1
|
Zheng Y, Yi H, Zhan Z, Xue SS, Tang G, Yu X, Zhang DY. Reactive oxygen/nitrogen species scavenging and inflammatory regulation by renal-targeted bio-inspired rhodium nanozymes for acute kidney injury theranostics. J Colloid Interface Sci 2024; 662:413-425. [PMID: 38359505 DOI: 10.1016/j.jcis.2024.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Acute kidney injury (AKI) results from the rapid deterioration of renal function, which is mainly treated by transplantation and dialysis, and has a high mortality rate. Inflammation induced by excess reactive oxygen/nitrogen species (RONS) plays a crucial role in AKI. Although small molecule antioxidants have been utilized to alleviate AKI, low bioavailability and side-effect of these drugs tremendously limit their clinical use. Hence, we successfully construct ultra-small (2-4 nm) rhodium nanoparticles modified with l-serine (denoted as Rh-Ser). Our results show that Rh-Ser with multiple enzyme-mimicking activities, allows remove various RONS to protect damaged kidney cells. Additionally, the ultrasmall size of Rh-Ser is conducive to enrichment in the renal tubules, and the modification of l-serine enables Rh-Ser to bind to kidney injury molecule-1, which is highly expressed on the surface of damaged renal cells, thereby targeting the damaged kidney and increasing the retention time. Moreover, Rh-Ser allows the production of oxygen at the inflammatory site, thus further improving hypoxia and inhibiting pro-inflammatory macrophages to relieve inflammation, and increasing the survival rate of AKI mice from 0 to 80%, which exhibits a better therapeutic effect than that of small molecule drug. Photoacoustic and fluorescence imaging can effectively monitor and evaluate the enrichment and therapeutic effect of Rh-Ser. Our study provides a promising strategy for the targeted treatment of AKI via RONS scavenging and inflammatory regulation.
Collapse
Affiliation(s)
- Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhixiong Zhan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
2
|
Long Q, Liao F, Yi H, Wang M, Zhuang J, Zheng Y, Guo W, Zhang DY. Biodegradable Osmium Nanoantidotes for Photothermal-/Chemo- Combined Treatment and to Prevent Chemotherapy-Induced Acute Kidney Injury. Adv Healthc Mater 2024; 13:e2302729. [PMID: 38097368 DOI: 10.1002/adhm.202302729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Acute kidney injury (AKI) is a common adverse event in chemotherapy patients. AKI is accompanied by the generation of reactive oxygen species (ROS) and inflammation. Therefore, the management of ROS and inflammation is a potential strategy for AKI mitigation. Herein, polyethylene glycol-coated osmium nanozyme-based antidotes (Os) are developed for imaging-guided photothermal therapy (PTT) in combination with cisplatin (Pt); while, avoiding AKI induced by high-dose Pt. Os nanoantidotes can enhance the efficiency of tumor treatment during combined PTT and chemotherapy and inhibit tumor metastasis by improving the hypoxic and inflammatory tumor microenvironment. Os nanoantidotes preferentially accumulate in the kidney because of their 2-nm size distribution; and then, regulate inflammation by scavenging ROS and generating oxygen to alleviate Pt-induced AKI. Os nanoantidotes can be cleared from the kidneys by urine excretion but can be degraded under hydrogen peroxide stimulation, reducing the bio-retention of these compounds. By integrating PTT with inflammatory regulation, Os nanoantidotes have the potential to reduce the side effects of chemotherapy, offering an alternative route for the clinical management of cancer patients with chemotherapy-induced AKI.
Collapse
Affiliation(s)
- Qi Long
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fangling Liao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mingcheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yue Zheng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Weisheng Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Zhang D, Wang Y, Bi L, Liu H, Ding X. SOD mineralized zeolitic imidazole framework-8 for the treatment of chemotherapy-related acute kidney injury. Colloids Surf B Biointerfaces 2023; 229:113447. [PMID: 37536166 DOI: 10.1016/j.colsurfb.2023.113447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
Acute kidney injury (AKI), a prevalent and fatal adverse event, seriously affects cancer patients undergoing chemotherapy. The most important pathological mechanism of AKI is oxidative stress from reactive oxygen species (ROS). Currently, ROS scavenging is a promising strategy to manage the risk of chemotherapy-induced AKI. Herein, we successfully synthesized SOD@ZIF-8 nanoparticles by biomimetic mineralization, which were taken up by cells and could improve cell viability by limiting oxidative stress damage, as found in in vitro studies. Moreover, SOD@ZIF-8 nanoparticles exhibit broad-spectrum antioxidant properties in addition to significant renal accumulation in AKI mice, preventing clinically related cisplatin-induced AKI in murine models. AKI alleviation in the model was validated by measuring blood serum, staining kidney tissue, and related biomarkers. SOD@ZIF-8 nanoparticle therapeutic efficiency exceeds NAC, a small molecular antioxidant functioning through free radical scavenging. The results suggest SOD@ZIF-8 nanoparticles as a potential therapeutic option for AKI and other ROS-related disorders.
Collapse
Affiliation(s)
- Daofu Zhang
- Department of Urology, First Hospital of Jilin University, Changchun, PR China; Department of Radiology, First Hospital of Jilin University, Changchun, PR China
| | - Yanbo Wang
- Department of Radiology, First Hospital of Jilin University, Changchun, PR China.
| | - Luopeng Bi
- Department of Radiology, First Hospital of Jilin University, Changchun, PR China
| | - Hongcheng Liu
- Department of Radiology, First Hospital of Jilin University, Changchun, PR China
| | - Xiaobo Ding
- Department of Urology, First Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
4
|
Zhang C, Li Q, Shan J, Xing J, Liu X, Ma Y, Qian H, Chen X, Wang X, Wu LM, Yu Y. Multifunctional two-dimensional Bi 2Se 3 nanodiscs for anti-inflammatory therapy of inflammatory bowel diseases. Acta Biomater 2023; 160:252-264. [PMID: 36805534 DOI: 10.1016/j.actbio.2023.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
The overexpression of reactive oxygen and nitrogen species (RONS) in the colonic mucosa destroys the mucosa and its barrier, accelerating the occurrence of inflammatory bowel disease (IBD). The elimination of RONS from the inflammatory colon has proven effective in alleviating IBD. Although many nanoantioxidants have been developed, preparing robust and efficient nano-antioxidants remains challenging. Herein, by modifying bismuth selenide (Bi2Se3) nanodiscs with polyvinylpyrrolidone (PVP), a multifunctional nanozyme based on 2D nanomaterials was developed for the treatment of IBD. By eliminating multiple RONS, such as hydroxyl radicals (•OH), superoxide anions (O2-•), nitric oxide (NO), and Bi2Se3 nanodiscs enhanced cellular survival after H2O2 stimulation. As evidenced by colonic injury, reduced body weight, spleen index, and proinflammatory cytokine levels in mice, RONS clearance alleviated intestinal inflammation in a prevention and delay model of acute colitis. 16S rDNA amplicon sequencing reveals that Bi2Se3 nanodiscs had the potential to regulate intestinal flora, increase the proportion of Firmicutes to Bacteroidetes, inhibit Proteobacteria bacteria, and restore intestinal homeostasis. This study highlights the use of Bi2Se3 nanodiscs with excellent biocompatibility, multienzyme functionality, and RONS scavenging ability as treatments for IBD without apparent adverse effects. STATEMENT OF SIGNIFICANCE: RONS were efficiently scavenged by Bi2Se3 nanodiscs. Bi2Se3 nanodiscs could be as a promising and potentially safe theraeputic agent for IBD. The gut microbiota could be modulated by Bi2Se3 nanodiscs.
Collapse
Affiliation(s)
- Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jianghao Xing
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xiaoyan Liu
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Xulin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China.
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yue Yu
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
5
|
Wang X, Wu T, Yang Y, Zhou L, Wang S, Liu J, Zhao Y, Zhang M, Zhao Y, Qu H, Kong H, Zhang Y. Ultrasmall and highly biocompatible carbon dots derived from natural plant with amelioration against acute kidney injury. J Nanobiotechnology 2023; 21:63. [PMID: 36814298 PMCID: PMC9946873 DOI: 10.1186/s12951-023-01795-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) refers to a tricky clinical disease, known by its high morbidity and mortality, with no real specific medicine for AKI. The carbonization product from Pollen Typhae (i.e., Pu-huang in China) has been extensively employed in clinic, and it is capable of relieving the renal damage and other diseases in China since acient times. RESULTS Inspired by the carbonization process of Traditional Chinese Medicine (TCM), a novel species of carbon dots derived from Pollen Typhae (PT-CDs) was separated and then collected using a one-pot pyrolysis method. The as-prepared PT-CDs (4.85 ± 2.06 nm) with negative charge and abundant oxygenated groups exhibited high solubility, and they were stable in water. Moreover, the rhabdomyolysis (RM)-induced AKI rat model was used, and it was first demonstrated that PT-CDs had significant activity in improving the level of BUN and CRE, urine volume and kidney index, and histopathological morphology in RM-induced AKI rats. It is noteworthy that interventions of PT-CDs significantly reduced degree of inflammatory reaction and oxidative stress, which may be correlated with the basial potential mechanism of anti-AKI activities. Furthermore, cytotoxicity assay and biosafety evaluation exhibited high biocompatibility of PT-CDs. CONCLUSION This study offers a novel relieving strategy for AKI based on PT-CDs and suggests its potential to be a related candidate for clinical applications.
