1
|
L-carnitine ameliorates bile duct ligation induced liver fibrosis via reducing the nitrosative stress in experimental animals: preclinical evidences. Heliyon 2021; 7:e08488. [PMID: 34901512 PMCID: PMC8642613 DOI: 10.1016/j.heliyon.2021.e08488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/23/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
Bile duct ligation (BDL) has been extensively used in studying the mechanisms of fibrogenesis and anti-fibrotic drugs. Considering the liver regenerative capacity and the diverse results from BDL, the present study aimed to evaluate the protective effect of L-carnitine on bile duct ligation-induced liver fibrosis in experimental rats. Rats were randomly divided into seven groups (n = 6). The bile duct was ligated and serum aspartate transaminase (AST), alanine transaminase (ALT), total bilirubin and albumin, hepatic hydroxyproline (HP), reduced glutathione (GSH), and malondialdehyde (MDA) and cytokines were measured. iNOS expression was measured by using Western blot and finally, liver tissue was processed for histopathological analysis (H&E staining)". The level of iNOS was increased in the control group, whereas a decrease in the level of iNOS was found in the L-carnitine treated group. In the present study, we found that bile duct ligation in rats showed an increase in body and liver weight, while treatment with carnitine showed normal body and liver weight. Serum AST, ALT, total bilirubin, HP, GSH, MDA, and cytokines were increased in bile duct ligated rats. In addition, L-carnitine treated rats showed a reduction in oxidative stress as well as inhibiting the release of cytokines in a dose-dependent manner and showed protection against bile duct ligation. The study concludes that L-carnitine has a protective effect against the liver fibrosis induced by bile duct ligation.
Collapse
|
2
|
Ramos-Tovar E, Muriel P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants (Basel) 2020; 9:E1279. [PMID: 33333846 PMCID: PMC7765317 DOI: 10.3390/antiox9121279] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) and myofibroblasts are the main producers of extracellular matrix (ECM) proteins that form the fibrotic tissue that leads to hepatic fibrosis. Reactive oxygen species (ROS) can directly activate HSCs or induce inflammation or programmed cell death, especially pyroptosis, in hepatocytes, which in turn activates HSCs and fibroblasts to produce ECM proteins. Therefore, antioxidants and the nuclear factor E2-related factor-2 signaling pathway play critical roles in modulating the profibrogenic response. The master proinflammatory factors nuclear factor-κB (NF-κB) and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome may coordinate to produce and activate profibrogenic molecules such as interleukins 1β and 18, which effectively activate HSCs, to produce large amounts of fibrotic proteins. Furthermore, the NLRP3 inflammasome activates pro-caspase 1, which is upregulated by NF-κB, to produce caspase 1, which induces pyroptosis via gasdermin and the activation of HSCs. ROS play central roles in the activation of the NF-κB and NLRP3 signaling pathways via IκB (an inhibitor of NF-κB) and thioredoxin-interacting protein, respectively, thereby linking the molecular mechanisms of oxidative stress, inflammation and fibrosis. Elucidating these molecular pathways may pave the way for the development of therapeutic tools to interfere with specific targets.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Apartado Postal 14-740, Mexico City 07000, Mexico
| |
Collapse
|
3
|
Du QH, Han L, Jiang JJ, Xu Y, Li WH, Li PT, Wang XY, Jia X. Glytan decreases portal pressure via mesentery vasoconstriction in portal hypertensive rats. World J Gastroenterol 2014; 20:16674-16682. [PMID: 25469036 PMCID: PMC4248211 DOI: 10.3748/wjg.v20.i44.16674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the effects of Glytan on splanchnic hemodynamics and its reduction of portal pressure in portal hypertensive rats.
