1
|
Abou Daher A, Alkhansa S, Azar WS, Rafeh R, Ghadieh HE, Eid AA. Translational Aspects of the Mammalian Target of Rapamycin Complexes in Diabetic Nephropathy. Antioxid Redox Signal 2022; 37:802-819. [PMID: 34544257 DOI: 10.1089/ars.2021.0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite the many efforts put into understanding diabetic nephropathy (DN), direct treatments for DN have yet to be discovered. Understanding the mechanisms behind DN is an essential step in the development of novel therapeutic regimens. The mammalian target of rapamycin (mTOR) pathway has emerged as an important candidate in the quest for drug discovery because of its role in regulating growth, proliferation, as well as protein and lipid metabolism. Recent Advances: Kidney cells have been found to rely on basal autophagy for survival and for conserving kidney integrity. Recent studies have shown that diabetes induces renal autophagy deregulation, leading to kidney injury. Hyper-activation of the mTOR pathway and oxidative stress have been suggested to play a role in diabetes-induced autophagy imbalance. Critical Issues: A detailed understanding of the role of mTOR signaling in diabetes-associated complications is of major importance in the search for a cure. In this review, we provide evidence that mTOR is heavily implicated in diabetes-induced kidney injury. We suggest possible mechanisms through which mTOR exerts its negative effects by increasing insulin resistance, upregulating oxidative stress, and inhibiting autophagy. Future Directions: Both increased oxidative stress and autophagy deregulation are deeply embedded in DN. However, the mechanisms controlling oxidative stress and autophagy are not well understood. Although Akt/mTOR signaling seems to play an important role in oxidative stress and autophagy, further investigation is required to uncover the details of this signaling pathway. Antioxid. Redox Signal. 37, 802-819.
Collapse
Affiliation(s)
- Alaa Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - William S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,Department of Physiology and Biophysics, Georgetown University Medical School, Washington, District of Columbia, USA
| | - Rim Rafeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Hilda E Ghadieh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Song H, Zhuang L, Xu X, Shi J, Hu W, Liu Z, Shi S. MCC Regulator of WNT Signaling Pathway (MCC) Is a Podocyte Essential Gene. Front Med (Lausanne) 2021; 8:777563. [PMID: 34926519 PMCID: PMC8674659 DOI: 10.3389/fmed.2021.777563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier. Many genes are already known to be essential for podocyte survival, structure and function, but there are more podocyte essential genes to be identified. By single-cell RNA-seq of mouse podocytes, we detected the expression of gene encoding MCC regulator of WNT signaling pathway (MCC) in majority of the podocytes and speculated that MCC is essential for podocytes. We confirmed MCC expression in mouse podocytes and further showed its expression in human podocytes. To experimentally prove the essentiality of MCC for podocytes, we knocked down MCC in cultured podocytes and found marked morphological change of cell shape, cytoskeletal F-actin stress fiber disruption, increased apoptosis, and downregulation of podocyte essential genes, CD2AP and WT1, demonstrating that MCC is essential for podocytes. Since MCC has been implicated in cell cycle and β-catenin signaling, we examined the expression of cell cycle related genes and activity of β-catenin in the MCC knockdown podocytes, but did not find significant changes. To further explore the mechanism underlying the role of MCC in podocytes, we performed RNA-sequencing and bioinformatics analysis of MCC knockdown podocytes and found a significant enrichment of the regulated genes in lamellipodia formation. Consistently, we found that MCC is present in lamellipodia and MCC knockdown resulted in loss of lamellipodia in the cells. Lastly, we found that MCC was downregulated in podocytes treated with puromycin aminonucleosides and in glomeruli of diabetic mice and FSGS patients, implicating MCC is involved in the development of podocytopathy and proteinuria. In conclusion, MCC is potentially essential for podocytes and its downregulation may be involved in podocytopathy.
Collapse
Affiliation(s)
- Hui Song
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lulu Zhuang
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weixin Hu
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shaolin Shi
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Li K, Huang Z, Tian S, Chen Y, Yuan Y, Yuan J, Zou X, Zhou F. MicroRNA-877-5p alleviates ARDS via enhancing PI3K/Akt path by targeting CDKN1B both in vivo and in vitro. Int Immunopharmacol 2021; 95:107530. [PMID: 33735715 DOI: 10.1016/j.intimp.2021.107530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/19/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a public health problem with high morbidity and mortality worldwide due to lacking known characteristic biomarkers and timely intervention. Pulmonary edema caused by inflammation and pulmonary microvascular endothelial cell disfunction is the main pathophysiological change of ARDS. Circulating microRNAs (miRNAs) are differentially expressed between subjects who did and did not develop ARDS. Many miRNAs have been exemplified to be involved in ARDS and could represent the novel therapeutic targets, but the role of microRNA-877-5p (miR-877-5p) in ARDS and its regulatory mechanisms are still unknown. Herein, we explore the underlying function of miR-877-5p toward anesis of ARDS and addressed that miRNA-877 can reduce the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 thus attenuating the damage of pulmonary microvascular endothelial cells (HPMECs). Have further evaluated the protein expression, we detected that miR-877-5p contributed to the relief of ARDS by suppressing Cyclin-dependent kinase inhibitor 1B (CDKN1B), which serves as a regulator of endothelial cell polarization and migration through phosphatidylinositol-3-kinase and AKT (PI3K/Akt) signaling pathway. Besides, we noticed that CDKN1B restrains cell differentiation by inhibiting Cdk2 (cyclin-dependent kinase 2), instead of Cdk4 (cyclin-dependent kinase 4), during which the nuclear translocation of CDKN1B may participate. Together, our works testified that miR-877-5p might suppress inflammatory responses and promote HPMECs regeneration via targeting CDKN1B by modulation of Cdk2 and PI3K/Akt path. These molecules likely modulating ARDS progression may inform biomarkers and therapeutic development.
Collapse
Affiliation(s)
- Kaili Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Zuoting Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Shijing Tian
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Yi Chen
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Yuan Yuan
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Jianghan Yuan
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuan Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fachun Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
4
|
Das S, Neelamegam K, Peters WN, Periyasamy R, Pandey KN. Depletion of cyclic-GMP levels and inhibition of cGMP-dependent protein kinase activate p21 Cip1 /p27 Kip1 pathways and lead to renal fibrosis and dysfunction. FASEB J 2020; 34:11925-11943. [PMID: 32686172 PMCID: PMC7540536 DOI: 10.1096/fj.202000754r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Cell-cycle regulatory proteins (p21Cip1 /p27Kip1 ) inhibit cyclin and cyclin-dependent kinase (CDK) complex that promotes fibrosis and hypertrophy. The present study examined the role of CDK blockers, p21Cip1 /p27Kip1 in the progression of renal fibrosis and dysfunction using Npr1 (encoding guanylyl cyclase/natriuretic peptide receptor-A, GC-A/NPRA) gene-knockout (0-copy; Npr1-/- ), 2-copy (Npr1+/+ ), and 4-copy (Npr1++/++ ) mice treated with GC inhibitor, A71915 and cGMP-dependent protein kinase (cGK) inhibitor, (Rp-8-Br-cGMPS). A significant decrease in renal cGMP levels and cGK activity was observed in 0-copy mice and A71915- and Rp-treated 2-copy and 4-copy mice compared with controls. An increased phosphorylation of Erk1/2, p38, p21Cip1 , and p27Kip1 occurred in 0-copy and A71915-treated 2-copy and 4-copy mice, while Rp treatment caused minimal changes than controls. Pro-inflammatory (TNF-α, IL-6) and pro-fibrotic (TGF-β1) cytokines were significantly increased in plasma and kidneys of 0-copy and A71915-treated 2-copy mice, but to lesser extent in 4-copy mice. Progressive renal pathologies, including fibrosis, mesangial matrix expansion, and tubular hypertrophy were observed in 0-copy and A71915-treated 2-copy and 4-copy mice, but minimally occurred in Rp-treated mice compared with controls. These results indicate that Npr1 has pivotal roles in inhibiting renal fibrosis and hypertrophy and exerts protective effects involving cGMP/cGK axis by repressing CDK blockers p21Cip1 and p27Kip1 .