Collapse
Affiliation(s)
- Xiaoke Wang
- grid.477982.70000 0004 7641 2271Encephalopathy Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000 China
| | - Tong Wu
- grid.24695.3c0000 0001 1431 9176School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yingxin Yang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Long Zhou
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Shuxian Wang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jiaxing Liu
- grid.24695.3c0000 0001 1431 9176Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yafang Zhao
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Meiling Zhang
- grid.412073.3Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100020 China
| | - Yan Zhao
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Chen Z, Qi F, Qiu W, Wu C, Zong M, Ge M, Xu D, You Y, Zhu Y, Zhang Z, Lin H, Shi J. Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202933. [PMID: 36202760 PMCID: PMC9685437 DOI: 10.1002/advs.202202933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Acute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen-terminated germanene (H-germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H-germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H-germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol-induced murine AKI model, H-germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H-germanene nanoplatform is a powerful antioxidant against AKI and various anti-inflammatory diseases.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ming Zong
- Department of Clinical LaboratoryShanghai East HospitalTongji University School of MedicineShanghai200120P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| | - Zhimin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| |
Collapse
|
7
|
Chen Z, Qi F, Qiu W, Wu C, Zong M, Ge M, Xu D, You Y, Zhu Y, Zhang Z, Lin H, Shi J. Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. ADVANCED SCIENCE 2022; 9. [DOI: doi.org/10.1002/advs.202202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 09/08/2023]
Abstract
AbstractAcute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen‐terminated germanene (H‐germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H‐germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H‐germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol‐induced murine AKI model, H‐germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H‐germanene nanoplatform is a powerful antioxidant against AKI and various anti‐inflammatory diseases.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ming Zong
- Department of Clinical Laboratory Shanghai East Hospital Tongji University School of Medicine Shanghai 200120 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| | - Zhimin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| |
Collapse
|
8
|
Caracciolo A, Scalise RFM, Ceresa F, Bagnato G, Versace AG, Licordari R, Perfetti S, Lofrumento F, Irrera N, Santoro D, Patanè F, Di Bella G, Costa F, Micari A. Optimizing the Outcomes of Percutaneous Coronary Intervention in Patients with Chronic Kidney Disease. J Clin Med 2022; 11:2380. [PMID: 35566504 PMCID: PMC9100167 DOI: 10.3390/jcm11092380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most common procedures performed in medicine. However, its net benefit among patients with chronic kidney disease (CKD) is less well established than in the general population. The prevalence of patients suffering from both CAD and CKD is high, and is likely to increase in the coming years. Planning the adequate management of this group of patients is crucial to improve their outcome after PCI. This starts with proper preparation before the procedure, the use of all available means to reduce contrast during the procedure, and the implementation of modern strategies such as radial access and drug-eluting stents. At the end of the procedure, personalized antithrombotic therapy for the patient's specific characteristics is advisable to account for the elevated ischemic and bleeding risk of these patients.
Collapse
Affiliation(s)
- Alessandro Caracciolo
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Renato Francesco Maria Scalise
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Fabrizio Ceresa
- Department of Cardio-Thoraco-Vascular Surgery, Division of Cardiac Surgery, Papardo Hospital, 98158 Messina, Italy; (F.C.); (F.P.)
| | - Gianluca Bagnato
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Antonio Giovanni Versace
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Roberto Licordari
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Silvia Perfetti
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Francesca Lofrumento
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Francesco Patanè
- Department of Cardio-Thoraco-Vascular Surgery, Division of Cardiac Surgery, Papardo Hospital, 98158 Messina, Italy; (F.C.); (F.P.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, Policlinic “Gaetano Martino”, University of Messina, 98100 Messina, Italy; (A.C.); (R.F.M.S.); (G.B.); (A.G.V.); (R.L.); (S.P.); (F.L.); (N.I.); (D.S.); (G.D.B.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98100 Messina, Italy
| |
Collapse
|
9
|
Liang W, Yu CJ, Wang QY, Yu J. Anemia is associated with increased risk of contrast‑induced acute kidney injury: A Systematic Review and Meta-analysis. Bioengineered 2021; 12:648-661. [PMID: 33595423 PMCID: PMC8806332 DOI: 10.1080/21655979.2021.1883887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 11/23/2022] Open
Abstract
Previous studies have identified numerous risk factors of contrast-induced acute kidney injury (CI-AKI) in patients undergoing coronary angiography. However, the association between anemia and CI-AKI remains conflicting. Thus, we conducted a meta-analysis to further clarify the relationship between anemia and CI-AKI. PubMed, EMBASE and Web of Science were systematically searched from inception to June 2020 to identify eligible studies. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the correlation between anemia and CI-AKI. The potential publication bias was estimated using funnel plot and Begg's test. A total of 13 studies (five case-control studies and eight cohort studies) comprising 27,135 patients were included. The pooled results showed that anemia was a significant risk factor of CI-AKI (OR, 1.82; 95% CI, 1.27-2.61). Moreover, the results of subgroup analyses and sensitivity analyses were basically consistent with the overall pooled result. Funnel plot and Begg's test indicated that there existed potential publication bias, but the result of trim and filled analysis showed that the pooled results kept stable after adding 'missing' studies. This meta-analysis suggested that anemia may be correlated with an increased incidence of CI-AKI in patients undergoing coronary angiography. However, our conclusions should be interpreted with caution due to some limitations. Therefore, further high-quality trials should be conducted to confirm our findings.
Collapse
Affiliation(s)
- Wei Liang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Cheng Jie Yu
- Medical Records Department, Lanzhou University First Hospital, Lanzhou University, Lanzhou, China
| | - Qiong Ying Wang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yu
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Zhang DY, Tu T, Younis MR, Zhu KS, Liu H, Lei S, Qu J, Lin J, Huang P. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics 2021; 11:9904-9917. [PMID: 34815794 PMCID: PMC8581429 DOI: 10.7150/thno.66518] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023] Open
Abstract
Rationale: Acute kidney injury (AKI) is associated with aberrant generation of oxidative species and inflammation, leading to high mortality of in-hospitalized patients. Although N-acetylcysteine (NAC) showed positive effects in alleviating contrast-induced AKI, the clinical applications are strongly restrained due to the low bioavailability, low renal accumulation, short renal retention time, and high dosage-induced toxicity. Methods: We addressed the clinical dilemma of NAC by developing ultrasmall gold nanoclusters (1-2 nm) capped with NAC (denoted as Au NCs-NAC) as a nanozyme-based antioxidant defense system for AKI alleviation. Rhabdomyolysis-induced AKI mice model was developed, and the same dose of free NAC (as a control) and NAC onto Au NCs (Au NCs-NAC) was used for in vivo investigation of AKI restoration. Results: The as-developed gold nanozyme exhibited high bioavailability and good physicochemical stability as compared to NAC. Meanwhile, Au NCs-NAC showed broad-spectrum antioxidant activity of Au NCs-NAC, offering in vitro renoprotective effects, as well as macrophages by relieving inflammation under hydrogen peroxide or lipopolysaccharide stimulation. Notably, owing to the smaller size than kidney threshold (5.5 nm), Au NCs-NAC displayed preferential renal enrichment (< 2 h) and longer retention (> 24 h) in AKI mice as revealed by fluorescence imaging, thereby largely enhancing the restoration of renal function in AKI mice than free NAC by protecting the kidneys from oxidative injury and inflammation without systemic toxicity, as demonstrated by tissues staining, inflammatory cytokines and biomarkers detection, and mice survival rate. Conclusion: Owing to the synergistic anti-inflammatory/antioxidative effects, and enhanced bioavailability and renal accumulation/retention, Au NCs-NAC displayed far superior therapeutic performance than NAC alone. This work will facilitate the development of high-performance antioxidative nanoplatforms, as well as overcome the clinical limitations of small molecular drugs for AKI treatment and other inflammatory diseases.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tianhui Tu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kathy S. Zhu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Oral Digital Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
11
|
