3 locus and at the C-terminus of the STAT1 locus. The integration resulted in endogenous expression of fluorescent STAT3 and STAT1 chimeric fusion proteins. When stimulated with IL-6 or IFN-γ, the cells showed robust nuclear translocation of RFP-STAT3 or STAT1-GFP, respectively. Pre-incubation of cells with a known specific STAT3 inhibitor showed that IFN-γ-induced translocation of STAT1-GFP was not impaired. STAT3 activates multiple downstream targets such as genes involved in cell cycle progression - e.g. cyclin D1. To detect changes in expression of endogenous cyclin D1, we used ZFN technology to insert a secreted luciferase reporter behind the cyclin D1 promoter and separated the luciferase and cyclin D1 coding regions by a 2A sequence to induce a translational skip. The luciferase insertion was made in the RFP-STAT3/STAT1-GFP cell line to have all three reporters in a single cell line. Addition of a STAT3 inhibitor led to suppression of cyclin D1 promoter activity and cell growth arrest. The triple-modified cell line provides a simple and convenient method for high-content screening and pre-clinical testing of potential STAT3 inhibitors in live cells while ensuring that the STAT1 pathway is not affected. This approach of reporting endogenous gene activities using ZFN technology could be applied to other cancer targets.
Collapse
Affiliation(s)
- Andrey Samsonov
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Nathan Zenser
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Fan Zhang
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Hongyi Zhang
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - John Fetter
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Dmitry Malkov
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| |
Collapse
|
19
|
Watson AJ, Gao L, Sun L, Tsun J, Doyle A, Faddy SC, Jabbour A, Orr Y, Dhital K, Hicks M, Jansz PC, Macdonald PS. Enhanced preservation of pig cardiac allografts by combining erythropoietin with glyceryl trinitrate and zoniporide. Am J Transplant 2013; 13:1676-87. [PMID: 23668842 DOI: 10.1111/ajt.12249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 03/14/2013] [Indexed: 01/25/2023]
Abstract
Erythropoietin has a tissue-protective effect independent of its erythropoietic effect that may be enhanced by combining it with the nitric oxide donor glyceryl trinitrate (GTN) and the sodium-hydrogen exchange inhibitor zoniporide in rat hearts stored with an extracellular-based preservation solution (EBPS). We thus sought to test this combination of agents in a porcine model of orthotopic heart transplantation incorporating donor brain death and total ischaemic time of approximately 260 min. Pig hearts were stored in one of four storage solutions: unmodified EBPS (CON), EBPS supplemented with GTN and zoniporide (GZ), EBPS supplemented with erythropoietin and zoniporide (EZ), or EBPS supplemented with all three agents (EGZ). A total of 4/5 EGZ hearts were successfully weaned from cardiopulmonary bypass compared with only 2/5 GZ hearts, 0/5 CON hearts and 0/5 EG hearts (p = 0.017). Following weaning from bypass EGZ hearts demonstrated superior contractility and haemodynamics than GZ hearts. All weaned hearts displayed impaired diastolic function. Release of troponin I from EGZ hearts was lower than all other groups. In conclusion, supplementation of EBPS with erythropoietin, glyceryl trinitrate and zoniporide provided superior donor heart preservation than all other strategies tested.
Collapse
Affiliation(s)
- A J Watson
- Transplant Program, The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Watson AJ, Gao L, Sun L, Tsun J, Jabbour A, Ru Qiu M, Jansz PC, Hicks M, Macdonald PS. Enhanced preservation of the rat heart after prolonged hypothermic ischemia with erythropoietin-supplemented Celsior solution. J Heart Lung Transplant 2013; 32:633-40. [DOI: 10.1016/j.healun.2013.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 10/26/2022] Open
|
21
|
Iyer A, Kumarasinghe G, Hicks M, Watson A, Gao L, Doyle A, Keogh A, Kotlyar E, Hayward C, Dhital K, Granger E, Jansz P, Pye R, Spratt P, Macdonald PS. Primary graft failure after heart transplantation. J Transplant 2011; 2011:175768. [PMID: 21837269 PMCID: PMC3151502 DOI: 10.1155/2011/175768] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022] Open
Abstract
Primary graft failure (PGF) is a devastating complication that occurs in the immediate postoperative period following heart transplantation. It manifests as severe ventricular dysfunction of the donor graft and carries significant mortality and morbidity. In the last decade, advances in pharmacological treatment and mechanical circulatory support have improved the outlook for heart transplant recipients who develop this complication. Despite these advances in treatment, PGF is still the leading cause of death in the first 30 days after transplantation. In today's climate of significant organ shortages and growing waiting lists, transplant units worldwide have increasingly utilised "marginal donors" to try and bridge the gap between "supply and demand." One of the costs of this strategy has been an increased incidence of PGF. As the threat of PGF increases, the challenges of predicting and preventing its occurrence, as well as the identification of more effective treatment modalities, are vital areas of active research and development.
Collapse
Affiliation(s)
- Arjun Iyer
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gayathri Kumarasinghe
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Mark Hicks
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Alasdair Watson
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Ling Gao
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Aoife Doyle
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Anne Keogh
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Eugene Kotlyar
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Christopher Hayward
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Kumud Dhital
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Emily Granger
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Paul Jansz
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Roger Pye
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Phillip Spratt
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Peter Simon Macdonald
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| |
Collapse
|