Collapse
Affiliation(s)
- Subhankar Das
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Kandasamy Neelamegam
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Whitney N Peters
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Ramu Periyasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| |
Collapse
|
5
|
Kataoka H, Ohara M, Suzuki T, Inoue T, Akanuma T, Kawachi K, Manabe S, Ushio Y, Kawasoe K, Akihisa T, Sato M, Iwasa N, Sawara Y, Honda K, Mochizuki T, Tsuchiya K, Nitta K. Time series changes in pseudo-R2 values regarding maximum glomerular diameter and the Oxford MEST-C score in patients with IgA nephropathy: A long-term follow-up study. PLoS One 2020; 15:e0232885. [PMID: 32379841 PMCID: PMC7205238 DOI: 10.1371/journal.pone.0232885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
There is no effectual pathological factor to predict the long-term renal prognosis of IgA nephropathy. Glomerular hypertrophy plays a crucial role in kidney disease outcomes in both experimental models and humans. This study aimed to 1) confirm the long-term prognostic significance of a maximal glomerular diameter (Max GD) ≥ 242.3 μm, 2) test a renal prognosis prediction model adding Max GD ≥ 242.3 μm to the Oxford classification (MEST-C), and 3) examine the time series changes in the long-term renal prognosis of patients with IgA nephropathy. The study included 43 patients diagnosed with IgA nephropathy from 1993 to 1998 at Kameda General Hospital. Renal prognosis with the endpoint of a 50% reduction in estimated glomerular filtration rate (eGFR) or the development of end-stage renal disease requiring dialysis was examined using logistic regression analysis, Cox regression analysis, and the Kaplan-Meier method. Pathological evaluation was performed using MEST-C and Max GD, and the validity of the prediction model was evaluated. Patients with Max GD ≥ 242.3 μm had significantly poor renal prognosis with multivariate Cox analysis (P = 0.0293). The results of the Kaplan-Meier analysis showed that kidney survival rates in the high-Max GD group were significantly lower than those in the low-Max GD group (log rank, P = 0.0043), which was confirmed in propensity score-matched models (log rank, P = 0.0426). Adding Max GD ≥ 242.3 μm to MEST-C improved diagnostic power of the renal prognosis prediction model by renal pathology tissue examination (R2: 3.3 to 14.5%, AICc: 71.8 to 68.0, C statistic: 0.657 to 0.772). We confirm that glomerular hypertrophy is useful as a long-term renal prognostic factor.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail: (TM); (HK)
| | - Mamiko Ohara
- Department of Nephrology, Kameda Medical Center, Chiba, Japan
| | - Tomo Suzuki
- Department of Nephrology, Kameda Medical Center, Chiba, Japan
| | - Takahiro Inoue
- Department of Nephrology, Kameda Medical Center, Chiba, Japan
| | | | - Keiko Kawachi
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yusuke Ushio
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kentaro Kawasoe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Taro Akihisa
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masayo Sato
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Naomi Iwasa
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yukako Sawara
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University, Tokyo, Japan
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail: (TM); (HK)
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Loeffler I, Liebisch M, Daniel C, Amann K, Wolf G. Heterozygosity of mitogen-activated protein kinase organizer 1 ameliorates diabetic nephropathy and suppresses epithelial-to-mesenchymal transition-like changes in db/db mice. Nephrol Dial Transplant 2018; 32:2017-2034. [PMID: 28992060 DOI: 10.1093/ndt/gfx202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022] Open
Abstract
Background Progressive diabetic nephropathy (DN) is characterized by tubulointerstitial fibrosis that is caused by accumulation of extracellular matrix. Induced by several factors, matrix-producing myofibroblasts may to some extent originate from tubular cells by epithelial-to-mesenchymal transition (EMT). Although previous data document that activation of hypoxia-inducible factor (HIF) signalling can be renoprotective in acute kidney disease, this issue remains controversial in chronic kidney injury. Here, we studied whether DN and EMT-like changes are ameliorated in a mouse model of type 2 diabetes mellitus with increased stability and activity of the HIF. Methods We used db/db mice that were crossed with transgenic mice expressing reduced levels of mitogen-activated protein kinase organizer 1 (MORG1), a scaffold protein interacting with prolyl hydroxylase domain 3 (PHD3), because of deletion of one MORG1 allele. Results We found significantly reduced nephropathy in diabetic MORG1+/- heterozygous mice compared with the diabetic wild-types (db/dbXMORG1+/+). Furthermore, we demonstrated that EMT-like changes in the tubulointerstitium of diabetic wild-type MORG1+/+ mice are present, whereas diabetic mice with reduced expression of MORG1 showed significantly fewer EMT-like changes. Conclusions These findings reveal that a deletion of one MORG1 allele inhibits the development of DN in db/db mice. The data suggest that the diminished interstitial fibrosis in these mice is a likely consequence of suppressed EMT-like changes.
Collapse
Affiliation(s)
- Ivonne Loeffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Marita Liebisch
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| |
Collapse
|
7
|
Sheu ML, Shen CC, Jheng JR, Chiang CK. Activation of PI3K in response to high glucose leads to regulation of SOCS-3 and STAT1/3 signals and induction of glomerular mesangial extracellular matrix formation. Oncotarget 2017; 8:16925-16938. [PMID: 28129651 PMCID: PMC5370011 DOI: 10.18632/oncotarget.14808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 01/27/2023] Open
Abstract
Excessive deposition of extracellular matrix (ECM) in the glomerulus contributed by mesangial cells is the hallmark of diabetic nephropathy, eventually leading to glomerulosclerosis. In this study, we examined the regulatory signals involved in the high glucose (HG)-induced overproduction of ECM in rat mesangial cells (RMCs). We disclosed excessive fibronectin and collagen IV production, tyrosine phosphorylation of signal transducer and activator of transcription 1 and 3 (STAT1/3), and up-regulation of suppressor of cytokine signaling-3 (SOCS-3) expression in HG-treated RMCs. STAT1/STAT3 binding element was essential for SOCS-3 promoter activity stimulated by HG. HG was capable of promoting the specific DNA binding activities to an oligonucleotide probe containing the SOCS-3 sequence. The selective phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and dominant negative p85 vector (DNΔp85) transfection effectively abolished these HG-induced responses. Moreover, HG markedly increased the cyclin kinase inhibitor p27Kip1 protein expression, which could be inhibited by LY294002 or transfection of DNΔp85. Taken together, these results suggest that HG-induced SOCS-3 upregulation depends upon the presence of STAT-binding element in the SOCS-3 promoter, which is specifically activated by STAT1/3. The PI3K/STAT1/3 signaling pathway mediated HG-triggered ECM accumulation and SOCS-3 upregulation in RMCs.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chin-Chang Shen
- Chemical Engineering Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Jia-Rong Jheng
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur J Pharmacol 2016; 791:8-24. [PMID: 27568833 DOI: 10.1016/j.ejphar.2016.08.022] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN), a chronic complication of diabetes, is charecterized by glomerular hypertrophy, proteinuria, decreased glomerular filtration, and renal fibrosis resulting in the loss of renal function. Although the exact cause of DN remains unclear, several mechanisms have been postulated, such as hyperglycemia-induced renal hyper filtration and renal injury, AGEs-induced increased oxidative stress, activated PKC-induced increased production of cytokines, chemokines, and different inflammatory and apoptotic signals. Among various factors, oxidative stress has been suggested to play a major role underlying the onset and propagation of DN. It triggers several signaling pathways involved in DN, like AGEs, PKC cascade, JAK/STAT signaling, MAPK, mTOR, and SMAD. Oxidative stress-induced activation of both inflammatory and apoptotic signals are two major problems in the pathogenesis of DN. The FDA approved pharmacotherapeutic agents affecting against polyol pathway principally include anti-oxidants, like α-lipoic acid, vitamin E, and vitamin C. Kremezin and benfotiamine are the FDA approved AGEs inhibitors, another therapeutic target against DN. Ruboxistaurin, telmizartan, rapamycin, fenofibrate, aliskiren, and manidipine are some FDA approved pharmacotherapeutics effective against DN via diverse mechanisms. Beside this, some therapeutic agents are still waiting for FDA approval and few drugs without FDA approval are also prescribed in some countries for the management of DN. Despite the medications available in the market to treat DN, the involvement of multiple mechanisms makes it difficult to choose an optimum therapeutic agent. Therefore, much research is required to find out new therapeutic agent/strategies for an adequate pharmacotherapy of DN.
Collapse
Affiliation(s)
- Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Sujata Barma
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Nandita Konwar
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India.
| |
Collapse
|
9
|
Zhu K, Kakehi T, Matsumoto M, Iwata K, Ibi M, Ohshima Y, Zhang J, Liu J, Wen X, Taye A, Fan C, Katsuyama M, Sharma K, Yabe-Nishimura C. NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney. Free Radic Biol Med 2015; 83:21-30. [PMID: 25701431 DOI: 10.1016/j.freeradbiomed.2015.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
Abstract
Increased oxidative stress and activation of protein kinase C (PKC) under hyperglycemia have been implicated in the development of diabetic nephropathy. Because reactive oxygen species derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, NOX1 accelerate the translocation of PKC isoforms, NOX1 is postulated to play a causative role in the development of diabetic nephropathy. Hyperglycemia was induced in wild-type and Nox1-deficient mice (KO) by two doses of streptozotocin injection. At 3 weeks after the induction of hyperglycemia, glomeruli and cortical tubules were isolated from kidneys. The mRNA level of Nox1 was significantly upregulated in the renal cortex at 3 weeks of hyperglycemia. Urinary albumin and expression of inflammatory or fibrotic mediators were similarly elevated in diabetic wild-type and KO; however, increases in glomerular volume and mesangial matrix area were attenuated in diabetic KO. Nox1 deficiency significantly reduced the levels of renal thiobarbituric acid-reacting substances and 8-hydroxydeoxyguanosine, membranous translocation of PKCα/β, activity of PKC, and phosphorylation of p38 mitogen-activated protein kinase in the diabetic kidney. Furthermore, increased staining of senescence-associated β-galactosidase in glomeruli and cortical tubules of diabetic mice was significantly suppressed in KO. Whereas the levels of cyclin-dependent kinase inhibitors, p16(INK4A) and p21(Cip1), were equivalent between the genotypes, increased levels of p27(Kip1) and γ-H2AX, a biomarker for DNA double-strand breaks, were significantly attenuated in isolated glomeruli and cortical tubules of diabetic KO. Taken together, NOX1 modulates the p38/p27(Kip1) signaling pathway by activating PKC and promotes premature senescence in early stage diabetic nephropathy.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomoko Kakehi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masakazu Ibi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoichi Ohshima
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jia Zhang
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Junjie Liu
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Xiaopeng Wen
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ashraf Taye
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Chunyuan Fan
- Dujiangyan City Medical Center, Dujiangyan Chengdu, 611830 Sichuan, China
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California at San Diego and VA San Diego Healthcare System, La Jolla, CA 92093, USA
| | - Chihiro Yabe-Nishimura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| |
Collapse
|
10
|
Neal CR. Podocytes … What's Under Yours? (Podocytes and Foot Processes and How They Change in Nephropathy). Front Endocrinol (Lausanne) 2015; 6:9. [PMID: 25755650 PMCID: PMC4337384 DOI: 10.3389/fendo.2015.00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022] Open
Abstract
Most of the described structures of podocytes in health and disease have been inferred from light and electron microscopic studies of rodent models. The variation in filtration barrier features is measured on micrographs, the aim being statistical significance. This is the technical campaign waged against kidney disease but this approach can be misleading. The signaling cascades and connectivity of the podocyte and foot processes (FPs) are inferred from in vitro studies that at best blurr the reality of the in vivo state. This review will outline actin signaling connectivity and the key differences in the structural and functional domains squeezed into the FPs and the relationship of these domains to other parts of the podocyte. It covers the changes in podocytes during nephropathy concentrating on FP and finally proposes an alternative interpretation of FP ultrastructure derived from articles published over the last 60 years.