Zhang DY, Liu H, Zhu KS, He T, Younis MR, Yang C, Lei S, Wu J, Lin J, Qu J, Huang P. Prussian blue-based theranostics for ameliorating acute kidney injury. J Nanobiotechnology 2021; 19:266. [PMID: 34488789 PMCID: PMC8419910 DOI: 10.1186/s12951-021-01006-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Acute kidney injury (AKI) with high mortality rates is associated with an excess of reactive oxygen/nitrogen species (RONS) within kidney tissues. Recently, nanomedicine antioxidant therapy has been used to alleviate AKI. Herein, we synthesized ultrasmall Prussian blue nanozymes (PB NZs, 4.5 nm) as theranostic agents for magnetic resonance (MR)/photoacoustic (PA) dual-modal imaging guided AKI treatment. Results PB NZs exhibited multi-enzyme mimetic abilities, promoting the effective elimination of RONS both in vitro and in vivo. Moreover, benefiting from their imaging contrast properties, the rapid renal accumulation of PB NZs was verified by in vivo PA/MR dual-modal imaging. Due to their excellent enrichment in the kidney and unique multi-enzyme mimetic abilities, ultrasmall PB NZs displayed superior AKI treatment efficacy compared with that of amifostine in two clinically relevant types of AKI induced murine models (either by rhabdomyolysis or cisplatin). Conclusion Our findings suggested ultrasmall PB NZs, as nanozyme theranostics, have great potential for AKI management. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01006-z.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Kathy S Zhu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Oral Digital Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chen Yang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Zhang DY, Younis MR, Liu H, Lei S, Wan Y, Qu J, Lin J, Huang P. Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management. Biomaterials 2021; 271:120706. [PMID: 33607543 DOI: 10.1016/j.biomaterials.2021.120706] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is a kind of kidney disease with a high mortality rate, and is predominantly associated with abundant endogenous reactive oxygen/nitrogen species (RONS). However, there are no universal clinical treatment options currently. Development of antioxidants with high kidney enrichment is highly desired to prevent AKI. As a promising new artificial enzyme, nanozymes have attracted extensive attention over the past decade because of their commendable advantages over natural and traditional artificial enzymes. In this study, we reported ultrasmall polyvinylpyrrolidone-coated iridium nanoparticles (denoted as Ir NPs-PVP, 1.5 nm) as multi-enzyme mimetic to scavenge a variety of RONS, offering an efficient RONS-induced cellular protection. Meanwhile, computed tomography and inductively coupled plasma mass spectrometry demonstrated preferential renal uptake of Ir NPs-PVP following intravenous administration, leading to alleviate clinical symptoms in mice subjected to rhabdomyolysis- or cis-platinum-induced AKI. Impressively, ultrasmall Ir NPs-PVP exhibit relatively low systemic side effects in vivo due to rapid renal clearance via urine. Our work presents the clinically translatable potential of ultrasmall nanozymes for AKI management.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Zhang DY, Liu H, He T, Younis MR, Tu T, Yang C, Zhang J, Lin J, Qu J, Huang P. Biodegradable Self-Assembled Ultrasmall Nanodots as Reactive Oxygen/Nitrogen Species Scavengers for Theranostic Application in Acute Kidney Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005113. [PMID: 33491916 DOI: 10.1002/smll.202005113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Acute kidney injury (AKI) is frequently triggered by abundant reactive oxygen/nitrogen species (RONS) and leads to high morbidity and mortality in clinic. Unfortunately, the current clinical treatment options are only limited to supportive care, and hence, the development of nano-antioxidants with high kidney enrichment is an attractive novel strategy for AKI management. Herein, self-assembled ultrasmall nanodots are reported that consist of iron ion, gallic acid, and polyvinylpyrrolidone (denoted as FGP nanodots) as broad-spectrum RONS scavengers to alleviate both glycerinum- and cis-platinum- induced AKI in mice. Ultrasmall FGP nanodots (≈3.5 nm) offer efficient protection in vitro and reduce cellular apoptosis after H2 O2 stimulation by eliminating various RONS including hydroxyl radical (·OH), superoxide anion (·O2- ), nitric oxide (NO), and peroxynitrite (ONOO- ), etc. In vivo duplex magnetic resonance/fluorescence imaging demonstrates preferential accumulation of FGP nanodots in the kidneys with rapid renal clearance through urine. Importantly, FGP nanodots exhibit remarkable RONS consumption in vivo with enhanced biocompatibility and biodegradability, resulting in superior therapeutic effect than small molecule drug (Amifostine) in two AKI mouse models. This study presents the promising potential of ultrasmall self-assembled FGP nanodots as imaging contrast agent and broad-spectrum antioxidant nanomedicine for AKI theranotics.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianhui Tu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Chen Yang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
14
|
Antioxidant Activity of Telmisartan-Cu(II) Nanoparticles Connected 2-Pyrimidinamine and Their Evaluation of Cytotoxicity Activities. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8872479. [PMID: 33282956 PMCID: PMC7688356 DOI: 10.1155/2020/8872479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/15/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022]
Abstract
Copper nanoparticles (Cu-Nps) are one of the promising materials for the advancement of nanoscience and technology. In this work, we synthesized telmisartan copper nanoparticles and 2-pyrimidinamines via Biginelli reaction using telmisartan copper nanoparticles (Cu-Nps) as a reusable catalyst. The synthesis of 2-pyrimidinamine derivatives (1a-c) was achieved in water and under solvent-free condition (Green chemistry approach). Synthesis of 2-pyrimidinamine with telmisartan copper nanoparticle (Cu-Nps–Pyr) unexpected product was also isolated from synthesis of 2-pyrimidinamine preparation. Antioxidant and cytotoxic activities were carried out both in 2-pyrimidinamine (1a-1c) and 2-pyrimidinamine with telmisartan copper nanoparticles (Cu-Nps–Pyr). The synthesized 2-pyrimidinamine derivatives (1a-c) were characterized from FT-IR, 1H and 13C NMR spectroscopy, mass and elemental analyses. The synthesized telmisartan copper nanoparticles (Cu-Nps) were characterized from UV spectroscopy, XRD, SEM, EDX, AFM (atomic force microscopy), profile, waviness, and roughness analyses. Antioxidant activity was screened based on ABTS·+ radical scavenging and linoleic acid peroxidation performance. Cu-Nps–Pyr-1b showed substantial antioxidant (97.2%) activity against ABTS·+ assay and 91.2% activity against AAPH assays compared with Trolox. Cytotoxicity was evaluated using HepG2, HeLa, and MCF-7 cell lines, the Cu-Nps–Pyr-1a is high in toxicities (GI50 = 0.01 μm) against the HeLa cancel cell line compared with doxorubicin. The developed copper NPs with 2-pyrimidinamine (Cu-Nps–Pyr) could provide promising advances as antioxidant activities; this nanocomposition could be considered an anticancer treatment in future investigations.
Collapse
|
15
|
Khatami MR, Nikravan N, Salarifar M, Poorhosseini HR, Sadeghian S, Haj-Zeinali AM, Aghajani H. Comparison of Oral and Intravenous N-acetyl Cysteine in Preventing Contrast Nephropathy. Indian J Nephrol 2020; 30:403-408. [PMID: 33840960 PMCID: PMC8023025 DOI: 10.4103/ijn.ijn_260_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 01/24/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Despite high rates of morbidity and mortality in patients with contrast-induced nephropathy (CIN), there is no consensus regarding prevention of this well-known complication of contrast media use. One agent that has been widely used in this regard is N-acetyl cysteine (NAC). Nevertheless, its efficacy is still controversial. The aim of this study was to assess the efficacy of NAC, both in the oral and intravenous forms, for the prevention of CIN. Methods This study is a double-blind randomized placebo controlled clinical trial. We randomized 434 adult patients with chronic kidney disease (constant serum creatinine ≥1.5 mg/dL) who were candidates for coronary angiography/plasty. The patients were categorized into three groups. One group received 1,200 mg NAC intravenously half an hour before the procedure and oral placebo starting 3 days before angiography. The second group received oral NAC 600 mg twice daily for 3 days, starting the day before the intervention and intravenous placebo half an hour before intervention. The third group received both oral and intravenous placebo. CIN was defined as a 25% relative increase in serum creatinine from baseline value, 48 h after use of contrast medium. Results Of the 434 patients, 149 received intravenous NAC, 145 received oral NAC, and the remaining 140 received placebo. The incidence of CIN in the three groups was 6.1%, 7.6%, and 10.8%, respectively (p = 0.34). Conclusion In patients with chronic kidney disease, neither intravenous nor oral NAC is superior to placebo for preventing CIN.
Collapse
Affiliation(s)
| | - Nasrin Nikravan
- Nephrology Research Center, Imam Khomeini Hospital, Keshavarz Blvd, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
16
|
Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun 2020; 11:2788. [PMID: 32493916 PMCID: PMC7270130 DOI: 10.1038/s41467-020-16544-7] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is associated with many acute and chronic inflammatory diseases, yet limited treatment is currently available clinically. The development of enzyme-mimicking nanomaterials (nanozymes) with good reactive oxygen species (ROS) scavenging ability and biocompatibility is a promising way for the treatment of ROS-related inflammation. Herein we report a simple and efficient one-step development of ultrasmall Cu5.4O nanoparticles (Cu5.4O USNPs) with multiple enzyme-mimicking and broad-spectrum ROS scavenging ability for the treatment of ROS-related diseases. Cu5.4O USNPs simultaneously possessing catalase-, superoxide dismutase-, and glutathione peroxidase-mimicking enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low dosage and significantly improve treatment outcomes in acute kidney injury, acute liver injury and wound healing. Meanwhile, the ultrasmall size of Cu5.4O USNPs enables rapid renal clearance of the nanomaterial, guaranteeing the biocompatibility. The protective effect and good biocompatibility of Cu5.4O USNPs will facilitate clinical treatment of ROS-related diseases and enable the development of next-generation nanozymes.