METHODS: Glytan (Ganluotong in Chinese), is composed of salvianolic acid B and diammonium glycyrrhizinate. Portal hypertension (PHT) was induced in the rats by common bile duct ligation (BDL). Hemodynamic studies were performed using the colored microsphere method. Radioimmunoassay (RIA) was used to determine endothelin (ET)-1 levels in the mesenteric circulation. Western blotting methods were used to investigate the effect of Glytan on ET A receptor (ETAR), ET B receptor (ETBR), endothelial NO synthase (eNOS), G-protein-coupled receptor kinase (GRK)2, and β-arrestin 2 expression in the mesentery. The mRNA of ETAR and ETBR was determined using real-time polymerase chain reaction.
RESULTS: Treatment with Glytan reduced portal pressure (PP) and portal territory blood flow (PTBF) and increased both mean arterial pressure (MAP) and splanchnic vascular resistance (SVR). Especially at 4 wk, PP decreased by about 40%, while MAP increased by 13%, SVR increased by 12%, and PTBF decreased by about 21%. The effect of blood flow reduction was greatest in the mesentery (about 33%) at 4 wk. The mesenteric circulation ET-1 levels of BDL rats were lower and negatively correlated with PP at 4 wk. Glytan can increase mesenteric ET-1 content and inhibit ETBR, eNOS, GRK2, and β-arrestin 2 expression in the mesentery. Moreover, Glytan showed no effect on the expression of ETAR protein and mRNA.
CONCLUSION: The decreased PP and PTBF observed after Glytan treatment were related to increased mesenteric vasoconstriction and increased receptor sensitivity to vasoconstrictor.
Collapse
|
4
|
Does hepatic vagus nerve modulate the progression of biliary fibrosis in rats? Auton Neurosci 2014; 185:67-75. [DOI: 10.1016/j.autneu.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 07/12/2014] [Indexed: 01/28/2023]
|
5
|
Theodorakis NG, Wang YN, Wu JM, Maluccio MA, Sitzmann JV, Skill NJ. Role of endothelial nitric oxide synthase in the development of portal hypertension in the carbon tetrachloride-induced liver fibrosis model. Am J Physiol Gastrointest Liver Physiol 2009; 297:G792-9. [PMID: 19628654 DOI: 10.1152/ajpgi.00229.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Portal hypertension (PHT) is a complication of liver cirrhosis and directly increases mortality and morbidity by increasing the propensity of venous hemorrhage. There are two main underlying causations for PHT, increased hepatic resistance and systemic hyperdynamic circulation. Both are related to localized aberrations in endothelial nitric oxide synthase (eNOS) function and NO biosynthesis. This study investigates the importance of eNOS and systemic hyperdynamic-associated hyperemia to better understand the pathophysiology of PHT. Wild-type and eNOS(-/-) mice were given the hepatotoxin CCl(4) for 4-12 wk. Hepatic fibrosis was determined histologically following collagen staining. Portal venous pressure, hepatic resistance, and hyperemia were determined by measuring splenic pulp pressure (SPP), hepatic portal-venous perfusion pressure (HPVPP), abdominal aortic flow (Qao), and portal venous flow (Qpv). Hepatic fibrosis developed equally in wild-type and eNOS(-/-) CCl(4)-exposed mice. SPP, Qao, and Qpv increased rapidly in wild-type CCl(4)-exposed mice, but HPVPP did not. In eNOS(-/-) CCl(4) mice, Qao was not increased, SPP was partially increased, and HPVPP and Qpv were increased nonsignificantly. We concluded that the systemic hyperemia component of hyperdynamic circulation is eNOS dependent and precedes increased changes in hepatic resistance. Alternative mechanisms, possibly involving cyclooxygenase, may contribute. eNOS maintains normal hepatic resistance following CCl(4)-induced fibrosis. Consequently, increased portal pressure following chronic CCl(4) exposure is linked to hyperdynamic circulation in wild-type mice and increased hepatic resistance in eNOS(-/-) mice.