Collapse
Affiliation(s)
- Chris R. Neal
- Bristol Renal, University of Bristol, Bristol, UK
- *Correspondence: Chris R. Neal, Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK e-mail:
| |
Collapse
|
11
|
Lohmann F, Sachs M, Meyer TN, Sievert H, Lindenmeyer MT, Wiech T, Cohen CD, Balabanov S, Stahl RAK, Meyer-Schwesinger C. UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:945-58. [PMID: 24583340 DOI: 10.1016/j.bbadis.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 11/18/2022]
Abstract
Podocytes are terminally differentiated cells of the glomerular filtration barrier that react with hypertrophy in the course of injury such as in membranous nephropathy (MGN). The neuronal deubiquitinase ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed and activated in podocytes of human and rodent MGN. UCH-L1 regulates the mono-ubiquitin pool and induces accumulation of poly-ubiquitinated proteins in affected podocytes. Here, we investigated the role of UCH-L1 in podocyte hypertrophy and in the homeostasis of the hypertrophy associated "model protein" p27(Kip1). A better understanding of the basic mechanisms leading to podocyte hypertrophy is crucial for the development of specific therapies in MGN. In human and rat MGN, hypertrophic podocytes exhibited a simultaneous up-regulation of UCH-L1 and of cytoplasmic p27(Kip1) content. Functionally, inhibition of UCH-L1 activity and knockdown or inhibition of UCH-L1 attenuated podocyte hypertrophy by decreasing the total protein content in isolated glomeruli and in cultured podocytes. In contrast, UCH-L1 levels and activity increased podocyte hypertrophy and total protein content in culture, specifically of cytoplasmic p27(Kip1). UCH-L1 enhanced cytoplasmic p27(Kip1) levels by nuclear export and decreased poly-ubiquitination and proteasomal degradation of p27(Kip1). In parallel, UCH-L1 increased podocyte turnover, migration and cytoskeletal rearrangement, which are associated with known oncogenic functions of cytoplasmic p27(Kip1) in cancer. We propose that UCH-L1 induces podocyte hypertrophy in MGN by increasing the total protein content through altered degradation and accumulation of proteins such as p27(Kip1) in the cytoplasm of podocytes. Modification of both UCH-L1 activity and levels could be a new therapeutic avenue to podocyte hypertrophy in MGN.
Collapse
Affiliation(s)
- Frithjof Lohmann
- Department of Internal Medicine, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Department of Internal Medicine, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias N Meyer
- Department of Internal Medicine, Nephrology, Asklepios Klinikum Barmbek, Hamburg, Germany
| | - Henning Sievert
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- Institute of Physiology and Division of Nephrology, University of Zurich, Switzerland
| | - Thorsten Wiech
- Department of Pathology, Division of Renal Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Institute of Physiology and Division of Nephrology, University of Zurich, Switzerland
| | | | - R A K Stahl
- Department of Internal Medicine, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
12
|
Abstract
Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a "tubulocentric" concept of early diabetic kidney function. The latter also explains the "salt paradox" of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin-angiotensin system and of diabetes-induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VA San Diego Healthcare System, San Diego, California, USA.
| | | |
Collapse
|
13
|
Loeffler I, Rüster C, Franke S, Liebisch M, Wolf G. Erythropoietin ameliorates podocyte injury in advanced diabetic nephropathy in the db/db mouse. Am J Physiol Renal Physiol 2013; 305:F911-8. [DOI: 10.1152/ajprenal.00643.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Podocyte damage and accumulation of advanced glycation end products (AGEs) are characteristics of diabetic nephropathy (DN). The pathophysiology of AGE-challenged podocytes, such as hypertrophy, apoptosis, and reduced cell migration, is closely related to the induction of the cell cycle inhibitor p27Kip1 and to the inhibition of neuropilin 1 (NRP1). We have previously demonstrated that treatment with erythropoietin is associated with protective effects for podocytes in vitro. db/ db mice with overt DN aged 15–16 wk were treated with either placebo, epoetin-β, or continuous erythropoietin receptor activator (CERA) for 2 wk. db/ db mice compared with nondiabetic db/ m control mice revealed the expected increases in body weight, blood glucose, albumin-to-creatinine ratio, and AGE accumulation. Whereas there were no differences in body weight, hyperglycemia and AGEs were observed among diabetic mice that received epoetin-β compared with CERA and placebo treatment, indicating that epoetin-β/CERA treatment does not interfere with the development of diabetes in this model. However, the albumin-to-creatinine ratio was significantly lower in db/ db mice treated with epoetin-β or CERA. Furthermore, kidney weights in db/ db mice were increased compared with db/ m control mice, indicating renal hypertrophy, whereas the increase in renal weight in epoetin-β- or CERA-treated db/ db mice was significantly lower than in placebo-treated control mice. Induction of p27Kip1 and suppression of NRP1 were significantly reduced in the epoetin-β treatment group versus the CERA treatment group. Furthermore, erythropoietin treatment diminished the diabetes-induced podocyte loss. Together, independently from hematopoetic effects, epoetin-β or CERA treatment was associated with protective changes in DN, especially that NRP1 and p27Kip1 expressions as well as numbers of podocytes returned to normal levels. Our data show, for the first time, that medication of overt DN with erythropoietin for a short time can ameliorate albuminuria and podocyte loss.
Collapse
Affiliation(s)
- Ivonne Loeffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Christiane Rüster
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Sybille Franke
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Marita Liebisch
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| |
Collapse
|
14
|
The influence of high glucose on the Cip/Kip family expression profiles in HRECs. J Mol Histol 2013; 44:705-13. [PMID: 23636608 DOI: 10.1007/s10735-013-9510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Neovascularization is the main characteristic of the proliferative stage of diabetic retinopathy. It has been proven that cell cycle regulation is involved in angiogenesis. The cell cycle regulators, Cip/Kip protein family, belong to the cyclin-dependent kinase inhibitors, are versatile proteins, and except for their function in cell cycle regulation, they also participate in transcription, apoptosis and migration. The expression profiles of the Cip/Kip family in human retina microvascular endothelial cells (HRECs) under normal or high glucose conditions has not been described before. This study was undertaken to determine the expression profiles of the Cip/Kip family proteins, e.g., proteins which are influenced by high glucose and in what manner. Western blot and immunofluorescence analyses were used to investigate the protein expression profiles. Only p21(cip1) and p27(kip1) were detected in HRECs, and they were located in the nucleus. P21(cip1) protein abundance was higher than p27(kip1) in HRECs. Incubation of HRECs in medium containing 30 mM D-glucose for 48 h resulted in downregulation of p21(cip1) protein expression, but had no influence on p27(kip1) protein levels or p21(cip1) mRNA abundance. These results were accompanied by cell cycle G1 phase exit and a lower cell survival rate. Our data show for the first time that high glucose changes the Cip/Kip family expression profiles in HRECs, which may be the foundation for the investigation of the role of the Cip/Kip family in the pathogenesis of diabetic retinopathy.
Collapse
|
15
|
Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol 2013; 58:259-71. [PMID: 23313806 DOI: 10.1016/j.vph.2013.01.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is known to trigger retinopathy, neuropathy and nephropathy. Diabetic nephropathy, a long-term major microvascular complication of uncontrolled hyperglycemia, affects a large population worldwide. Recent findings suggest that numerous pathways are activated during the course of diabetes mellitus and that these pathways individually or collectively play a role in the induction and progression of diabetic nephropathy. However, clinical strategies targeting these pathways to manage diabetic nephropathy remain unsatisfactory, as the number of diabetic patients with nephropathy is increasing yearly. To develop ground-breaking therapeutic options to prevent the development and progression of diabetic nephropathy, a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of the disease is mandatory. Therefore, the purpose of this paper is to discuss the underlying mechanisms and downstream pathways involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Mandeep Kumar Arora
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut 250005, Uttar Pradesh, India.
| | | |
Collapse
|
16
|
Romero M, Ortega A, Olea N, Arenas MI, Izquierdo A, Bover J, Esbrit P, Bosch RJ. Novel role of parathyroid hormone-related protein in the pathophysiology of the diabetic kidney: evidence from experimental and human diabetic nephropathy. J Diabetes Res 2013; 2013:162846. [PMID: 23984429 PMCID: PMC3747478 DOI: 10.1155/2013/162846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/04/2013] [Indexed: 11/17/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and its receptor type 1 (PTH1R) are extensively expressed in the kidney, where they are able to modulate renal function. Renal PTHrP is known to be overexpressed in acute renal injury. Recently, we hypothesized that PTHrP involvement in the mechanisms of renal injury might not be limited to conditions with predominant damage of the renal tubulointerstitium and might be extended to glomerular diseases, such as diabetic nephropathy (DN). In experimental DN, the overexpression of both PTHrP and the PTH1R contributes to the development of renal hypertrophy as well as proteinuria. More recent data have shown, for the first time, that PTHrP is upregulated in the kidney from patients with DN. Collectively, animal and human studies have shown that PTHrP acts as an important mediator of diabetic renal cell hypertrophy by a mechanism which involves the modulation of cell cycle regulatory proteins and TGF- β 1. Furthermore, angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be responsible for PTHrP upregulation in these conditions. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.
Collapse
Affiliation(s)
- Montserrat Romero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Arantxa Ortega
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Nuria Olea
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Isabel Arenas
- Department of Biomedicine and Biotechnology/Cell Biology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Adriana Izquierdo
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jordi Bover
- Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Ricardo J. Bosch
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Department of Biomedicine and Biotechnology/Cell Biology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- *Ricardo J. Bosch:
| |
Collapse
|
17
|
Suzuki S, Ohashi N, Kitagawa M. Roles of the Skp2/p27 axis in the progression of chronic nephropathy. Cell Mol Life Sci 2012; 70:3277-87. [PMID: 23255047 PMCID: PMC3753466 DOI: 10.1007/s00018-012-1232-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/14/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
S-phase kinase-associated protein 2 (Skp2) is an F-box protein component of the Skp/Cullin/F-box-type E3 ubiquitin ligase that targets several cell cycle regulatory proteins for degradation through the ubiquitin-dependent pathway. Skp2-mediated degradation of p27, a cyclin-dependent kinase inhibitor, is involved in cell cycle regulation. Tubular epithelial cell proliferation is a characteristic feature of renal damage that is apparent in the early stages of nephropathy. The p27 level is associated with the progression of renal injury, and increased Skp2 expression in progressive nephropathy is implicated in decreases of p27 expression. In Skp2−/− mice, renal damage caused by unilateral ureteral obstruction (UUO) was ameliorated by p27 accumulation, mainly in tubular epithelial cells. However, the amelioration of UUO-induced renal injury in Skp2−/− mice was prevented by p27 deficiency in Skp2−/−/p27−/− mice. These results suggest that the Skp2-mediated reduction in p27 is a pathogenic activity that occurs during the progression of nephropathy. Here, we discuss the roles of the Skp2/p27 axis and/or related signaling pathways/components in the progression of chronic nephropathy.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | | | | |
Collapse
|
18
|
PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr Opin Nephrol Hypertens 2012; 21:97-105. [PMID: 22143250 DOI: 10.1097/mnh.0b013e32834de526] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor that regulates many important physiological processes including glucose and lipid metabolism, energy homeostasis, cell proliferation, inflammation, immunity and reproduction. The current review aims to summarize and discuss recent findings evaluating the protective effects of PPARγ against kidney diseases with a focus on diabetic nephropathy. We will also delineate the potential underlying mechanisms. RECENT FINDINGS PPARγ plays important roles in renal physiology and pathophysiology. Agonists of PPARγ exert protective effects against various kidney diseases including diabetic nephropathy, ischemic renal injury, IgA nephropathy, chemotherapy-associated kidney damage, polycystic kidney diseases and age-related kidney diseases via both systemic and renal actions. SUMMARY PPARγ agonists are effective in delaying and even preventing the progression of many renal diseases, especially diabetic nephropathy. PPARγ may represent a promising target for the treatment of renal diseases.