Collapse
|
17
|
Timal RJ, Kooiman J, Sijpkens YWJ, de Vries JPPM, Verberk-Jonkers IJAM, Brulez HFH, van Buren M, van der Molen AJ, Cannegieter SC, Putter H, van den Hout WB, Jukema JW, Rabelink TJ, Huisman MV. Effect of No Prehydration vs Sodium Bicarbonate Prehydration Prior to Contrast-Enhanced Computed Tomography in the Prevention of Postcontrast Acute Kidney Injury in Adults With Chronic Kidney Disease: The Kompas Randomized Clinical Trial. JAMA Intern Med 2020; 180:533-541. [PMID: 32065601 PMCID: PMC7042862 DOI: 10.1001/jamainternmed.2019.7428] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Prevention of postcontrast acute kidney injury in patients with stage 3 chronic kidney disease (CKD) by means of prehydration has been standard care for years. However, evidence for the need for prehydration in this group is limited. OBJECTIVE To assess the renal safety of omitting prophylactic prehydration prior to iodine-based contrast media administration in patients with stage 3 CKD. DESIGN, SETTING, AND PARTICIPANTS The Kompas trial was a multicenter, noninferiority, randomized clinical trial conducted at 6 hospitals in the Netherlands in which 523 patients with stage 3 CKD were randomized in a 1:1 ratio to receive no prehydration or prehydration with 250 mL of 1.4% sodium bicarbonate administered in a 1-hour infusion before undergoing elective contrast-enhanced computed tomography from April 2013 through September 2016. Final follow-up was completed in September 2017. Data were analyzed from January 2018 to June 2019. INTERVENTIONS In total, 262 patients were allocated to the no prehydration group and 261 were allocated to receive prehydration. Analysis on the primary end point was available in 505 patients (96.6%). MAIN OUTCOMES AND MEASURES The primary end point was the mean relative increase in serum creatinine level 2 to 5 days after contrast administration compared with baseline (noninferiority margin of less than 10% increase in serum creatinine level). Secondary outcomes included the incidence of postcontrast acute kidney injury 2 to 5 days after contrast administration, mean relative increase in creatinine level 7 to 14 days after contrast administration, incidences of acute heart failure and renal failure requiring dialysis, and health care costs. RESULTS Of 554 patients randomized, 523 were included in the intention-to-treat analysis. The median (interquartile range) age was 74 (67-79) years; 336 (64.2%) were men and 187 (35.8%) were women. The mean (SD) relative increase in creatinine level 2 to 5 days after contrast administration compared with baseline was 3.0% (10.5) in the no prehydration group vs 3.5% (10.3) in the prehydration group (mean difference, 0.5; 95% CI, -1.3 to 2.3; P < .001 for noninferiority). Postcontrast acute kidney injury occurred in 11 patients (2.1%), including 7 of 262 (2.7%) in the no prehydration group and 4 of 261 (1.5%) in the prehydration group, which resulted in a relative risk of 1.7 (95% CI, 0.5-5.9; P = .36). None of the patients required dialysis or developed acute heart failure. Subgroup analyses showed no evidence of statistical interactions between treatment arms and predefined subgroups. Mean hydration costs were €119 (US $143.94) per patient in the prehydration group compared with €0 (US $0) in the no prehydration group (P < .001). Other health care costs were similar. CONCLUSIONS AND RELEVANCE Among patients with stage 3 CKD undergoing contrast-enhanced computed tomography, withholding prehydration did not compromise patient safety. The findings of this study support the option of not giving prehydration as a safe and cost-efficient measure. TRIAL REGISTRATION Netherlands Trial Register Identifier: NTR3764.
Collapse
Affiliation(s)
- Rohit J Timal
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith Kooiman
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.,Department of Obstetrics and Gynaecology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Yvo W J Sijpkens
- Department of Internal Medicine, Haaglanden Medisch Centrum Bronovo, The Hague, the Netherlands
| | - Jean-Paul P M de Vries
- Department of Vascular Surgery, St Antonius Hospital, Nieuwegein, the Netherlands.,Department of Vascular Surgery, University Medical Centre Groningen, Groningen, the Netherlands
| | | | - Harald F H Brulez
- Department of Internal Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Marjolijn van Buren
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, the Netherlands
| | - Aart J van der Molen
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne C Cannegieter
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hein Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Wilbert B van den Hout
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Menno V Huisman
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Foroughinia F, Mirjalili M, Mirzaei E, Oboodi A. Omega-3 Supplementation in the Prevention of Contrast Induced Nephropathy in Patients Undergoing Elective Percutaneous Coronary Intervention: A Randomized Placebo-Controlled Trial. Adv Pharm Bull 2019; 9:307-313. [PMID: 31380258 PMCID: PMC6664110 DOI: 10.15171/apb.2019.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/02/2019] [Accepted: 04/14/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Contrast-induced nephropathy (CIN) is the third cause of hospital-acquired renal failure and is associated with significant morbidity and mortality. Several studies have revealed the protective role of omega-3 in prevention and treatment of some kidney injuries. This study was conducted to examine the effect of omega-3 supplementation on the markers of renal function and to evaluate its potential in the prevention of CIN in patients undergoing elective percutaneous coronary intervention (PCI). Methods: In this double-blind, randomized clinical trial, 85 eligible patients scheduled for PCI was randomly divided into omega-3 (a single 3750 mg dose of omega-3 as well as routine hydration therapy within 12 hours before PCI) or control (placebo plus routine hydration therapy) groups. Serum creatinine (SCr) and cystatin C levels were measured at baseline and 24 hours after PCI. Results: Our results indicated that post- PCI cystatin C levels were significantly decreased in the omega-3 group compared to the control group (P < 0.001). Although less upward manner was seen in the level of 24-hour creatinine in the omega-3 group, it did not reach the significance level (P = 0.008). Conclusion: The positive effect of omega-3 on cystatin C levels showed that it may have a protective role in the prevention of CIN in post-PCI patients with normal kidney function. However, to better assess this effect, it is highly recommended to design future studies with higher doses and longer duration of therapy with omega-3 plus long-term follow up.
Collapse
Affiliation(s)
- Farzaneh Foroughinia
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Clinical Pharmacy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ehsan Mirzaei
- Clinical Pharmacy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Oboodi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel) 2019; 8:antiox8050111. [PMID: 31035402 PMCID: PMC6562654 DOI: 10.3390/antiox8050111] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), a plant antioxidant naturally found in onion, is a precursor to glutathione. It has been used as a drug since the 1960s and is listed on the World Health Organization (WHO) Model List of Essential Medicines as an antidote in poisonings. There are numerous other uses or proposed uses in medicine that are still in preclinical and clinical investigations. NAC is also used in food supplements and cosmetics. Despite its abundant use, there are projections that the NAC global market will grow in the next five years; therefore, the purpose of this work is to provide a balanced view of further uses of NAC as a dietary supplement. Although NAC is considered a safe substance, the results among clinical trials are sometimes controversial or incomplete, like for many other antioxidants. More clinical trials are underway that will improve our understanding of NAC applicability.
Collapse
Affiliation(s)
- Špela Šalamon
- Center for human molecular genetics and pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia.
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Borut Poljšak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Cysteine/Glutathione Deficiency: A Significant and Treatable Corollary of Disease. THE THERAPEUTIC USE OF N-ACETYLCYSTEINE (NAC) IN MEDICINE 2019. [PMCID: PMC7120747 DOI: 10.1007/978-981-10-5311-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glutathione (GSH) deficiency may play a pivotal role in a variety of apparently unrelated clinical conditions and diseases. Orally administered N-acetylcysteine (NAC), which replenishes the cysteine required for GSH synthesis, has been tested in a large number of randomized placebo-controlled trials involving these diseases and conditions. This chapter focused on developing a base of evidence suggesting that NAC administration improves disease by increasing cysteine and/or GSH in a variety of diseases, thereby implying a significant role for GSH deficiency in the clinical basis of many diseases. To develop this base of evidence, we systematically selected studies which considered the hypothesis that the therapeutic efficacy for NAC is an indication that cysteine and/or GSH deficiency is a pathophysiological part of the diseases studied. In this manner we focus this chapter on explaining the biological mechanisms of NAC therapy in a wide variety of disorders and demonstrate its ubiquitous role in improving disease that involves disrupted GSH and/or cysteine metabolism.