Collapse
Affiliation(s)
- Nicholas G Theodorakis
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
6
|
Duarte MIS, de Andrade HF, Takamura CFH, Sesso A, Tuon FF. TGF-beta and mesenchymal hepatic involvement after visceral leishmaniasis. Parasitol Res 2008; 104:1129-36. [PMID: 19057926 DOI: 10.1007/s00436-008-1298-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/21/2008] [Indexed: 12/15/2022]
Abstract
The liver involvement in the human visceral leishmaniasis (VL) has been related to parasitism and activated Kupffer cells with further occasional fibrotic alterations, especially after long-term disease without treatment. However, fibrotic alterations have been reported after therapy, whose clinical finding is the persistence of hepatomegaly. Fibrotic involvement of the liver after therapy was never well understood, and the aim of this study was to evaluate this finding through ultrastructural and morphometric analysis. A case-control study was performed with 20 patients (15 cases and five controls). Cases included patients with persistent hepatomegaly (residual) after treatment of VL submitted to liver biopsy to exclude other causes of liver enlargement, including serum tests of viral hepatitis. The material was evaluated by electron microscopy allowing ultrastructural with morphometric analysis of medium portion of hepatic lobule. Narrow sinusoidal lumen and prominent Kupffer cells were found with insignificant alterations of hepatocytes, pit, and endothelial cells. On ultrastructural analysis, the enlargement of the space of Disse was due to fibrous collagen, increase of number of Ito cells, and nonfibrous extracellular matrix that were associated with Kupffer cells enlargement. Immunohistochemistry showed an intense expression of TGF-beta in patients with VL. These findings suggest a production of TGF-beta by Kupffer cells that resulted in the characteristic fibrotic involvement of the liver. Residual hepatomegaly in visceral leishmaniasis could result from sustained Kupffer cell activation with perihepatocytic fibrosis.
Collapse
Affiliation(s)
- Maria Irma Seixas Duarte
- Laboratory of the Discipline of Pathology of Transmissible Disease, University of Sao Paulo, Faculty of Medical Sciences, Av. Dr.Arnaldo, 455-Cerqueira César, 01246-903, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
7
|
Li Y, Liu H, Gaskari SA, Tyberg JV, Lee SS. Altered mesenteric venous capacitance and volume pooling in cirrhotic rats are mediated by nitric oxide. Am J Physiol Gastrointest Liver Physiol 2008; 295:G252-9. [PMID: 18556420 DOI: 10.1152/ajpgi.00436.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In cirrhosis, despite augmented blood volume, effective circulating volume is decreased. This implies abnormal regulation of blood volume, i.e., venous pooling. Because gut veins are the main blood reservoir, we studied mesenteric venous capacitance and compliance in a rat model of cirrhosis. Cirrhosis was induced by bile duct ligation (4 wk). Controls were sham operated. Changes in first-order mesenteric vein diameters induced by drugs, hemorrhage, and stepwise increases in portal pressure (inflatable cuff) were directly observed by intravital microscopy. Effects of nitric oxide on responses to acute graded hemorrhage were studied by use of selective NO synthase (NOS) isoform inhibitors. Pressures were related to diameters to assess capacitance and compliance. Compared with controls, cirrhotic rats demonstrated increased mesenteric venous capacitance and decreased compliance. Norepinephrine induced venoconstriction but did not affect compliance. Prazosin markedly diminished compliance in controls but not cirrhotics. Conversely, the nonspecific NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME) decreased compliance in cirrhotics, but not controls. Tetrodotoxin venodilated controls, venoconstricted cirrhotics, and markedly decreased compliance in both groups. When hemorrhaged, controls rapidly venoconstricted to compensate for initial hypotension, whereas cirrhotic rats remained hypotensive because venoconstriction was severely blunted. Pretreatment with l-NAME or the selective neuronal NOS inhibitors S-methyl-l-thiocitrulline and 7-nitroindazole normalized the homeostatic responses of cirrhotic rats, whereas the selective endothelial-constitutive NOS inhibitor N-iminoethyl-l-ornithine did not affect the response. In conclusion, mesenteric veins of cirrhotic rats showed enhanced capacitance, attenuated compensatory constrictive response to hemorrhage, and decreased compliance. The first two abnormalities were caused by neuronal NOS-derived nitric oxide.
