1
|
Acute-on-chronic liver disease enhances phenylephrine-induced endothelial nitric oxide release in rat mesenteric resistance arteries through enhanced PKA, PI3K/AKT and cGMP signalling pathways. Sci Rep 2019; 9:6993. [PMID: 31061522 PMCID: PMC6502824 DOI: 10.1038/s41598-019-43513-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Acute-on-chronic liver disease is a clinical syndrome characterized by decompensated liver fibrosis, portal hypertension and splanchnic hyperdynamic circulation. We aimed to determine whether the alpha-1 agonist phenylephrine (Phe) facilitates endothelial nitric oxide (NO) release by mesenteric resistance arteries (MRA) in rats subjected to an experimental microsurgical obstructive liver cholestasis model (LC). Sham-operated (SO) and LC rats were maintained for eight postoperative weeks. Phe-induced vasoconstriction (in the presence/absence of the NO synthase –NOS- inhibitor L-NAME) and vasodilator response to NO donor DEA-NO were analysed. Phe-induced NO release was determined in the presence/absence of either H89 (protein kinase –PK- A inhibitor) or LY 294002 (PI3K inhibitor). PKA and PKG activities, alpha-1 adrenoceptor, endothelial NOS (eNOS), PI3K, AKT and soluble guanylate cyclase (sGC) subunit expressions, as well as eNOS and AKT phosphorylation, were determined. The results show that LC blunted Phe-induced vasoconstriction, and enhanced DEA-NO-induced vasodilation. L-NAME increased the Phe-induced contraction largely in LC animals. The Phe-induced NO release was greater in MRA from LC animals. Both H89 and LY 294002 reduced NO release in LC. Alpha-1 adrenoceptor, eNOS, PI3K and AKT expressions were unchanged, but sGC subunit expression, eNOS and AKT phosphorylation and the activities of PKA and PKG were higher in MRA from LC animals. In summary, these mechanisms may help maintaining splanchnic vasodilation and hypotension observed in decompensated LC.
Collapse
|
2
|
Abstract
Cannabinoids influence cardiovascular variables in health and disease via multiple mechanisms. The chapter covers the impact of cannabinoids on cardiovascular function in physiology and pathology and presents a critical analysis of the proposed signalling pathways governing regulation of cardiovascular function by endogenously produced and exogenous cannabinoids. We know that endocannabinoid system is overactivated under pathological conditions and plays both a protective compensatory role, such as in some forms of hypertension, atherosclerosis and other inflammatory conditions, and a pathophysiological role, such as in disease states associated with excessive hypotension. This chapter focuses on the mechanisms affecting hemodynamics and vasomotor effects of cannabinoids in health and disease states, highlighting mismatches between some studies. The chapter will first review the effects of marijuana smoking on cardiovascular system and then describe the impact of exogenous cannabinoids on cardiovascular parameters in humans and experimental animals. This will be followed by analysis of the impact of cannabinoids on reactivity of isolated vessels. The article critically reviews current knowledge on cannabinoid induction of vascular relaxation by cannabinoid receptor-dependent and -independent mechanisms and dysregulation of vascular endocannabinoid signaling in disease states.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine.
| |
Collapse
|
3
|
Kloza M, Baranowska-Kuczko M, Malinowska B, Karpińska O, Harasim-Symbor E, Kasacka I, Kozłowska H. The influence of DOCA-salt hypertension and chronic administration of the FAAH inhibitor URB597 on KCa2.3/KCa3.1-EDH-type relaxation in rat small mesenteric arteries. Vascul Pharmacol 2017; 99:65-73. [DOI: 10.1016/j.vph.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
4
|
Stanley CP, Hind WH, Tufarelli C, O'Sullivan SE. The endocannabinoid anandamide causes endothelium-dependent vasorelaxation in human mesenteric arteries. Pharmacol Res 2016; 113:356-363. [PMID: 27633407 PMCID: PMC5113919 DOI: 10.1016/j.phrs.2016.08.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022]
Abstract
The endocannabinoid anandamide (AEA) causes vasorelaxation in animal studies. Although circulating AEA levels are increased in many pathologies, little is known about its vascular effects in humans. The aim of this work was to characterise the effects of AEA in human arteries. Ethical approval was granted to obtain mesenteric arteries from patients (n = 31) undergoing bowel resection. Wire myography was used to probe the effects and mechanisms of action of AEA. RT‐PCR was used to confirm the presence of receptor mRNA in human aortic endothelial cells (HAECs) and intracellular signalling proteins were measured using multiplex technology. AEA caused vasorelaxation of precontracted human mesenteric arteries with an Rmax of ∼30%. A synthetic CB1 agonist (CP55940) caused greater vasorelaxation (Rmax ∼60%) while a CB2 receptor agonist (HU308) had no effect on vascular tone. AEA-induced vasorelaxation was inhibited by removing the endothelium, inhibition of nitric oxide (NO) synthase, antagonising the CB1 receptor and antagonising the proposed novel endothelial cannabinoid receptor (CBe). AEA‐induced vasorelaxation was not affected by CB2 antagonism, by depleting sensory neurotransmitters, or inhibiting cyclooxygenase activity. RT‐PCR showed CB1 but not CB2 receptors were present in HAECs, and AEA and CP55940 had similar profiles in HAECs (increased phosphorylation of JNK, NFκB, ERK, Akt, p70s6K, STAT3 and STAT5). Post hoc analysis of the data set showed that overweight patients and those taking paracetamol had reduced vasorelaxant responses to AEA. These data show that AEA causes moderate endothelium-dependent, NO-dependent vasorelaxation in human mesenteric arteries via activation of CB1 receptors.