Collapse
|
21
|
Ni D, Jiang D, Kutyreff CJ, Lai J, Yan Y, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, Liu Z, Huang P, Engle JW, Cai W. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun 2018; 9:5421. [PMID: 30575745 PMCID: PMC6303396 DOI: 10.1038/s41467-018-07890-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a common reactive oxygen species (ROS)-related renal disease that causes numerous deaths annually, yet only supportive treatment is currently available in the clinics. Development of antioxidants with high accumulation rates in kidneys is highly desired to help prevent AKI. Here we report molybdenum-based polyoxometalate (POM) nanoclusters with preferential renal uptake as novel nano-antioxidants for kidney protection. These POM nanoclusters, with a readily variable valence state of molybdenum ions, possess the capability to scavenge detrimental ROS. Our results demonstrate that POM nanoclusters can efficiently alleviate clinical symptoms in mice subjected to AKI, as verified by dynamic PET imaging with 68Ga-EDTA, serum tests, kidney tissue staining, and biomarkers detection in the kidneys. The protective effect of POM nanoclusters against AKI in living animals suggests exploring their use for the treatment of AKI patients, as well as patients with other ROS-related diseases. There are currently no effective therapies available for acute kidney injury (AKI). Here the authors generate molybdenum-based polyoxometalate nanoclusters and show that these have preferential renal uptake and can ameliorate AKI pathology in mice by scavenging reactive oxygen species.
Collapse
Affiliation(s)
- Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Christopher J Kutyreff
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Jianhao Lai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.,Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yongjun Yan
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Bo Yu
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Hyung-Jun Im
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Lei Kang
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Steve Y Cho
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA. .,University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
22
|
Karadeniz M, Kandemir H, Sarak T, Alp Ç. The prevalence of contrast nephropathy in patients undergoing percutaneous coronary intervention in acute coronary syndrome. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2018. [DOI: 10.32322/jhsm.410522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Stawicki S, Sims C, Sharma R, Weger N, Truitt M, Cipolla J, Schrag S, Lorenzo M, Chaar MEL, Torigian D, Kim P, Sarani B. Vena Cava Filters: A Synopsis of Complications and Related Topics. J Vasc Access 2018. [DOI: 10.1177/112972980800900204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Deep venous thrombosis and pulmonary embolism constitute common preventable causes of morbidity and mortality. The incidence of venous thromboembolism (VTE) continues to increase. Standard anticoagulation therapy may reduce the risk of fatal PE by 75% and that of recurrent VTE by over 90%. For patients who are not candidates for anticoagulation, a vena cava filter (VCF) may be beneficial. Despite a good overall safety record, significant complications related to VCF are occasionally seen. This review discusses both procedural and non-procedural complications associated with VCF placement and use. We will also discuss VCF use in the settings of pregnancy, malignancy, and the clinical need for more than one filter.
Collapse
Affiliation(s)
- S.P. Stawicki
- Department of Surgery, Division of Critical Care, Trauma and Burns, The Ohio State University Medical Center, Columbus, OH - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - C.A. Sims
- Department of Surgery, Division of Traumatology and Surgical Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - R. Sharma
- Department of Surgery, Easton Hospital, Easton, PA - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - N.S. Weger
- Beth Israel Medical Center, Newark, NJ - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - M. Truitt
- Department of Surgery, Methodist Hospital, Dallas, TX - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - J. Cipolla
- St. Luke's Regional Resource Level I Trauma Center, Bethlehem, PA - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - S.P. Schrag
- Department of Surgery, Division of Trauma and Surgical Critical Care, Vanderbilt University School of Medicine, Nashville, TN - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - M. Lorenzo
- Department of Surgery, Methodist Hospital, Dallas, TX - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - M. EL Chaar
- Department of Surgery, Methodist Hospital, Dallas, TX - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - D.A. Torigian
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA - USA
| | - P.K. Kim
- Department of Surgery, Division of Traumatology and Surgical Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| | - B. Sarani
- Department of Surgery, Division of Traumatology and Surgical Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA - USA
- OPUS 12 Foundation, Inc, King of Prussia, PA - USA
| |
Collapse
|
24
|
Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, Ostermann M, Oudemans-van Straaten HM, Schetz M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017 : Expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med 2017; 43:730-749. [PMID: 28577069 PMCID: PMC5487598 DOI: 10.1007/s00134-017-4832-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) in the intensive care unit is associated with significant mortality and morbidity. OBJECTIVES To determine and update previous recommendations for the prevention of AKI, specifically the role of fluids, diuretics, inotropes, vasopressors/vasodilators, hormonal and nutritional interventions, sedatives, statins, remote ischaemic preconditioning and care bundles. METHOD A systematic search of the literature was performed for studies published between 1966 and March 2017 using these potential protective strategies in adult patients at risk of AKI. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, exposure to potentially nephrotoxic drugs and radiocontrast. Clinical endpoints included incidence or grade of AKI, the need for renal replacement therapy and mortality. Studies were graded according to the international GRADE system. RESULTS We formulated 12 recommendations, 13 suggestions and seven best practice statements. The few strong recommendations with high-level evidence are mostly against the intervention in question (starches, low-dose dopamine, statins in cardiac surgery). Strong recommendations with lower-level evidence include controlled fluid resuscitation with crystalloids, avoiding fluid overload, titration of norepinephrine to a target MAP of 65-70 mmHg (unless chronic hypertension) and not using diuretics or levosimendan for kidney protection solely. CONCLUSION The results of recent randomised controlled trials have allowed the formulation of new recommendations and/or increase the strength of previous recommendations. On the other hand, in many domains the available evidence remains insufficient, resulting from the limited quality of the clinical trials and the poor reporting of kidney outcomes.
Collapse
Affiliation(s)
- M Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstasse 35, 6020, Innsbruck, Austria.
| | - W Druml
- Department of Internal Medicine III, University Hospital Vienna, Vienna, Austria
| | - L G Forni
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey and Surrey Perioperative Anaesthesia and Critical Care Collaborative Research Group (SPACeR), Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, United Kingdom
| | | | - P M Honore
- Department of Intensive Care, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - E Hoste
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - M Ostermann
- Department of Critical Care and Nephrology, Guy's and St Thomas' Hospital, London, United Kingdom
| | - H M Oudemans-van Straaten
- Department of Adult Intensive Care, VU University Medical Centre, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - M Schetz
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven University, Leuven, Belgium
| |
Collapse
|
25
|
Abstract
Acute kidney injury (AKI) is a common condition with multiple etiologies and variable clinical findings and pathologic manifestations. AKI is associated with serious adverse clinical outcomes, including the development of de novo chronic kidney disease, accelerated progression of pre-existing chronic kidney disease, end-stage kidney disease, and increased mortality. Past research has advanced our understanding of the pathophysiology, epidemiology, and outcomes of AKI significantly, however, little progress has been made in the development of evidence-based interventions for its prevention and treatment. In this review, we discuss key considerations in the design of clinical trials in AKI and highlight significant methodologic limitations that precluded many past studies from determining the effectiveness of preventive and therapeutic strategies for this common and serious condition.
Collapse
|
26
|
Liu H, Li RS, Zhou J, Huang CZ. Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off–on mechanism. Analyst 2017; 142:4221-4227. [DOI: 10.1039/c7an01136a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel fluorescence (FL) analytical method to determine N-acetylcysteine (NAC) was established by using a branched polyethyleneimine-functionalized carbon dot fluorescent system involving FL quenching by Cu2+ and subsequent FL recovery upon addition of NAC.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Rong Sheng Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Jun Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| |
Collapse
|
27
|
Schmidt P, Pang D, Nykamp D, Knowlton G, Jia H. N-Acetylcysteine and Sodium Bicarbonate Versus N-Acetylcysteine and Standard Hydration for the Prevention of Radiocontrast-Induced Nephropathy Following Coronary Angiography. Ann Pharmacother 2016; 41:46-50. [PMID: 17190844 DOI: 10.1345/aph.1h354] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Radiocontrast-induced nephropathy (RCIN) is thought to be caused by renal ischemia and direct toxic effects on renal tubular cells brought on by contrast media. The combination of N-acetylcysteine (NAC) and hydration fluids (NaCI 0.9% or 0.45%) has been shown to reduce these deleterious effects and is commonly given prior to coronary angiography. The use of bicarbonate as the hydration anion has been shown to confer additional RCIN protection compared with that of saline. However, limited data are available regarding whether sodium bicarbonate hydration, proven to be beneficial alone, can further improve outcomes when given with NAC. Objective: To compare the incidence of RCIN in patients undergoing coronary angiography after pretreatment with NAC plus sodium bicarbonate hydration or NAC plus standard hydration (NaCI 0.9% or 0.45%). Methods: A retrospective, single-center study evaluated 96 patients who underwent coronary angiography from January 2002 to December 2005. Data were collected through electronic chart reviews. Results: Forty-seven patients received NAC and sodium bicarbonate for hydration and 49 received NAC and standard hydration. Baseline characteristics between the 2 groups were similar. All patients received at least one 600 mg oral dose of NAC before angiography was performed. RCIN was defined as impairment of renal function occurring within 72 hours of administering contrast media, indicated by an absolute increase in the serum creatinine level of 0.5 mg/dL or more. A total of 12.2% of the patients receiving NAC and standard hydration developed RCIN, versus 14.9% of the patients in the NAC and sodium bicarbonate group (p = 0.713). Conclusions: The addition of sodium bicarbonate to NAC does not appear to confer additional protection against the development of RCIN. Prospective, randomized, placebo-controlled trials are warranted to definitively determine how this combination compares with NAC and standard hydration in preventing RCIN.