Collapse
Affiliation(s)
- Yang Li
- Liver Unit, Gastrointestinal Research Group, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
8
|
Abstract
Increased understanding of the hyperdynamic circulation syndrome has resulted in novel therapeutic approaches, some of which have already reached clinical practice. Central to the hyperdynamic circulation syndrome is an imbalance between the increase in different vasodilators (foremost among which is nitric oxide) and the compensatory increase in vasoconstrictors--usually accompanied by a blunted response. This chapter discusses the role of endothelin in the pathogenesis of the syndrome and in future treatment approaches. A relatively new area of research in this field is the role of infection and inflammation in the initiation and maintenance of the hyperdynamic circulation syndrome. The use of antibiotics in the setting of acute variceal bleeding is standard practice. Studies have suggested that chronic manipulation of the intestinal flora could have beneficial effects in the treatment of portal hypertension. The bile salts are another novel and interesting target. Although their vasoactive properties have been known for some time, recent data demonstrate that their effects could be central in the pathogenesis of the hyperdynamic circulation syndrome, and that manipulation of the composition of the bile acid pool could be a therapeutic approach to portal hypertension. Finally, hypoxia and angiogenesis play a role in the development of portal hypertension and the formation of collaterals. This role needs to be further defined but it appears likely that this phenomenon is yet another target for therapeutic intervention.
Collapse
Affiliation(s)
- Jürg Reichen
- Institute of Clinical Pharmacology, University of Berne, Murtenstrasse 31 POB 49, 3010 Berne, Switzerland.
| | | |
Collapse
|
9
|
De Gottardi A, Biecker E, Koshy A, Bohler D, Shaw S, Sägesser H, Reichen J. Sensitivity to endothelin-1 is decreased in isolated livers of endothelial constitutive nitric oxide synthase knockout mice. COMPARATIVE HEPATOLOGY 2006; 5:9. [PMID: 17147823 PMCID: PMC1697821 DOI: 10.1186/1476-5926-5-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 12/05/2006] [Indexed: 11/10/2022]
Abstract
Background Hepatic sinusoidal resistance is regulated by vasoactive factors including endothelin-1 (ET-1) and nitric oxide (NO). In the absence of NO, vasoconstrictor response to endothelin is expected to predominate. Therefore, we hypothesized sensitivity to endothelin to be increased in mice lacking the endothelial cell NO synthase gene. Response of vascular resistance to endothelin was assessed in the in situ perfused liver of endothelial constitutive nitric oxide synthase (ecNOS) knockout and wild type mice. Livers were also harvested for RNA and protein isolation for quantitative PCR and Western blotting, respectively. The expression of endothelin receptors, isoenzymes of NO synthase, heme-oxygenase and adrenomedullin was quantified. Results Endothelin increased hepatic vascular resistance in a dose-dependent manner in both strains; however, this increase was significantly less in ecNOS knockout mice at physiologic concentrations. Expression of heme-oxygenases and adrenomedullin was similar in both groups, whereas inducible nitric oxide synthase (iNOS) protein was not detectable in either strain. mRNA levels of pre-pro-endothelin-1 and ETB receptor were comparable in both strains, while mRNA for ETA receptor was decreased in ecNOS knockouts. Conclusion Livers of ecNOS knockout mice have a decreased sensitivity to endothelin at physiologic concentrations; this is associated with a decreased expression of ETA receptors, but not with other factors, such as iNOS, ETB receptors, adrenomedullin or heme-oxygenase. Further studies targeting adaptive changes in ETA receptor distribution and/or intracellular signaling downstream of the receptor are indicated.