Collapse
|
19
|
Nakatsuka A, Wada J, Hida K, Hida A, Eguchi J, Teshigawara S, Murakami K, Kanzaki M, Inoue K, Terami T, Katayama A, Ogawa D, Kagechika H, Makino H. RXR antagonism induces G0 /G1 cell cycle arrest and ameliorates obesity by up-regulating the p53-p21(Cip1) pathway in adipocytes. J Pathol 2012; 226:784-95. [PMID: 21956786 DOI: 10.1002/path.3001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/26/2011] [Accepted: 09/21/2011] [Indexed: 12/15/2022]
Abstract
The peroxisome proliferator activated receptor-γ (PPARγ) agonist, pioglitazone (PIO), exerts anti-diabetic properties associated with increased fat mass, whereas the retinoid X receptor (RXR) antagonist HX531 demonstrates anti-obesity and anti-diabetic effects with reduced body weight and fat pad mass. The cell cycle abnormality in adipocytes has not been well-investigated in obesity or during treatment with modulators of nuclear receptors. We therefore investigated cell size and cell cycle distributions of adipocytes in vivo and examined the expression of cell cycle regulators in cultured human visceral preadipocytes. The cell size distribution and cell cycle analyses of in vivo adipocytes derived from OLETF rats demonstrated that HX531 brought about G0/G1 cell cycle arrest associated with the inhibition of cellular hypertrophy, which resulted in the reduction of fat pad mass. In contrast, PIO promoted proliferation activities associated with the increase in M + late M:G0 + G1 ratio and the appearance of both small and hypertrophied adipocytes. In cultured human visceral preadipocytes HX531 up-regulated cell cycle regulators, p53, p21(Cip1), cyclin D1, Fbxw7 and Skp2, which are known contributors towards G0 /G1 cell cycle arrest. The knockdown of p53 with a shRNA lentivirus reversed the HX531-induced up-regulation of p21(Cip1), which is one of the major p53-effector molecules. We conclude that HX531 exerts anti-obesity and anti-diabetes properties by up-regulating the p53-p21(Cip1) pathway, resulting in G0/G1 cell cycle arrest and the inhibition of cellular hypertrophy of adipocytes.
Collapse
Affiliation(s)
- Atsuko Nakatsuka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ortega A, Romero M, Izquierdo A, Troyano N, Arce Y, Ardura JA, Arenas MI, Bover J, Esbrit P, Bosch RJ. Parathyroid hormone-related protein is a hypertrophy factor for human mesangial cells: Implications for diabetic nephropathy. J Cell Physiol 2012; 227:1980-7. [DOI: 10.1002/jcp.22926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Jung DS, Lee SH, Kwak SJ, Li JJ, Kim DH, Nam BY, Kang HY, Chang TI, Park JT, Han SH, Yoo TH, Kang SW. Apoptosis occurs differentially according to glomerular size in diabetic kidney disease. Nephrol Dial Transplant 2011; 27:259-66. [DOI: 10.1093/ndt/gfr301] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Xue Y, Tie CR, Li J, Tian T, Li QX. Ligustrazine inhibits lipopolysaccharide-induced proliferation by affecting P27, Bcl-2 expression in rat mesangial cells. Eur J Pharmacol 2011; 665:8-12. [PMID: 21586279 DOI: 10.1016/j.ejphar.2011.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 11/26/2022]
Abstract
Ligustrazine has a renoprotective effect against nephritis. In the present study, we investigated the roles of ligustrazine on lipopolysaccharide-induced changes of proliferation, cell cycle in cultured rat mesangial cells. 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that rat mesangial cells treated with lipopolysaccharide (10mg/l) underwent significant proliferation compared with control group. This effect was significantly inhibited by ligustrazine (400 to 2500 mg/l). Flow cytometric analysis revealed that cells treated with lipopolysaccharide showed significant reduction in the ratio of G0/G1 phase and significant elevation in the ratio of S+G2/M phase. The changes of cell cycle induced by lipopolysaccharide were reversed by ligustrazine. In addition, lipopolysaccharide suppressed P27 protein expression was significantly increased by ligustrazine (100, 500, 2500 mg/l). Moreover, rat mesangial cells treated with lipopolysaccharide showed scanty apoptosis with up-regulation of Bcl-2expression, while Bax protein expression was not changed. Ligustrazine (100, 500, 2500 mg/l) significantly reversed lipopolysaccharide-induced up-regulation of Bcl-2 protein and increased apoptotic cell death. In summary, ligustrazine displayed a significant inhibiting effect on lipopolysaccharide-induced proliferation through increasing P27 and decreasing Bcl-2 protein expression in rat mesangial cells.
Collapse
Affiliation(s)
- Ying Xue
- Department of Otorhinolaryngology, Zhongnan Hospital, Wuhan University, China
| | | | | | | | | |
Collapse
|
23
|
Lopes de Faria JB, Silva KC, Lopes de Faria JM. The contribution of hypertension to diabetic nephropathy and retinopathy: the role of inflammation and oxidative stress. Hypertens Res 2011; 34:413-22. [PMID: 21228783 DOI: 10.1038/hr.2010.263] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes and hypertension frequently coexist and constitute the most notorious combination for the pathogenesis of diabetic nephropathy and retinopathy. Large clinical trials have clearly demonstrated that tight control of glycemia and/or blood pressure significantly reduces the incidence and progression of diabetic retinopathy (DR) and nephropathy. However, the mechanism by which hypertension interacts with diabetes to induce and/or exacerbate nephropathy and retinopathy is very unclear. Substantial evidence implicates the involvement of chronic inflammation and oxidative stress in the pathogenesis of DR and nephropathy. In addition, hypertension causes oxidative stress and inflammation in the kidney and retina. In the present review, we summarized data obtained from our research along with those from other groups to better understand the role of hypertension in the pathogenesis of diabetic nephropathy and retinopathy. It is suggested that oxidative stress and inflammation may be common denominators of kidney and retinal damage in the concomitant presence of diabetes and hypertension.
Collapse
Affiliation(s)
- José Butori Lopes de Faria
- Department of Internal Medicine, Renal Pathophysiology Laboratory, Investigation in Diabetes Complications, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil.
| | | | | |
Collapse
|
24
|
Li Z, Zhang H, Dong X, Burczynski FJ, Choy P, Yang F, Liu H, Li P, Gong Y. Proteomic profile of primary isolated rat mesangial cells in high-glucose culture condition and decreased expression of PSMA6 in renal cortex of diabetic rats. Biochem Cell Biol 2010; 88:635-48. [PMID: 20651835 DOI: 10.1139/o09-185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most important complications of diabetic patients and is characterized histologically by an accumulation of extracellular matrix (ECM) protein in the glomerular mesangium. Therefore, mesangial cells likely play an important role in the development of diabetic nephropathy. Here, we employed proteomic techniques to investigate the protein profile of rat mesangial cells under high-glucose culture conditions. Primary isolated rat glomerular mesangial cells were cultured under different concentrations of glucose (5.4 mmol.L-1 for normal control and 30 mmol.L-1 for high glucose) for 0, 8, 16, and 72 h, as well as for 25 days. Cellular total proteins were isolated from these cells and employed for two-dimensional gel electrophoresis (2-DE). Differentially expressed proteins were identified by matrix-assisted laser desorption - ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and some of these proteins were documented in rat models of diabetes by Western blot. Rat mesangial cells were successfully isolated in the laboratory and their proliferation rates were significantly inhibited by high glucose. Two-dimensional gel electrophoresis analyses revealed 28 differentially expressed protein spots between the normal and high-glucose groups. After MALDI-TOF-MS analysis, all 28 protein spots were successfully identified with the peptide mass fingerprint (PMF) method. Representatively, SOD1, PCBP1 and PSMA6 were validated by Western blot analysis following protein extractions from the normal and high-glucose groups. Abundance of these proteins was consistent with that found in 2-DE. Moreover, expression of SOD1, PCBP1, and PSMA6 in renal cortex was further examined in two rat models of diabetes (streptozotocin-induced and spontaneous OLETF diabetic models). Abundance of SOD1 and PCBP1 proteins did not show any significant difference between normal control and diabetic rats. However, abundance of the PSMA6 protein was significantly reduced in the renal cortex of both STZ-induced and spontaneous OLETF diabetic rats. Proteomic analysis identified 28 differentially expressed proteins in primary isolated rat mesangial cells between normal and high glucose treatments. Expression of one identified protein was found to be consistent with expression in the renal cortex of two rat diabetic models. Therefore, identification of protein expression patterns in mesangial cells can be employed to develop a therapeutic target for treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhiguo Li
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Romero M, Ortega A, Izquierdo A, López-Luna P, Bosch RJ. Parathyroid hormone-related protein induces hypertrophy in podocytes via TGF-beta(1) and p27(Kip1): implications for diabetic nephropathy. Nephrol Dial Transplant 2010; 25:2447-57. [PMID: 20200004 DOI: 10.1093/ndt/gfq104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hypertrophy of podocytes is characteristic in diabetic nephropathy (DN). Previously, we observed the upregulation of parathyroid hormone-related protein (PTHrP) and its receptor PTH1R, in experimental DN, associated with renal hypertrophy. Herein, we test the hypothesis that PTHrP participates in the mechanism of high glucose (HG)-induced podocyte hypertrophy. METHODS On mouse podocytes, hypertrophy was assessed by protein content/cell and [H(3)]leucine incorporation. Podocytes were stimulated with HG (25 mM), PTHrP(1-36) (100 nM), angiotensin II (AngII) (100 nM) or TGF-beta(1) (5 ng/mL) in the presence or absence of PTHrP-neutralizing antibodies (alpha-PTHrP), the PTH1R antagonist JB4250 (10 microM), PTHrP silencer RNA (siRNA) or TGF-beta(1) siRNA. Protein expression was analysed by western blot and immunohistochemistry. RESULTS HG-induced hypertrophy was abolished in the presence of either alpha-PTHrP or PTHrP siRNA. This effect was associated with an inhibition of the upregulation of TGF-beta(1) and p27(Kip1). JB4250 also inhibited HG-induced p27(Kip1) upregulation. Interestingly, whilst HG and AngII were unable to stimulate the expression of p27(Kip1) on PTHrP siRNA-transfected podocytes, TGF-beta(1) was still able to upregulate p27(Kip1) in these cells. Moreover, HG and PTHrP-induced hypertrophy as well as p27(Kip1) upregulation were abolished on TGF-beta(1) siRNA-transfected podocytes. Furthermore, the glomeruli of transgenic PTHrP-overexpressing mice showed a constitutive overexpression of TGF-beta(1) and p27(Kip1) to a degree similar to that of diabetic animals. CONCLUSIONS PTHrP seems to participate in the hypertrophic signalling triggered by HG. In this condition, AngII induces the upregulation of PTHrP, which might induce the expression of TGF-beta(1) and p27(Kip1). These findings provide new insights into the protective effects of AngII antagonists in DN, opening new paths for intervention.