Collapse
Affiliation(s)
- Paul Schmidt
- Saint Joseph's Hospital of Atlanta, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The intravascular administration of iodinated radiocontrast media can lead to acute renal dysfunction. Even small changes in renal function have been associated with increased morbidity and mortality, making the prevention of radiocontrast nephropathy of paramount importance. This review summarizes the principal risk factors for radiocontrast nephropathy and evidence-based preventive strategies that should be used to limit its occurrence. Risk factors for radiocontrast nephropathy include preexistent kidney disease, diabetes mellitus, dose of radiocontrast used, advanced congestive heart failure, and intravascular volume depletion. Proven preventive measures include volume expansion with intravenous saline or sodium bicarbonate and the use of low-osmolar or iso-osmolar radiocontrast media. Studies evaluating N-acetylcysteine have been conflicting, with meta-analyses suggesting a small beneficial effect. Studies of other pharmacologic agents have not demonstrated clinical benefit.
Collapse
Affiliation(s)
- Steven D Weisbord
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15240, USA
| | | |
Collapse
|
29
|
Okusa MD, Rosner MH, Kellum JA, Ronco C. Therapeutic Targets of Human AKI: Harmonizing Human and Animal AKI. J Am Soc Nephrol 2015; 27:44-8. [PMID: 26519086 DOI: 10.1681/asn.2015030233] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The opportunity to make advances in the prevention and treatment of AKI has never been greater than it is today. Major advances have been made in the understanding of the biology of AKI, the design of clinical trials, and the use of diagnostic and prognostic biomarkers. These advances have been supplemented by the coordinated effort of societies, federal agencies, and industry, such that we are poised in the ensuing years to positively address the unrelenting harm that this disorder has created. Over the past decade, major advances have been made in understanding the pathophysiology of AKI, mainly through the study of small animal models. However, translating these findings to human AKI remains a barrier, which is typified by the absence of effective therapeutic agents. The purpose of the Acute Dialysis Quality Initiative (ADQI) XIII was to harmonize human and animal studies and determine what is known about potential therapeutic targets and what gaps in knowledge remain. A series of invited reviews will distill key concepts from this initiative that focus on different pathogenic features of AKI, including hemodynamics, immunity and inflammation, cellular and molecular pathways, progression, and regeneration and repair. This series will convey the status of our knowledge of the pathophysiology of human AKI and propose therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia;
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Claudio Ronco
- Department of Nephrology Dialysis and Transplantation, San Bortolo Hospital and the International Renal Research Institute, Vicenza, Italy
| | | |
Collapse
|
30
|
Kang X, Hu DY, Li CB, Ai ZS, Peng A. N-acetylcysteine for the prevention of contrast-induced nephropathy in patients with pre-existing renal insufficiency or diabetes: a systematic review and meta-analysis. Ren Fail 2015; 37:297-303. [PMID: 26458505 DOI: 10.3109/0886022x.2015.1012985] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To identify benefit of N-acetylcysteine (NAC) on patients with pre-existing renal insufficiency or diabetes. BACKGROUND NAC administration is a common method for prevention of contrast-induced nephropathy (CIN). Nevertheless, its benefit on patients with pre-existing renal insufficiency or diabetes remains uncertain and controversial. METHODS Randomized controlled trials (RCTs) to evaluate the efficacy of NAC for the prevention of CIN in patients with pre-existing renal insufficiency or diabetes were searched from the databases of MEDLINE, EMBASE, and Cochrane library. Pooled odds ratio (OR) with 95% confidence interval (95% CI) were calculated using fixed-effects model by the Mantel-Haenszel test. RESULTS Twenty RCTs involving 3466 subjects (1756 assigned to NAC and 1710 assigned to the control) were included in the pre-existing renal dysfunction group. Pooled analysis suggested a significant reduction in CIN among this group (OR, 0.76; 95% CI, 0.61-0.93; p = 0.008). However, the nine trials comparing NAC versus control among patients with diabetes (NAC, 367 subjects; control, 358 subjects) showed no benefit of NAC for prevention of CIN (OR = 0.87; 95% CI, 0.58-1.30; p = 0.50). No significant heterogeneity was detected (p = 0.07; I2 = 34% for the group of pre-existing renal dysfunction; p = 0.40; I2 = 5% for the group of diabetes). CONCLUSION Our results suggest that NAC decreases the incidence of contrast-induced nephropathy among patients with pre-existing renal insufficiency. The benefit was not existed in patients with diabetes.
Collapse
Affiliation(s)
- Xin Kang
- a Department of Nephrology and Rheumatology , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , PR China and
| | - Da-Yong Hu
- a Department of Nephrology and Rheumatology , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , PR China and
| | - Chang-Bin Li
- a Department of Nephrology and Rheumatology , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , PR China and
| | - Zi-Sheng Ai
- b Department of Medical Statistics , College of Medicine, Tongji University , Shanghai , PR China
| | - Ai Peng
- a Department of Nephrology and Rheumatology , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , PR China and
| |
Collapse
|
31
|
|
32
|
Mirrakhimov AE, Mirrakhimov EM. Intravenous Contrast Material and Acute Kidney Injury: A Need for Caution. Radiology 2015; 275:931. [DOI: 10.1148/radiol.2015142801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Gouveia R, Bravo P, Santos C, Ramos A. Contrast-induced acute kidney injury – A review focusing on prophylactic strategies. ANGIOLOGIA E CIRURGIA VASCULAR 2015. [DOI: 10.1016/j.ancv.2015.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Prevention of contrast-induced nephropathy through a knowledge of its pathogenesis and risk factors. ScientificWorldJournal 2014; 2014:823169. [PMID: 25525625 PMCID: PMC4266998 DOI: 10.1155/2014/823169] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022] Open
Abstract
Contrast-induced nephropathy (CIN) is an iatrogenic acute renal failure (ARF) occurring after the intravascular injection of iodinated radiographic contrast media. During the past several years, in many patients undergoing computed tomography, iodinated contrast media have not been used for the fear of ARF, thereby compromising the diagnostic procedure. But recent studies have demonstrated that CIN is rarely occurring in patients with normal renal function and that preexisting chronic renal failure and/or diabetes mellitus represent(s) predisposing condition(s) for its occurrence. After the description of CIN and its epidemiology and pathophysiology, underlying the important role played by dehydration and salt depletion, precautions for prevention of CIN are listed, suggested, and discussed. Maximum priority has to be given to adequate hydration and volume expansion prior to radiographic procedures. Other important precautions include the need for monitoring renal function before, during, and after contrast media injection, discontinuation of potentially nephrotoxic drugs, use of either iodixanol or iopamidol at the lowest dosage possible, and administration of antioxidants. A long list of references is provided that will enable readers a deep evaluation of the topic.
Collapse
|
35
|
Andreucci M, Faga T, Pisani A, Sabbatini M, Michael A. Acute kidney injury by radiographic contrast media: pathogenesis and prevention. BIOMED RESEARCH INTERNATIONAL 2014; 2014:362725. [PMID: 25197639 PMCID: PMC4150431 DOI: 10.1155/2014/362725] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022]
Abstract
It is well known that iodinated radiographic contrast media may cause kidney dysfunction, particularly in patients with preexisting renal impairment associated with diabetes. This dysfunction, when severe, will cause acute renal failure (ARF). We may define contrast-induced Acute Kidney Injury (AKI) as ARF occurring within 24-72 hrs after the intravascular injection of iodinated radiographic contrast media that cannot be attributed to other causes. The mechanisms underlying contrast media nephrotoxicity have not been fully elucidated and may be due to several factors, including renal ischaemia, particularly in the renal medulla, the formation of reactive oxygen species (ROS), reduction of nitric oxide (NO) production, and tubular epithelial and vascular endothelial injury. However, contrast-induced AKI can be prevented, but in order to do so, we need to know the risk factors. We have reviewed the risk factors for contrast-induced AKI and measures for its prevention, providing a long list of references enabling readers to deeply evaluate them both.
Collapse
Affiliation(s)
- Michele Andreucci
- Nephrology Unit, Department of Health Sciences, “Magna Graecia” University, Campus “Salvatore Venuta”, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Teresa Faga
- Nephrology Unit, Department of Health Sciences, “Magna Graecia” University, Campus “Salvatore Venuta”, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Antonio Pisani
- Nephology Unit, Department of Public Health, “Federico II” University, Via Pansini no. 5, 80131 Naples, Italy
| | - Massimo Sabbatini
- Nephology Unit, Department of Public Health, “Federico II” University, Via Pansini no. 5, 80131 Naples, Italy
| | - Ashour Michael
- Nephrology Unit, Department of Health Sciences, “Magna Graecia” University, Campus “Salvatore Venuta”, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| |
Collapse
|
36
|
Ozsvath KJ, Darling RC. Renal protection: preconditioning for the prevention of contrast-induced nephropathy. Semin Vasc Surg 2014; 26:144-9. [PMID: 25220319 DOI: 10.1053/j.semvascsurg.2014.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As the numbers of interventional procedures are rising exponentially, identification of those patients at risk for renal complications has become even more important. Renal complications have been associated with increased morbidity and mortality after interventions. Risk factors have been studied to help identify those patients at increased risk for developing contrast-induced nephropathy. Hydration and medications have been studied as protective measures to decrease risk of renal complications. Preconditioning patients with intravenous hydration has been found to be the most helpful in circumventing postprocedural contrast-induced nephropathy.