Collapse
Affiliation(s)
- Christopher P Stanley
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - William H Hind
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Christina Tufarelli
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK.
| |
Collapse
|
5
|
Sastre E, Caracuel L, Prieto I, Llévenes P, Aller MÁ, Arias J, Balfagón G, Blanco-Rivero J. Decompensated liver cirrhosis and neural regulation of mesenteric vascular tone in rats: role of sympathetic, nitrergic and sensory innervations. Sci Rep 2016; 6:31076. [PMID: 27484028 PMCID: PMC4971476 DOI: 10.1038/srep31076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
We evaluated the possible alterations produced by liver cholestasis (LC), a model of decompensated liver cirrhosis in sympathetic, sensory and nitrergic nerve function in rat superior mesenteric arteries (SMA). The vasoconstrictor response to electrical field stimulation (EFS) was greater in LC animals. Alpha-adrenoceptor antagonist phentolamine and P2 purinoceptor antagonist suramin decreased this response in LC animals more than in control animals. Both non-specific nitric oxide synthase (NOS) L-NAME and calcitonin gene related peptide (CGRP) (8-37) increased the vasoconstrictor response to EFS more strongly in LC than in control segments. Vasomotor responses to noradrenaline (NA) or CGRP were greater in LC segments, while NO analogue DEA-NO induced a similar vasodilation in both experimental groups. The release of NA was not modified, while those of ATP, nitrite and CGRP were increased in segments from LC. Alpha 1 adrenoceptor, Rho kinase (ROCK) 1 and 2 and total myosin phosphatase (MYPT) expressions were not modified, while alpha 2B adrenoceptor, nNOS expression and nNOS and MYPT phosphorylation were increased by LC. Together, these alterations might counteract the increased splanchnic vasodilation observed in the last phases of decompensated liver cirrhosis.
Collapse
Affiliation(s)
- Esther Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Laura Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Isabel Prieto
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España.,Departamento de Cirugía General y Digestiva, Hospital la Paz, Madrid, España
| | - Pablo Llévenes
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España
| | - M Ángeles Aller
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, España
| | - Jaime Arias
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, España
| | - Gloria Balfagón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| |
Collapse
|
6
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
7
|
Bondarenko AI. Endothelial atypical cannabinoid receptor: do we have enough evidence? Br J Pharmacol 2014; 171:5573-88. [PMID: 25073723 PMCID: PMC4290703 DOI: 10.1111/bph.12866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, O.O.Bogomoletz Institute of PhysiologyKiev, Ukraine
- Institute of Molecular Biology and Biochemistry, Medical University of GrazGraz, Austria
| |
Collapse
|
8
|
Zogopoulos P, Vasileiou I, Patsouris E, Theocharis S. The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects. J Appl Toxicol 2013; 33:246-64. [DOI: 10.1002/jat.2828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Panagiotis Zogopoulos
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Ioanna Vasileiou
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Efstratios Patsouris
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Stamatios Theocharis
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| |
Collapse
|
9
|
At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol Sci 2012; 33:331-40. [DOI: 10.1016/j.tips.2012.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 12/22/2022]
|
10
|
Abstract
Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and it is present in both brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases and contributes to the underlying pathologies. In patients with cirrhosis of various etiologies, the activation of vascular and cardiac CB(1) receptors by macrophage-derived and platelet-derived endocannabinoids contributes to the vasodilated state and cardiomyopathy, which can be reversed by CB(1) blockade. In mouse models of liver fibrosis, the activation of CB(1) receptors on hepatic stellate cells is fibrogenic, and CB(1) blockade slows the progression of fibrosis. Fatty liver induced by a high-fat diet or chronic alcohol feeding depends on the activation of peripheral receptors, including hepatic CB(1) receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB(1) blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB(1) antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | - George Kunos
- corresponding author, NIAAA/NIH, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892–9413, USA.