Collapse
Affiliation(s)
- Montserrat Romero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Physiology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Hopfer U, Hopfer H, Meyer-Schwesinger C, Loeffler I, Fukai N, Olsen BR, Stahl RAK, Wolf G. Lack of type VIII collagen in mice ameliorates diabetic nephropathy. Diabetes 2009; 58:1672-81. [PMID: 19401424 PMCID: PMC2699847 DOI: 10.2337/db08-0183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Key features of diabetic nephropathy include the accumulation of extracellular matrix proteins. In recent studies, increased expression of type VIII collagen in the glomeruli and tubulointerstitium of diabetic kidneys has been noted. The objectives of this study were to assess whether type VIII collagen affects the development of diabetic nephropathy and to determine type VIII collagen-dependent pathways in diabetic nephropathy in the mouse model of streptozotocin (STZ)-induced diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced by STZ injections in collagen VIII-deficient or wild-type mice. Functional and histological analyses were performed 40 days after induction of diabetes. Type VIII collagen expression was assessed by Northern blots, immunohistochemistry, and real-time PCR. Proliferation of primary mesangial cells was measured by thymidine incorporation and direct cell counting. Expression of phosphorylated extracellular signal-regulated kinase (ERK1/2) and p27(Kip1) was assessed by Western blots. Finally, Col8a1 was stably overexpressed in mesangial cells. RESULTS Diabetic wild-type mice showed a strong renal induction of type VIII collagen. Diabetic Col8a1(-)/Col8a2(-) animals revealed reduced mesangial expansion and cellularity and extracellular matrix expansion compared with the wild type. These were associated with less albuminuria. High-glucose medium as well as various cytokines induced Col8a1 in cultured mesangial cells. Col8a1(-)/Col8a2(-) mesangial cells revealed decreased proliferation, less phosphorylation of Erk1/2, and increased p27(Kip1) expression. Overexpression of Col8a1 in mesangial cells induced proliferation. CONCLUSIONS Lack of type VIII collagen confers renoprotection in diabetic nephropathy. One possible mechanism is that type VIII collagen permits and/or fosters mesangial cell proliferation in early diabetic nephropathy.
Collapse
Affiliation(s)
- Ulrike Hopfer
- Department of Medicine, University of Hamburg, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vasko R, Koziolek M, Ikehata M, Rastaldi MP, Jung K, Schmid H, Kretzler M, Müller GA, Strutz F. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts. Am J Physiol Renal Physiol 2009; 296:F1452-63. [PMID: 19279131 DOI: 10.1152/ajprenal.90352.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basic fibroblast growth factor (FGF-2) plays a role in renal fibrogenesis, although its potential implications for tubulointerstitial involvement in diabetic nephropathy are unknown. We evaluated the expression of FGF-2 in kidney biopsies from patients with diabetic nephropathy and studied the mechanisms of its induction in human renal fibroblasts under hyperglycemia. Tubulointerstitial expression of FGF-2 was significantly upregulated in diabetic nephropathy compared with control kidneys with a good correlation to the degree of the injury. Fibroblasts cultivated in high glucose displayed increased FGF-2 mRNA as well as protein synthesis and secretion compared with normal glucose. Proliferation rates under hyperglycemia were significantly higher and could be almost completely inhibited by addition of a neutralizing FGF-2 antibody. Alterations in proliferation were associated with changes in p27(kip1) expression. Hyperglycemia induced the expression of PKC-beta1 and PKC-beta2; however, only inhibition of PKC-beta1 but not PKC-beta2 led to a significant decrease of FGF-2 levels. Relevance of the culture findings and functional association was corroborated by colocalization of FGF-2 and PKC-beta in human diabetic kidneys in vivo. High glucose stimulated fibronectin synthesis and secretion, which could be substantially prevented by inhibition of PKC-beta1 and to a lesser extent by inhibiting the FGF-2. Expression of active phosphorylated form of p38 mitogen-activated protein kinase was upregulated under hyperglycemia; however, its inhibition had no effects on FGF-2 synthesis. Our results implicate a role of FGF-2 in high glucose-altered molecular signaling in pathogenesis of diabetic renal disease.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, Georg-August-Univ. Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Advanced glycation end-products suppress neuropilin-1 expression in podocytes. Kidney Int 2009; 75:605-16. [DOI: 10.1038/ki.2008.603] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Role of PPARgamma in renoprotection in Type 2 diabetes: molecular mechanisms and therapeutic potential. Clin Sci (Lond) 2009; 116:17-26. [PMID: 19037881 DOI: 10.1042/cs20070462] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DN (diabetic nephropathy) is a chronic disease characterized by proteinuria, glomerular hypertrophy, decreased glomerular filtration and renal fibrosis with loss of renal function. DN is the leading cause of ESRD (end-stage renal disease), accounting for millions of deaths worldwide. TZDs (thiazolidinediones) are synthetic ligands of PPARgamma (peroxisome-proliferator-activated receptor gamma), which is involved in many important physiological processes, including adipose differentiation, lipid and glucose metabolism, energy homoeostasis, cell proliferation, inflammation, reproduction and renoprotection. A large body of research over the past decade has revealed that, in addition to their insulin-sensitizing effects, TZDs play an important role in delaying and preventing the progression of chronic kidney disease in Type 2 diabetes. Although PPARgamma activation by TZDs is in general considered beneficial for the amelioration of diabetic renal complications in Type 2 diabetes, the underlying mechanism(s) remains only partially characterized. In this review, we summarize and discuss recent findings regarding the renoprotective effects of PPARgamma in Type 2 diabetes and the potential underlying mechanisms.
Collapse
|
30
|
Abstract
TSC-mTOR signaling plays a crucial role in the regulation of cell growth and survival control. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that forms two distinct functional complexes, termed TOR complex 1 (TORC1) and TORC2, respectively. TORC1 is a rapamycin-sensitive complex and regulates a wide array of cellular processes including translation, transcription, and autophagy. Tuberous sclerosis complex (TSC) gene products, TSC1 and TSC2 are tumor suppressors and specifically suppress TORC1 activity. Mutation of either TSC1 or TSC2 causes TSC disease, which is characterized by formation of hamartomas in multiple organs. Although the role of TSC-mTOR pathway in tumor and cancer development has been extensively studied, more recent studies have indicated a role for mTOR function in appetite, memory, aging, and energy metabolism. Dysregulation of the TSC-mTOR pathway may cause not only tumor development but also metabolic disorders such as diabetes and its complications.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute, University of Michigan, 210 Washtenaw #6115, Ann Arbor, MI 48108-2216, USA.
| |
Collapse
|
31
|
Ruster C, Bondeva T, Franke S, Forster M, Wolf G. Advanced glycation end-products induce cell cycle arrest and hypertrophy in podocytes. Nephrol Dial Transplant 2008; 23:2179-91. [DOI: 10.1093/ndt/gfn085] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Taneda S, Hudkins KL, Mühlfeld AS, Kowalewska J, Pippin JW, Shankland SJ, Alpers CE. Protease nexin-1, tPA, and PAI-1 are upregulated in cryoglobulinemic membranoproliferative glomerulonephritis. J Am Soc Nephrol 2008; 19:243-51. [PMID: 18199802 DOI: 10.1681/asn.2007030367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sekiko Taneda
- Department of Pathology, Division of Nephrology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Li JJ, Kwak SJ, Jung DS, Kim JJ, Yoo TH, Ryu DR, Han SH, Choi HY, Lee JE, Moon SJ, Kim DK, Han DS, Kang SW. Podocyte biology in diabetic nephropathy. Kidney Int 2007:S36-42. [PMID: 17653209 DOI: 10.1038/sj.ki.5002384] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glomerular visceral epithelial cells, namely podocytes, are highly specialized cells and give rise to primary processes, secondary processes, and finally foot processes. The foot processes of neighboring podocytes interdigitate, leaving between them filtration slits. These are bridged by an extracellular substance, known as the slit diaphragm, which plays a major role in establishing size-selective barrier to protein loss. Furthermore, podocytes are known to synthesize matrix molecules to the glomerular basement membrane (GBM), including type IV collagen, laminin, entactin, and agrin. Because diabetic nephropathy is clinically characterized by proteinuria and pathologically by glomerular hypertrophy and GBM thickening with foot process effacement, podocytes have been the focus in the field of research on diabetic nephropathy. As a result, many investigations have demonstrated that the diabetic milieu per se, hemodynamic changes, and local growth factors such as transforming growth factor-beta and angiotensin II, which are considered mediators in the pathogenesis of diabetic nephropathy, induce directly and/or indirectly hypertrophy, apoptosis, and structural changes, and increase type IV collagen synthesis in podocytes. This review explores some of the structural and functional changes of podocytes under diabetic conditions and their role in the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- J J Li
- Department of Internal Medicine, Nephrology and Dialysis Unit, The Affiliated Hospital, YanBian University Medical College, JiLin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Amazonas RB, Lopes de Faria JB. Effects of tight blood pressure control on glomerular hypertrophy in a model of genetic hypertension and experimental diabetes mellitus. Life Sci 2006; 79:2135-43. [PMID: 16890245 DOI: 10.1016/j.lfs.2006.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/19/2006] [Accepted: 07/06/2006] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the effect of prevention of hypertension on glomerular hypertrophy, renal cell replication and accumulation of glomerular fibronectin in a model of genetic hypertension and experimental diabetes. Four-week-old streptozotocin induced spontaneously hypertensive rats (SHR) were randomized for no treatment, or for treatment with captopril, losartan or triple therapy (hydrochlorothiazide, reserpine and hydralazine) for 20 days. Increase in systolic blood pressure was equally prevented by captopril (118+/-15 mmHg), losartan (111+/-9) and triple therapy (112+/-14, p<0.0001). Glomerular size was higher (p<0.005) in diabetic SHR (27,300+/-2130 microm(2)) compared with non-diabetic SHR (23,800+/-307). The antihypertensive therapy with captopril (23,900+/-175), losartan (23,800+/-120), and triple therapy (23,400+/-210) prevented the glomerular enlargement in diabetic SHR. Glomerular expression of fibronectin was increased in diabetic SHR (7.61+/-1.22 densitometric unit) as compared to the controls (2.27+/-2.15, p<0.0001), and was decreased (p<0.0001 vs diabetic SHR) with captopril (2.49+/-1.42), losartan (1.57+/-1.1) and triple therapy (2.04+/-1.42). The number of replicating glomerular cell significantly decreased in diabetic SHR and it was restored by all three antihypertensive regimes. The glomerular expression of p27(Kip1) was increased in diabetic SHR but it was not modified by antihypertensive treatment. Strict blood pressure control, in diabetic SHR independently of the class of antihypertensive agent, restores glomerular hypertrophy and renal cellular replication, and prevents the increment in glomerular fibronectin.