Collapse
Affiliation(s)
| | - R Clement Darling
- The Vascular Group, 43 New Scotland Avenue (MC157), Albany, NY 12208
| |
Collapse
|
37
|
Andreucci M, Solomon R, Tasanarong A. Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. BIOMED RESEARCH INTERNATIONAL 2014; 2014:741018. [PMID: 24895606 PMCID: PMC4034507 DOI: 10.1155/2014/741018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/03/2014] [Indexed: 12/18/2022]
Abstract
Radiocontrast media (RCM) are medical drugs used to improve the visibility of internal organs and structures in X-ray based imaging techniques. They may have side effects ranging from itching to a life-threatening emergency, known as contrast-induced nephropathy (CIN). We define CIN as acute renal failure occurring within 24-72 hrs of exposure to RCM that cannot be attributed to other causes. It usually occurs in patients with preexisting renal impairment and diabetes. The mechanisms underlying CIN include reduction in medullary blood flow leading to hypoxia and direct tubule cell damage and the formation of reactive oxygen species. Identification of patients at high risk for CIN is important. We have reviewed the risk factors and procedures for prevention, providing a long list of references enabling readers a deep evaluation of them both. The first rule to follow in patients at risk of CIN undergoing radiographic procedure is monitoring renal function by measuring serum creatinine and calculating the eGFR before and once daily for 5 days after the procedure. It is advised to discontinue potentially nephrotoxic medications, to choose radiocontrast media at lowest dosage, and to encourage oral or intravenous hydration. In high-risk patients N-acetylcysteine may also be given.
Collapse
Affiliation(s)
- Michele Andreucci
- Nephrology Unit, Department of “Health Sciences”, Campus “Salvatore Venuta”, “Magna Graecia” University, Loc. Germaneto, 88100 Catanzaro, Italy
| | - Richard Solomon
- University of Vermont College of Medicine, Fletcher Allen Health Care, Burlington, VT, USA
| | - Adis Tasanarong
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Thammasat University, Rangsit Campus, Khlong Luang, Pathum Thani 12121, Thailand
| |
Collapse
|
38
|
Guidelines on the use of iodinated contrast media in patients with kidney disease 2012: digest version. JSN, JRS, and JCS Joint Working Group. Jpn J Radiol 2014; 31:546-84. [PMID: 23884513 DOI: 10.1007/s11604-013-0226-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Ataei S, Hadjibabaie M, Moslehi A, Taghizadeh-Ghehi M, Ashouri A, Amini E, Gholami K, Hayatshahi A, Vaezi M, Ghavamzadeh A. A double-blind, randomized, controlled trial onN-acetylcysteine for the prevention of acute kidney injury in patients undergoing allogeneic hematopoietic stem cell transplantation. Hematol Oncol 2014; 33:67-74. [DOI: 10.1002/hon.2141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Sara Ataei
- Clinical Pharmacy Department, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Molouk Hadjibabaie
- Clinical Pharmacy Department, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Research Center for Rational Use of Drugs; Tehran University of Medical Sciences; Tehran Iran
| | - Amirhossein Moslehi
- Clinical Pharmacy Department, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Maryam Taghizadeh-Ghehi
- Research Center for Rational Use of Drugs; Tehran University of Medical Sciences; Tehran Iran
| | - Asieh Ashouri
- Research Center for Rational Use of Drugs; Tehran University of Medical Sciences; Tehran Iran
| | - Elham Amini
- Department of Pharmaceutical Care, Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - Kheirollah Gholami
- Clinical Pharmacy Department, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Research Center for Rational Use of Drugs; Tehran University of Medical Sciences; Tehran Iran
| | - Alireza Hayatshahi
- Department of Pharmacy Practice, School of Pharmacy; Loma Linda University; Loma Linda CA USA
| | - Mohammad Vaezi
- Hematology-Oncology and Stem Cell Research Center, Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Research Center, Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
40
|
Golshahi J, Nasri H, Gharipour M. Contrast-induced nephropathy; A literature review. J Nephropathol 2014; 3:51-6. [PMID: 24772397 PMCID: PMC3999584 DOI: 10.12860/jnp.2014.12] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/04/2014] [Accepted: 01/18/2014] [Indexed: 12/19/2022] Open
Abstract
CONTEXT Contrast-induced nephropathy (CIN) is a common cause of acute kidney dysfunction. EVIDENCE ACQUISITIONS Directory of Open Access Journals, Google Scholar, PubMed, EBSCO and Web of Science have been searched. RESULTS It is necessary to identify at risk patients at early stages to implement preventive strategies to decrease the incidence of this nephropathy. However, mechanisms of CIN have not fully explained yet. It seems that mechanisms which mediated by nitric oxide and prostaglandin-induced vasodilatation have been played a crucial role in the CIN. Hemodynamic changes of renal blood flow, which causes hypoxia in the renal medulla and direct toxic effects of contrast media on renal cells, are thought to contribute to the pathogenesis of CIN. Contrast media is normally divided into iso-osmolar, low-osmolar, and high-osmolar. N-acetylcysteine is considered as one of the best choices to prevent CIN in high-risk groups. CONCLUSIONS The first aim to prevent CIN is identifying high-risk subjects and controlling associate risk factors. As significant differences existed between contrasts agents due to their physicochemical properties, low-osmolar or iso-osmolar contrast media should be used to prevent CIN in at-risk patients. The volume of contrast media should be as low as possible.
Collapse
Affiliation(s)
- Jafar Golshahi
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Nasri
- Department of Nephrology, Division of Nephropathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojgan Gharipour
- Isfahan Cardiovascular Research Centre, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Abstract
Perioperative period is very likely to lead to acute renal failure because of anesthesia (general or perimedullary) and/or surgery which can cause acute kidney injury. Characterization of acute renal failure is based on serum creatinine level which is imprecise during and following surgery. Studies are based on various definitions of acute renal failure with different thresholds which skewed their comparisons. The RIFLE classification (risk, injury, failure, loss, end stage kidney disease) allows clinicians to distinguish in a similar manner between different stages of acute kidney injury rather than using a unique definition of acute renal failure. Acute renal failure during the perioperative period can mainly be explained by iatrogenic, hemodynamic or surgical causes and can result in an increased morbi-mortality. Prevention of this complication requires hemodynamic optimization (venous return, cardiac output, vascular resistance), discontinuation of nephrotoxic drugs but also knowledge of the different steps of the surgery to avoid further degradation of renal perfusion. Diuretics do not prevent acute renal failure and may even push it forward especially during the perioperative period when venous retourn is already reduced. Edema or weight gain following surgery are not correlated with the vascular compartment volume, much less with renal perfusion. Treatment of perioperative acute renal failure is similar to other acute renal failure. Renal replacement therapy must be mastered to prevent any additional risk of hemodynamic instability or hydro-electrolytic imbalance.
Collapse
Affiliation(s)
- Vibol Chhor
- Service d'anesthésie-réanimation chirurgicale, hôpital européen Georges Pompidou, AP-HP, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, 75015 Paris, France
| | - Didier Journois
- Service d'anesthésie-réanimation chirurgicale, hôpital européen Georges Pompidou, AP-HP, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, 75015 Paris, France.
| |
Collapse
|
42
|
Pharmacological strategies to prevent contrast-induced acute kidney injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:236930. [PMID: 24719848 PMCID: PMC3955653 DOI: 10.1155/2014/236930] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 02/01/2023]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the most common iatrogenic cause of acute kidney injury after intravenous contrast media administration. In general, the incidence of CI-AKI is low in patients with normal renal function. However, the rate is remarkably elevated in patients with preexisting chronic kidney disease, diabetes mellitus, old age, high volume of contrast agent, congestive heart failure, hypotension, anemia, use of nephrotoxic drug, and volume depletion. Consequently, CI-AKI particularly in high risk patients contributes to extended hospitalizations and increases long-term morbidity and mortality. The pathogenesis of CI-AKI involves at least three mechanisms; contrast agents induce renal vasoconstriction, increase of oxygen free radicals through oxidative stress, and direct tubular toxicity. Several strategies to prevent CI-AKI have been evaluated in experimental studies and clinical trials. At present, intravascular volume expansion with either isotonic saline or sodium bicarbonate solutions has provided more consistent positive results and was recommended in the prevention of CI-AKI. However, the proportion of patients with risk still develops CI-AKI. This review critically evaluated the current evidence for pharmacological strategies to prevent CI-AKI in patients with a risk of developing CI-AKI.