| |
Collapse
|
11
|
Blanco-Rivero J, Márquez-Rodas I, Sastre E, Cogolludo A, Pérez-Vizcaíno F, del Campo L, Nava MP, Balfagón G. Cirrhosis decreases vasoconstrictor response to electrical field stimulation in rat mesenteric artery: role of calcitonin gene-related peptide. Exp Physiol 2010; 96:275-86. [PMID: 21148625 DOI: 10.1113/expphysiol.2010.055822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our study determines alterations in the vasoconstrictor response elicited by electric field stimulation (EFS) in mesenteric arteries from cirrhotic rats treated with CCl(4), and how calcitonin gene-related peptide (CGRP) participates in this response. Vasoconstriction induced by EFS was analysed in the absence and presence of the CGRP receptor antagonist CGRP(8-37) in arterial segments from control and cirrhotic rats. The vasodilator response to exogenous CGRP was tested in both groups of rats, and the interference of the guanylate cyclase inhibitor ODQ or the K(ATP) channel blocker glibenclamide was analysed only in segments from cirrhotic rats. The vasodilator response to the K(ATP) channel opener pinacidil and to 8-bromo-cyclic GMP was tested. The K(ATP) currents were recorded using the patch-clamp technique. Expression of receptor activity-modifying protein 1 (RAMP1), calcitonin receptor-like receptor, Kir 6.1 and sulfonylurea receptor 2B (SUR2B) was also analysed. Release of CGRP and cGMP was measured. The EFS-elicited vasoconstriction was less in segments from cirrhotic rats. The presence of CGRP(8-37) increased the EFS-induced response only in segments from cirrhotic rats. The CGRP-induced vasodilatation was greater in segments from cirrhotic rats, and was inhibited by ODQ or glibenclamide. Both pinacidil and 8-bromo-cyclic GMP induced a stronger vasodilator response in segments from cirrhotic rats. Pinacidil induced greater K(ATP) currents in cirrhotic myocytes. Expression of RAMP1, calcitonin receptor-like receptor, Kir 6.1 and SUR2B was not modified by liver cirrhosis. Liver cirrhosis increased CGRP release, but did not modify cGMP formation. The decreased vasoconstrictor response to EFS in cirrhosis is mediated by increased vasodilator response to CGRP, as well as increased K(ATP) channel gating. This effect of CGRP may play a role in the splanchnic vasodilatation present in liver cirrhosis.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
|
14
|
Rangaraju S, Chi V, Pennington MW, Chandy KG. Kv1.3 potassium channels as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2010; 13:909-24. [PMID: 19538097 DOI: 10.1517/14728220903018957] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We discuss the potential use of inhibitors of Kv1.3 potassium channels in T lymphocytes as therapeutics for multiple sclerosis. Current treatment strategies target the immune system in a non-selective manner. The resulting general immunosuppression, toxic side-effects and increased risk of opportunistic infections create the need for more selective therapeutics. Autoreactive effector-memory T (T(EM)) cells, considered to be major mediators of autoimmunity, express large numbers of Kv1.3 channels. Selective blockers of Kv1.3 inhibit calcium signaling, cytokine production and proliferation of T(EM) cells in vitro, and T(EM) cell-motility in vivo. Kv1.3 blockers ameliorate disease in animal models of multiple sclerosis, rheumatoid arthritis, type 1 diabetes mellitus and contact dermatitis without compromising the protective immune response to acute infections. Kv1.3 blockers have a good safety profile in rodents and primates.
Collapse
Affiliation(s)
- Srikant Rangaraju
- University of California, Department of Physiology and Biophysics, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
15
|
Moezi L, Gaskari SA, Lee SS. Endocannabinoids and liver disease. V. endocannabinoids as mediators of vascular and cardiac abnormalities in cirrhosis. Am J Physiol Gastrointest Liver Physiol 2008; 295:G649-53. [PMID: 18703639 DOI: 10.1152/ajpgi.90352.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cirrhosis is associated with marked cardiovascular disturbances. These include hyperdynamic circulation characterized by reduced peripheral vascular resistance and mean arterial pressure and increased cardiac output. Despite the baseline increase in cardiac output, ventricular responsiveness to stimuli is blunted. A number of cellular signaling pathways have been shown to contribute to these abnormalities, including central nervous system cardiovascular dysregulation and humoral factors such as nitric oxide. Endogenous and exogenous cannabinoids have significant cardiovascular effects. Recent evidence suggests that increased activity of the endocannabinoid system at multiple levels contributes to development of both cardiac and vascular changes in cirrhosis. This brief review surveys recent in vivo and in vitro findings in an attempt to highlight the areas of agreement and areas of controversy in the field. The endocannabinoid system affects key cardiovascular regulators, including the autonomic nervous system, cardiac muscle, and vascular smooth muscle. The interplay among these modes of action further complicates interpretation of the in vivo findings. The broad range of cardiovascular actions of endocannabinoids provides ample opportunities for pharmacological manipulation. At the same time, it increases the possibility of undesirable side effects, which need to be carefully evaluated in long-term studies.
Collapse
Affiliation(s)
- Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
16
|
Guo LY, Liu P. Research progress in the mechanism of renal vasoconstriction in hepatorenal syndrome. Shijie Huaren Xiaohua Zazhi 2008; 16:982-986. [DOI: 10.11569/wcjd.v16.i9.982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatorenal syndrome (HRS) is defined as the development of renal failure in patients with severe liver disease in the absence of any other identifiable cause of renal pathology. The hallmark of HRS is renal vasoconstriction. The cause of renal vasoconstriction may involve several factors: activation of renal nervous system, imbalance of renal vasoactive mediators and molecular mechanism. In this review, we summarize the above progress.
Collapse
|