Collapse
Affiliation(s)
- Andrea De Gottardi
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
- Division of Gastroenterology and Hepatology, University Hospital of Geneva, Rue Micheli-du-Crest 24, 1211 Geneva 14, Switzerland
| | - Erwin Biecker
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| | - Abraham Koshy
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| | - Dieter Bohler
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| | - Sidney Shaw
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| | - Hans Sägesser
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| | - Jürg Reichen
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| |
Collapse
|
10
|
Geerts AM, De Vriese AS, Vanheule E, Van Vlierberghe H, Mortier S, Cheung KJ, Demetter P, Lameire N, De Vos M, Colle I. Increased angiogenesis and permeability in the mesenteric microvasculature of rats with cirrhosis and portal hypertension: an in vivo study. Liver Int 2006; 26:889-98. [PMID: 16911473 DOI: 10.1111/j.1478-3231.2006.01308.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In vivo evidence for angiogenesis in the splanchnic vasodilation in portal hypertension (PHT) and cirrhosis is lacking. Vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) are mediators of angiogenesis. The present study visualises in vivo structural changes (angiogenesis and vascular hyperpermeability) and examines the presence of VEGF and eNOS in the mesenteric microvasculature of animal models of PHT with and without cirrhosis. METHODS Portal hypertension was induced by partial portal vein ligation (PPVL) and cirrhosis was induced by common bile duct ligation (CBDL) in rats. The mesenteric microcirculation was examined by intravital microscopy. Expression of VEGF, eNOS and CD31 in mesenteric tissue were studied by immunohistochemistry. RESULTS An increased mesenteric angiogenesis was observed in PPVL and CBDL rats compared with Sham-operated and control rats, as shown by intravital microscopy and CD 31 staining. VEGF and eNOS expression was higher in CBDL and PPVL rats compared with control groups and correlated positively with vascular density. Macromolecular leakage was increased in cirrhotic rats compared with control and PPVL rats. CONCLUSION Our study provides in vivo evidence of an increased angiogenesis in the mesenteric microvasculature of animal models of PHT and cirrhosis. Increased VEGF and eNOS expression in the mesentery of PPVL and CBDL rats may suggest their contribution. Microvascular permeability in the mesenteric vessels was only increased in cirrhotic rats.
Collapse
Affiliation(s)
- Anja M Geerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moreno MG, Muriel P. Inducible nitric oxide synthase is not essential for the development of fibrosis and liver damage induced by CCl4 in mice. J Appl Toxicol 2006; 26:326-32. [PMID: 16705756 DOI: 10.1002/jat.1144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the present work was to investigate the role of inducible nitric oxide (NO) synthase (iNOS) in CCl(4)-induced cirrhosis by utilizing iNOS knock out mice (iNOS(-/-)). Cirrhosis was produced by i.p. administration of CCl(4) (1 ml kg(-1) of body weight) dissolved in olive oil three times a week for 3 months to iNOS(-/-) or iNOS(+/+) (wild type) mice; appropriate olive oil controls were performed. Nitrite plus nitrate levels were lower in iNOS(-/-) compared with iNOS(+/+) mice, but CCl(4) did not produce a significant effect in any mice. Reduced (GSH) glutathione was increased in iNOS(-/-) mice receiving vehicle and in both groups receiving CCl(4); lipid peroxidation increased significantly in iNOS(+/+) but not in iNOS(-/-) mice. Bilirubins, alanine aminotransferase and collagen (measured as the hepatic hydroxyproline content) were increased significantly by the chronic intoxication with CCl(4) in both iNOS(-/-) and iNOS(+/+) mice; importantly there was no difference between these groups. This study clearly suggests that NO derived from iNOS does not participate in cholestasis, necrosis or fibrosis induced by CCl(4) in the mice. The present results are in disagreement with several studies indicating a beneficial or detrimental effect of this molecule utilizing different experimental approaches and in agreement with some studies indicating that NO does not affect liver damage in some models. It must be pointed out that this is the first report in iNOS knock out mice utilizing the chronic model of intoxication with CCl(4); thus, comparisons with other models or approaches are difficult to reconcile.
Collapse
Affiliation(s)
- Mario G Moreno
- Sección Externa de Farmacología, Cinvestav-IPN, México, DF, México
| | | |
Collapse
|