Collapse
|
43
|
Thomsen HS, Stacul F, Webb JAW. Contrast Medium-Induced Nephropathy. MEDICAL RADIOLOGY 2014. [DOI: 10.1007/174_2013_902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:868321. [PMID: 24459673 PMCID: PMC3891610 DOI: 10.1155/2013/868321] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/09/2013] [Indexed: 12/20/2022]
Abstract
In vitro and in vivo studies have demonstrated enhanced hypoxia and formation of reactive oxygen species (ROS) in the kidney following the administration of iodinated contrast media, which play a relevant role in the development of contrast media-induced nephropathy. Many studies indeed support this possibility, suggesting a protective effect of ROS scavenging or reduced ROS formation with the administration of N-acetylcysteine and bicarbonate infusion, respectively. Furthermore, most risk factors, predisposing to contrast-induced nephropathy, are prone to enhanced renal parenchymal hypoxia and ROS formation. In this review, the association of renal hypoxia and ROS-mediated injury is outlined. Generated during contrast-induced renal parenchymal hypoxia, ROS may exert direct tubular and vascular endothelial injury and might further intensify renal parenchymal hypoxia by virtue of endothelial dysfunction and dysregulation of tubular transport. Preventive strategies conceivably should include inhibition of ROS generation or ROS scavenging.
Collapse
|
45
|
Sadat U. Radiographic contrast-media-induced acute kidney injury: pathophysiology and prophylactic strategies. ISRN RADIOLOGY 2013; 2013:496438. [PMID: 24967281 PMCID: PMC4045530 DOI: 10.5402/2013/496438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/14/2013] [Indexed: 12/17/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is one of the most widely discussed and debated topics in cardiovascular medicine. With increasing number of contrast-media- (CM-) enhanced imaging studies being performed and growing octogenarian population with significant comorbidities, incidence of CI-AKI remains high. In this review, pathophysiology of CI-AKI, its relationship with different types of CM, role of serum and urinary biomarkers for diagnosing CI-AKI, and various prophylactic strategies used for nephroprotection against CI-AKI are discussed in detail.
Collapse
Affiliation(s)
- Umar Sadat
- Department of Surgery, Cambridge Vascular Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Box 201, Cambridge CB2 0QQ, UK
| |
Collapse
|
46
|
Jo SH, Kim SA, Kim HS, Han SJ, Park WJ, Choi YJ. Alpha-lipoic acid for the prevention of contrast-induced nephropathy in patients undergoing coronary angiography: the ALIVE study - a prospective randomized trial. Cardiology 2013; 126:159-66. [PMID: 23988855 DOI: 10.1159/000353812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVES α-Lipoic acid (ALA) is widely used for diabetic neuropathy due to its antioxidant properties. We evaluated its potential for preventing contrast-induced nephropathy (CIN). METHODS We conducted a prospective randomized controlled trial to evaluate the efficacy of ALA in CIN prevention. Two hundred and two patients with basal renal insufficiency who received elective coronary angiography were randomized to the ALA group [ALA treatment for 2 days (600 mg orally three times a day before and after coronary catheterization, n = 100)] or the control group (n = 102). The primary end point was the maximum increase in serum creatinine (sCr) and the secondary end point was the incidence of CIN defined as an increase in sCr of either ≥ 25% or ≥ 44.2 µmol/l. RESULTS Mean maximum increase in sCr was not different between the ALA and the control group (-1.32 ± 30.5 vs. -1.19 ± 30.1 µmol/l, respectively; p = 0.977). sCr did not significantly change from baseline (120.8 ± 69.8 vs. 122 ± 88.1 µmol/l) in the ALA group and the simple saline hydration group (108.2 ± 37.5 vs. 110 ± 49 µmol/l). There was a lower rate of CIN in the ALA group than in the control group, but the difference was not statistically significant (3.0 vs. 6.9%, respectively; p = 0.332). CONCLUSION ALA showed no benefit in CIN prevention.
Collapse
Affiliation(s)
- Sang-Ho Jo
- Division of Cardiology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang-si, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Ohno I, Hayashi H, Aonuma K, Horio M, Kashihara N, Okada H, Komatsu Y, Tamura S, Awai K, Yamashita Y, Kuwatsuru R, Hirayama A, Saito Y, Murohara T, Tamaki N, Sato A, Takayama T, Imai E, Yasuda Y, Koya D, Tsubakihara Y, Horie S, Korogi Y, Narumi Y, Hayakawa K, Daida H, Node K, Kubota I. Guidelines on the use of iodinated contrast media in patients with kidney disease 2012: digest version. Clin Exp Nephrol 2013; 17:441-79. [DOI: 10.1007/s10157-013-0843-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Liu K, Lin X, Zhao J. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomedicine 2013; 8:2509-20. [PMID: 23901269 PMCID: PMC3720578 DOI: 10.2147/ijn.s46919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors.
Collapse
Affiliation(s)
- Kui Liu
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Xialu Lin
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| |
Collapse
|
49
|
Weisbord SD, Gallagher M, Kaufman J, Cass A, Parikh CR, Chertow GM, Shunk KA, McCullough PA, Fine MJ, Mor MK, Lew RA, Huang GD, Conner TA, Brophy MT, Lee J, Soliva S, Palevsky PM. Prevention of contrast-induced AKI: a review of published trials and the design of the prevention of serious adverse events following angiography (PRESERVE) trial. Clin J Am Soc Nephrol 2013; 8:1618-31. [PMID: 23660180 DOI: 10.2215/cjn.11161012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Contrast-induced AKI (CI-AKI) is a common condition associated with serious, adverse outcomes. CI-AKI may be preventable because its risk factors are well characterized and the timing of renal insult is commonly known in advance. Intravenous (IV) fluids and N-acetylcysteine (NAC) are two of the most widely studied preventive measures for CI-AKI. Despite a multitude of clinical trials and meta-analyses, the most effective type of IV fluid (sodium bicarbonate versus sodium chloride) and the benefit of NAC remain unclear. Careful review of published trials of these interventions reveals design limitations that contributed to their inconclusive findings. Such design limitations include the enrollment of small numbers of patients, increasing the risk for type I and type II statistical errors; the use of surrogate primary endpoints defined by small increments in serum creatinine, which are associated with, but not necessarily causally related to serious, adverse, patient-centered outcomes; and the inclusion of low-risk patients with intact baseline kidney function, yielding low event rates and reduced generalizability to a higher-risk population. The Prevention of Serious Adverse Events following Angiography (PRESERVE) trial is a randomized, double-blind, multicenter trial that will enroll 8680 high-risk patients undergoing coronary or noncoronary angiography to compare the effectiveness of IV isotonic sodium bicarbonate versus IV isotonic sodium chloride and oral NAC versus oral placebo for the prevention of serious, adverse outcomes associated with CI-AKI. This article discusses key methodological issues of past trials investigating IV fluids and NAC and how they informed the design of the PRESERVE trial.
Collapse
Affiliation(s)
- Steven D Weisbord
- Renal Section, VeteransAffairs PittsburghHealthcare System, Pittsburgh, PA 15240, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tasanarong A, Vohakiat A, Hutayanon P, Piyayotai D. New strategy of α- and γ-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. Nephrol Dial Transplant 2013; 28:337-44. [PMID: 23314316 DOI: 10.1093/ndt/gfs525] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Contrast-induced acute kidney injury (CI- AKI) increases the likelihood of patient morbidity and mortality following coronary procedures. Volume supplement with saline is the standard treatment to prevent CI-AKI. Additional antioxidant prophylaxis has often yielded conflicting results. The present study was conducted to examine the role of novel application vitamin E (tocopherol) in preventing CI-AKI. METHODS This prospective, double-blind, randomized and placebo-controlled trial was carried out in 305 patients with chronic kidney disease (CKD) undergoing coronary procedures. All patients were randomly assigned to prophylaxis administration with 0.9% saline infusions plus daily oral medication comprised of either (i) placebo (n = 101), (ii) α-tocopherol (n = 102) or (iii) γ-tocopherol (n = 102) starting 5 days before and ending 2 days after coronary procedures. The CI-AKI risk score of each patient was calculated. All coronary procedures were performed using a low-osmolar, non-ionic contrast agent. RESULTS CI-AKI developed in 14.9% in the placebo group, 4.9% in the α-tocopherol group (P = 0.02 versus the placebo group) and 5.9% in the γ-tocopherol group (P = 0.04 versus the placebo group). In patients with diabetes, hypertension, anaemia, aged over 55 years, male gender or with contrast agent dosages >120 mL, α-tocopherol showed a larger effect than γ-tocopherol when compared with the placebo group (P < 0.05). CONCLUSIONS Prophylaxis administration with oral α- or γ-tocopherol in combination with 0.9% saline is effective in protecting against CI-AKI in CKD patients undergoing elective coronary procedures.
Collapse
Affiliation(s)
- Adis Tasanarong
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klong Luang, Pathumtani 12121, Thailand.
| | | | | | | |
Collapse
|