Collapse
Affiliation(s)
- Roberto Bleuel Amazonas
- Laboratory of Renal Pathophysiology, Nephrology Unit, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
35
|
Okada T, Wada J, Hida K, Eguchi J, Hashimoto I, Baba M, Yasuhara A, Shikata K, Makino H. Thiazolidinediones ameliorate diabetic nephropathy via cell cycle-dependent mechanisms. Diabetes 2006; 55:1666-77. [PMID: 16731829 DOI: 10.2337/db05-1285] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thiazolidinediones are ligands for peroxisome proliferator-activated receptor (PPAR)-gamma, widely used as insulin sensitizer in type 2 diabetic patients and implicated in apoptosis, cell proliferation, and cell cycle regulation. Here, the effect of thiazolidinediones on G1-phase cell cycle arrest, the hallmark in diabetic nephropathy, was investigated. Eight-week-old male Otsuka Long-Evans Tokushima fatty rats were treated with pioglitazone (1 mg x kg body wt(-1) x day(-1)) until 50 weeks of age and compared with insulin treatment. Although similar HbA(1c) levels were observed in both groups, pioglitazone significantly inhibited glomerular hypertrophy and mesangial matrix expansion and reduced urinary albumin excretion compared with the insulin-treated group. In addition, pioglitazone significantly reduced the number of glomerular p27(Kip1)-positive cells. Because prominent expression of PPAR-gamma was observed in podocytes in glomeruli and cultured cells, conditionally immortalized mouse podocyte cells were cultured under 5.5 and 25 mmol/l D-glucose supplemented with pioglitazone. Pioglitazone inhibited cell hypertrophy revealed by [(3)H]thymidine and [(3)H]proline incorporation, and pioglitazone reversed high glucose-induced G1-phase cell cycle arrest, i.e., an increase in G0/G1 phase and decrease in S and G2 phases. Pioglitazone suppressed high glucose-induced phosphorylation of p44/42 mitogen-activated protein kinase and reduced Bcl-2 and p27(Kip1) protein levels. Besides glucose-lowering action, pioglitazone ameliorates diabetic nephropathy via cell cycle-dependent mechanisms.
Collapse
Affiliation(s)
- Tatsuo Okada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu BC, Chen L, Sun J, Huang HQ, Ma KL, Liu H, Liu DG, Zhang XL. Connective Tissue Growth Factor-Mediated Angiotensin II-Induced Hypertrophy of Proximal Tubular Cells. ACTA ACUST UNITED AC 2006; 103:e16-26. [PMID: 16374037 DOI: 10.1159/000090504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 09/27/2005] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cellular hypertrophy is an early, important pathological feature of renal diseases such as diabetic nephropathy and remnant kidney. Recent studies have demonstrated that angiotensin II (AngII) plays a key role in mediating cell hypertrophy. The aim of our work was to explore the role of connective tissue growth factor (CTGF) in mediating AngII-induced tubular cell hypertrophy in vivoandin vitro. METHODS In an in vivo study, male Sprague-Dawley rats were randomly divided into three groups: control rats, diabetic rats and diabetic rats treated with irbesartan (IRB). The index of kidney hypertrophy (kidney weight/body weight, KW/BW), glomerular tuft area (AG), glomerular tuft volume (VG) and proximal tubular area (AT) were determined. Renal expression for CTGF was detected by immunohistochemical staining. In an in vitro study, the influence of CTGF antisense oligonucleotide (CTGF AS) on AngII-induced CTGF expression and cell hypertrophy was also investigated. RESULTS In an in vivo study, diabetic rats showed a significant increase of KW/BW, AG, VG, and AT from week 1 onwards compared to normal control, which could be significantly inhibited by using IRB. Furthermore, there was a significantly increasing expression of CTGF in both glomeruli and tubuli in diabetic rats compared to control, and the extent of CTGF expression closely correlated with the severity of renal hypertrophy. Treatment with IRB could markedly inhibit the renal expression of CTGF. In an in vitro study, AngII stimulated the expression of CTGF mRNA and CTGF protein. AngII significantly increased the total protein content in HK2 cells, which was markedly inhibited by co-treatment with CTGF AS. The average cellular diameter determined by scanning electronic microscope showed that the increase of cell size induced by AngII could be significantly inhibited by CTGF AS. Furthermore, flow cytometer study showed that AngII arrested the cell cycle in the G0-G1 phase, which was significantly reversed by treatment with CTGF AS. CONCLUSION Our data provide both in vivo and in vitroevidence that CTGF is involved in mediating AngII-induced renal hypertrophy.
Collapse
Affiliation(s)
- Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Masson E, Wiernsperger N, Lagarde M, Bawab S. Glucosamine induces cell-cycle arrest and hypertrophy of mesangial cells: implication of gangliosides. Biochem J 2005; 388:537-44. [PMID: 15654767 PMCID: PMC1138961 DOI: 10.1042/bj20041506] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alterations in proliferation and hypertrophy of renal mesangial cells are typical features of diabetic nephropathy. The HP (hexosamine pathway) has been proposed as a biochemical hypothesis to explain microvascular alterations due to diabetic nephropathy; however, involvement of HP in the regulation of mesangial cell growth or hypertrophy has been poorly studied. Although gangliosides are known to regulate cell proliferation, their potential role in mesangial cell-growth perturbations has hardly been explored. In the present study, we investigated the effects of the HP activation, mimicked by GlcN (glucosamine) treatment, on mesangial cell growth and hypertrophy and the potential implication of gangliosides in these processes. Our results indicate that GlcN induced hypertrophy of mesangial cells, as measured by an increase in the protein/cell ratio, and it caused cell-cycle arrest by an increase in the expression of cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Furthermore, GlcN treatment resulted in a massive increase in the levels of gangliosides G(M2) and G(M1). Treatment of cells with exogenous G(M2) and G(M1) reproduced the effects of 0.5 mM GlcN on p21(Waf1/Cip1) expression, cell-cycle arrest and hypertrophy, suggesting that gangliosides G(M2) and G(M1) are probably involved in mediating GlcN effects. These results document a new role of the HP in the regulation of mesangial cell growth and hypertrophy. They also suggest a potential new mechanism of action of the HP through modulation of ganglioside levels.
Collapse
Affiliation(s)
- Elodie Masson
- Diabetic Microangiopathy Research Unit, MERCK Santé/INSERM UMR 585, INSA Lyon (Institut National des Sciences Appliquées de Lyon), Louis Pasteur Bldg, 69621 Villeurbanne Cedex, France
| | - Nicolas Wiernsperger
- Diabetic Microangiopathy Research Unit, MERCK Santé/INSERM UMR 585, INSA Lyon (Institut National des Sciences Appliquées de Lyon), Louis Pasteur Bldg, 69621 Villeurbanne Cedex, France
| | - Michel Lagarde
- Diabetic Microangiopathy Research Unit, MERCK Santé/INSERM UMR 585, INSA Lyon (Institut National des Sciences Appliquées de Lyon), Louis Pasteur Bldg, 69621 Villeurbanne Cedex, France
| | - Samer El Bawab
- Diabetic Microangiopathy Research Unit, MERCK Santé/INSERM UMR 585, INSA Lyon (Institut National des Sciences Appliquées de Lyon), Louis Pasteur Bldg, 69621 Villeurbanne Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Nagai K, Matsubara T, Mima A, Sumi E, Kanamori H, Iehara N, Fukatsu A, Yanagita M, Nakano T, Ishimoto Y, Kita T, Doi T, Arai H. Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Kidney Int 2005; 68:552-61. [PMID: 16014032 DOI: 10.1111/j.1523-1755.2005.00433.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND We have already reported Gas6 is involved in glomerular hypertrophy observed in diabetic nephropathy. However, the molecular mechanisms involved in glomerular hypertrophy are still unknown, especially in vivo. METHODS In vivo, diabetes was induced in rats and mice by streptozotocin (STZ) and the activation of the Akt/mTOR pathway in glomeruli was examined. In vitro, mesangial hypertrophy was assessed by [(3)H]leucine incorporation and measuring cell areas. RESULTS Akt, p70 S6 kinase, and 4E-BP-1 were induced and phosphorylated in rat glomerular lysates after 12 weeks of STZ injection when mesangial and glomerular hypertrophy was observed. We then examined the role of Gas6 by treating STZ-rats with warfarin, and found that warfarin treatment inhibited the phosphorylation of these molecules as well as the hypertrophy. We next examined whether high glucose stimulation can induce the expression of Gas6/Axl in mesangial cells. Stimulation of the cells with 25 mmol/L of glucose increased the expression of Gas6/Axl and mesangial cell size compared with that with 5.6 mmol/L of glucose. This hypertrophic effect was abolished in mesangial cells derived from Gas6 knockout mice. We also found that LY294002 and rapamycin blocked Gas6-induced activation of the Akt/mTOR pathway and mesangial hypertrophy. Furthermore, less phosphorylated Akt-positive or 4E-BP-1-positive areas were found in STZ-treated Gas6 knockout mice than in STZ-treated wild-type mice. CONCLUSION Our study indicates that the Akt/mTOR pathway is a key signaling cascade in Gas6-mediated mesangial and glomerular hypertrophy and revealed a crucial role of Gas6/Axl and the Akt/mTOR pathway in the development of diabetic nephropathy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Butadienes/pharmacology
- Carrier Proteins/metabolism
- Cell Cycle Proteins/metabolism
- Cells, Cultured
- Chromones/pharmacology
- Cyclin-Dependent Kinase Inhibitor p27
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/physiopathology
- Enzyme Inhibitors/pharmacology
- Eukaryotic Initiation Factors
- Female
- Glomerular Mesangium/metabolism
- Glomerular Mesangium/pathology
- Glucose/pharmacology
- Hypertrophy
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Nitriles/pharmacology
- Phosphoproteins/metabolism
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Rats
- Rats, Sprague-Dawley
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Kojiro Nagai
- Department of Geriatric Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Baba M, Wada J, Eguchi J, Hashimoto I, Okada T, Yasuhara A, Shikata K, Kanwar YS, Makino H. Galectin-9 Inhibits Glomerular Hypertrophy indb/dbDiabetic MiceviaCell-Cycle–Dependent Mechanisms. J Am Soc Nephrol 2005; 16:3222-34. [PMID: 16177004 DOI: 10.1681/asn.2004110915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Galectins are beta-galactoside-binding lectins that are involved in various biologic processes, such as apoptosis, cell proliferation, and cell-cycle regulation. Galectin-9 (Gal-9) was identified previously and demonstrated to have apoptotic potential to thymocytes in mice and activated CD8(+) T cells in nephrotoxic serum nephritis model. In this study, the effect of Gal-9 on G1-phase cell-cycle arrest, one of the hallmark pathologic changes in early diabetic nephropathy, was investigated. Eight-week-old male db/db mice received injections of recombinant Gal-9 or vehicle for 8 wk. The injection of Gal-9 into db/db mice significantly inhibited glomerular hypertrophy and mesangial matrix expansion and reduced urinary albumin excretion. Gal-9 reduced glomerular expression of TGF-beta1 and the number of p27(Kip1)- and p21(Cip1)-positive cells in glomeruli. Double staining with nephrin and type IV collagen revealed that podocytes were mainly positive for p27(Kip1). For further confirming the cell-cycle regulation by Gal-9, conditionally immortalized mouse podocyte cells were cultured under 5.5 and 25 mM d-glucose supplemented with Gal-9. Cell-cycle distribution analyses revealed that Gal-9 maintained further progression of cell cycle from the G1 phase. Gal-9 reversed the high-glucose-mediated upregulation of p27(Kip1) and p21(Cip1) and inhibited cell-cycle-dependent hypertrophy, i.e., reduced [(3)H]proline incorporation. The data suggest that Gal-9 plays a central role in inducing their successful progression from G1 to G2 phase by suppressing glomerular expression of TGF-beta1 and inhibition of cyclin-dependent kinase inhibitors. Gal-9 may give an impetus to develop new therapeutic tools targeted toward diabetic nephropathy.
Collapse
Affiliation(s)
- Masako Baba
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu ZG, Yoo TH, Ryu DR, Cheon Park H, Ha SK, Han DS, Adler SG, Natarajan R, Kang SW. Angiotensin II receptor blocker inhibits p27Kip1 expression in glucose-stimulated podocytes and in diabetic glomeruli. Kidney Int 2005; 67:944-52. [PMID: 15698433 DOI: 10.1111/j.1523-1755.2005.00158.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Diabetic nephropathy is characterized by glomerular and tubular hypertrophy, and angiotensin II receptor blockers (ARBs) are known to prevent renal hypertrophy in diabetic patients. METHODS To determine the effect of ARB on podocyte p27(Kip1) mRNA and protein expression, podocytes were exposed to 5.6 mmol/L normal glucose or 25 mmol/L high glucose with or without ARB, 10(-7) mol/L L-158,809. For animal studies, streptozotocin-induced diabetic rats were left untreated or were treated with 1 mg/kg/day L-158,809 for 3 months (diabetes mellitus + ARB). Competitive reverse transcription-polymerase chain reaction (RT-PCR), Western blot, immunohistochemistry, and morphometric analyses were performed. RESULTS p27(Kip1) mRNA and protein expression in podocytes exposed to high glucose and in 3-month diabetic glomeruli were significantly increased (P < 0.01). High glucose significantly increased angiotensin II levels both in cell lysates and in media compared with normal glucose (P < 0.05) and exogenous angiotensin II also increased p27(Kip1) mRNA and protein expression in podocytes. L-158,809 treatment in podocytes inhibited the increase in p27(Kip1) mRNA expression by 84%, and protein expression by 89% (P < 0.05). p27(Kip1) mRNA and protein expression in diabetic + ARB glomeruli were also significantly reduced by 78% and 85%, respectively, compared with diabetic glomeruli (P < 0.01). ARB treatment also significantly ameliorated increased glomerular p27(Kip1) expression in diabetes mellitus as assessed by immunohistochemistry (P < 0.01). The increase in glomerular volume in diabetes mellitus was also inhibited by 81% with ARB treatment (P < 0.05). CONCLUSION p27(Kip1) mRNA and protein expression were increased in diabetic glomeruli as well as in high glucose-stimulated podocytes, and this increment in p27(Kip1) expression was ameliorated by ARB treatment. These findings indicate that ARB treatment has an additional effect on preventing renal hypertrophy in diabetes mellitus.
Collapse
Affiliation(s)
- Zhong-Gao Xu
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Uchida T, Nakamura T, Hashimoto N, Matsuda T, Kotani K, Sakaue H, Kido Y, Hayashi Y, Nakayama KI, White MF, Kasuga M. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med 2005; 11:175-82. [PMID: 15685168 DOI: 10.1038/nm1187] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 01/04/2005] [Indexed: 12/31/2022]
Abstract
The protein p27(Kip1) regulates cell cycle progression in mammals by inhibiting the activity of cyclin-dependent kinases (CDKs). Here we show that p27(Kip1) progressively accumulates in the nucleus of pancreatic beta cells in mice that lack either insulin receptor substrate 2 (Irs2(-/-)) or the long form of the leptin receptor (Lepr(-/-) or db/db). Deletion of the gene encoding p27(Kip1) (Cdkn1b) ameliorated hyperglycemia in these animal models of type 2 diabetes mellitus by increasing islet mass and maintaining compensatory hyperinsulinemia, effects that were attributable predominantly to stimulation of pancreatic beta-cell proliferation. Thus, p27(Kip1) contributes to beta-cell failure during the development of type 2 diabetes in Irs2(-/-) and Lepr(-/-) mice and represents a potential new target for the treatment of this condition.
Collapse
Affiliation(s)
- Tohru Uchida
- Division of Diabetes and Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol 2004; 23:532-43. [PMID: 14631561 DOI: 10.1053/s0270-9295(03)00132-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The manifestations of diabetic nephropathy may be a consequence of the actions of certain cytokines and growth factors. Prominent among these is transforming growth factor beta (TGF-beta) because it promotes renal cell hypertrophy and stimulates extracellular matrix accumulation, the 2 hallmarks of diabetic renal disease. In tissue culture studies, cellular hypertrophy and matrix production are stimulated by high glucose concentrations in the culture media. High glucose, in turn, appears to act through the TGF-beta system because high glucose increases TGF-beta expression, and the hypertrophic and matrix-stimulatory effects of high glucose are prevented by anti-TGF-beta therapy. In experimental diabetes mellitus, several reports describe overexpression of TGF-beta or TGF-beta type II receptor in the glomerular and tubulointerstitial compartments. As might be expected, the intrarenal TGF-beta system is triggered, evidenced by activity of the downstream Smad signaling pathway. Treatment of diabetic animals with a neutralizing anti-TGF-beta antibody prevents the development of mesangial matrix expansion and the progressive decline in renal function. This antibody therapy also reverses the established lesions of diabetic glomerulopathy. Finally, the renal TGF-beta system is significantly up-regulated in human diabetic nephropathy. Although the kidney of a nondiabetic subject extracts TGF-beta1 from the blood, the kidney of a diabetic patient actually elaborates TGF-beta1 protein into the circulation. Along the same line, an increased level of TGF-beta in the urine is associated with worse clinical outcomes. In concert with TGF-beta, other metabolic mediators such as connective tissue growth factor and reactive oxygen species promote the accumulation of excess matrix. This fibrotic build-up also occurs in the tubulointerstitium, probably as the result of heightened TGF-beta activity that stimulates tubular epithelial and interstitial fibroblast cells to overproduce matrix. The data presented here strongly support the consensus that the TGF-beta system mediates the renal hypertrophy, glomerulosclerosis, and tubulointerstitial fibrosis of diabetic kidney disease.
Collapse
Affiliation(s)
- Sheldon Chen
- Department of Medicine, University of Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Griffin SV, Pichler R, Wada T, Vaughan M, Durvasula R, Shankland SJ. The role of cell cycle proteins in Glomerular disease. Semin Nephrol 2004; 23:569-82. [PMID: 14631565 DOI: 10.1053/s0270-9295(03)00133-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although initially identified and characterized as regulators of the cell cycle and hence proliferation, an extended role for cell cycle proteins has been appreciated more recently in a number of physiologic and pathologic processes, including development, differentiation, hypertrophy, and apoptosis. Their precise contribution to the cellular response to injury appears to be dependent on both the cell type and the nature of the initiating injury. The glomerulus offers a remarkable situation in which to study the cell cycle proteins, as each of the 3 major resident cell types (the mesangial cell, podocyte, and glomerular endothelial cell) has a specific pattern of cell cycle protein expression when quiescent and responds uniquely after injury. Defining their roles may lead to potential therapeutic strategies in glomerular disease.
Collapse
Affiliation(s)
- Siân V Griffin
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
As an important modulator of renal function and morphology, the nitric oxide (NO) system has been extensively studied in the diabetic kidney. However, a number of studies in different experimental and clinical settings have produced often confusing data and contradictory findings. We have reviewed a wide spectrum of findings and issues that have amassed concerning the pathophysiology of the renal NO system in diabetes, pointed out the controversies, and attempted to find some explanation for these discrepancies. Severe diabetes with profound insulinopenia can be viewed as a state of generalized NO deficiency, including in the kidney. However, we have focused our hypotheses and conclusions on the events occurring during moderate glycemic control with some degree of treatment with exogenous insulin, representing more the clinically applicable state of diabetic nephropathy. Available evidence suggests that diabetes triggers mechanisms that in parallel enhance and suppress NO bioavailability in the kidney. We hypothesize that during the early phases of nephropathy, the balance between these two opposing forces is shifted toward NO. This plays a role in the development of characteristic hemodynamic changes and may contribute to consequent structural alterations in glomeruli. Both endothelial (eNOS) and neuronal NO synthase can contribute to altered NO production. These enzymes, particularly eNOS, can be activated by Ca(2+)-independent and alternative routes of activation that may be elusive in traditional methods of investigation. As the duration of exposure to the diabetic milieu increases, factors that suppress NO bioavailability gradually prevail. Increasing accumulations of advanced glycation end products may be one of the culprits in this process. In addition, this balance is continuously modified by actual metabolic control and the degree of insulinopenia.
Collapse
Affiliation(s)
- Radko Komers
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon 97201-2940, USA
| | | |
Collapse
|
45
|
Awazu M, Omori S, Ishikura K, Hida M, Fujita H. The lack of cyclin kinase inhibitor p27(Kip1) ameliorates progression of diabetic nephropathy. J Am Soc Nephrol 2003; 14:699-708. [PMID: 12595506 DOI: 10.1097/01.asn.0000051726.41601.c0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cyclin kinase inhibitor p27(Kip(1)) (p27) has been shown to be upregulated in glomeruli of diabetic animals and mesangial cells cultured under high glucose. This study was an investigation of the role of p27 in the progression of diabetic nephropathy. Mice deficient in p27 (p27 -/-) and wild-type mice (p27 +/+) were studied 12 wk after diabetes induction by streptozotocin. Blood glucose and BP were comparable between diabetic p27 +/+ and p27 -/- mice. The kidney weight to body weight ratio and glomerular volume increased in diabetic p27 +/+ mice. In contrast, these parameters did not change in diabetic p27 -/- mice. Similarly, albuminuria developed in diabetic p27 +/+ mice but not in diabetic p27 -/- mice. The mesangial expansion was significantly milder in diabetic p27 -/- mice than that in diabetic p27 +/+ mice. These changes were associated with a similar increase in glomerular TGF-beta expression in diabetic p27 +/+ and p27 -/- mice. However, glomerular protein expression of fibronectin, a target of TGF-beta, increased only in diabetic p27 +/+ mice. In mesangial cells cultured from p27 +/+ mice, exposure to high glucose caused significant increases in total protein content and [(3)H]-leucine incorporation. On the other hand, high glucose caused a significant reduction in these parameters in cells from p27 -/- mice. Phosphorylation of 4E-BP1, the translation inhibitor, increased after exposure to high glucose in p27 +/+ cells. In p27 -/- cells, the level of phosphorylated 4E-BP1 was higher than that in control p27 +/+ cells and decreased under high glucose conditions. In conclusion, renal hypertrophy, glomerular hypertrophy, and albuminuria did not develop, and mesangial expansion was milder in diabetic p27 -/- mice despite glomerular TGF-beta upregulation. These results suggest that controlling p27 function may ameliorate diabetic nephropathy.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
BACKGROUND Two mechanisms exist for inducing renal proximal tubule hypertrophy. One is characterized by regulation of the G1 cell cycle kinase (cell cycle-dependent mechanism), while the other mechanism involves an imbalance between rates of protein synthesis and degradation, and occurs independently of cell cycle kinase regulation (cell cycle-independent mechanism). The present studies examined whether the compensatory proximal tubule growth following uninephrectomy is mediated by the cell cycle-dependent or -independent mechanism. METHODS Studies were done in both rats and C57Bl6 mice on tissue harvested from sham-operated or uninephrectomized animals. The magnitude of BrdU incorporation was used as the hyperplasia marker, while the proximal tubule protein: DNA ratio was used as the hypertrophy marker. Cdk4/cyclin D and cdk2/cyclin E kinase activities were assayed on renal cortex (rat studies) or isolated proximal tubules (mouse studies) using an in vitro kinase assay. RESULTS In both rats and mice, compensatory proximal tubule growth was hypertrophic, not hyperplastic, evidenced by an increase in the protein:DNA ratio without a change in BrdU incorporation. In mice, cdk4/cyclin D kinase activity progressively increased between days 4 and 7, while cdk2/cyclin E kinase activity was decreased at both 4 and 7 days. In rats the development of hypertrophy was associated with an increase in cdk4/cyclin D kinase at days 4, 7, and 10, and an increase in cdk2/cyclin E kinase activity at days 2, 4, and 7. Roscovitine, a cdk2/cyclin E kinase inhibitor, inhibited cdk2/cyclin E kinase activity in both sham and nephrectomized rats; however, it did not prevent the development of proximal tubule hypertrophy. CONCLUSIONS Uninephrectomy-induced compensatory proximal tubule growth is a hypertrophic form of growth that is mediated by a cell cycle-dependent mechanism.
Collapse
Affiliation(s)
- Baolian Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
48
|
Wolf G. Molecular mechanisms of diabetic mesangial cell hypertrophy: a proliferation of novel factors. J Am Soc Nephrol 2002; 13:2611-2613. [PMID: 12239252 DOI: 10.1681/asn.v13102611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Gunter Wolf
- Department of Medicine, Division of Nephrology and Osteology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
49
|
Monkawa T, Hiromura K, Wolf G, Shankland SJ. The hypertrophic effect of transforming growth factor-beta is reduced in the absence of cyclin-dependent kinase-inhibitors p21 and p27. J Am Soc Nephrol 2002; 13:1172-8. [PMID: 11961004 DOI: 10.1097/01.asn.0000013162.29833.45] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) has both antiproliferative and hypertrophic effects on mesangial cells (MC). However, it is not known if these processes are independent or if they share common signaling pathways. Proliferation and hypertrophy are regulated by specific cell-cycle regulatory proteins, where the cyclin-dependent kinase (CDK) inhibitors inhibit target cyclin-CDK complexes. This study examined whether the growth regulatory effects of TGF-beta were determined by the CDK inhibitors p21 and p27. Accordingly, cultured MC from wild type (+/+) and single and double null (-/-) p21 and p27 mice were grown in 5% serum in the presence or absence of TGF-beta1 (2 ng/ml). Proliferation ([(3)H]-thymidine incorporation, cell number, cell cycle) and hypertrophy ([(3)H]-leucine incorporation, total protein content, forward light scatter) were measured after 24 h, 48 h, and 96 h. TGF-beta inhibited proliferation in +/+ and p21/p27 double -/- MC to a similar extent. TGF-beta induced hypertrophy in +/+ MC (18.0% increase at 48 h), and to lesser extent in p21 -/- (12.8%) and p27 -/- MC (11.5%) measured by forward light scatter analysis. In p21/p27 double -/-, the hypertrophic effects of TGF-beta were significantly reduced (3.9% at 48 h). Similar results were obtained by measuring hypertrophy by total protein and [(3)H]-leucine incorporation. In conclusion, the CDK inhibitors p21 and p27 are not required for the antiproliferative effects of TGF-beta. However, the hypertrophic growth effects of TGF-beta are reduced in the absence of both p21 and p27. These data suggest that the regulation of the antiproliferative and hypertrophic effects of TGF-beta may be distinct processes.
Collapse
Affiliation(s)
- Toshiaki Monkawa
- Department of Medicine, Division of Nephrology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
50
|
Silveira LA, Bacchi CE, Pinto GA, De Faria JBL. The genetics of hypertension modifies the renal cell replication response induced by experimental diabetes. Diabetes 2002; 51:1529-34. [PMID: 11978652 DOI: 10.2337/diabetes.51.5.1529] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate whether the genetics of hypertension modifies renal cell responses in experimental diabetes, we studied the renal cell replication and its regulation by two cyclin-dependent kinase (Cdk) inhibitors, p27(Kip1) and p21(Cip1), in prehypertensive spontaneously hypertensive rats (SHR) and their genetically normotensive counterparts, Wistar Kyoto (WKY) rats, with and without streptozotocin-induced diabetes. In diabetic SHR, the number of proliferating glomerular (0.6 +/- 0.3 positive cells/50 glomeruli) and tubulointerstitial (2.8 +/- 0.6 positive tubulointerstitial cells/50 grid fields) cells assessed by the bromodeoxyuridine technique was significantly (P = 0.0002) lower than in control SHR (13.2 +/- 1.7 and 48.6 +/- 9.7, respectively) and control (14.0 +/- 1.8 and 63.9 +/- 10.6) and diabetic (14.3 +/- 3.5 and 66.4 +/- 11.5) WKY rats. Proliferating cell nuclear antigen, another marker of cell proliferation, was significantly reduced in replicating glomerular (P = 0.0002) and tubulointerstitial (P < 0.0001) cells in diabetic SHR. In freshly isolated glomeruli, the level of p27(Kip1) detected by Western blotting was significantly higher in diabetic SHR than in nondiabetic SHR (1.52 +/- 0.14 vs. 1.00 +/- 0.10% of control, P = 0.014). The expression of p21(Cip1) in isolated glomeruli did not differ among the groups of rats. In conclusion, the response of renal cell replication to diabetes differs markedly between prehypertensive SHR and their WKY control rats. The decreased glomerular cell proliferation in prehypertensive diabetic SHR is at least partly mediated by a higher expression of the Cdk inhibitor p27(Kip1).
Collapse
Affiliation(s)
- Lilia A Silveira
- Renal Pathophysiology Laboratory, Nephrology Unit, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|