1
|
Perrin S, Ladha S, Maragakis N, Rivner MH, Katz J, Genge A, Olney N, Lange D, Heitzman D, Bodkin C, Jawdat O, Goyal NA, Bornstein JD, Mak C, Appel SH, Paganoni S. Safety and tolerability of tegoprubart in patients with amyotrophic lateral sclerosis: A Phase 2A clinical trial. PLoS Med 2024; 21:e1004469. [PMID: 39480764 PMCID: PMC11527214 DOI: 10.1371/journal.pmed.1004469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The interaction of CD40L and its receptor CD40 on activated T cells and B cells respectively control pro-inflammatory activation in the pathophysiology of autoimmunity and transplant rejection. Previous studies have implicated signaling pathways involving CD40L (interchangeably referred to as CD154), as well as adaptive and innate immune cell activation, in the induction of neuroinflammation in neurodegenerative diseases. This study aimed to assess the safety, tolerability, and impact on pro-inflammatory biomarker profiles of an anti CD40L antibody, tegoprubart, in individuals with amyotrophic lateral sclerosis (ALS). METHODS AND FINDINGS In this multicenter dose-escalating open-label Phase 2A study, 54 participants with a diagnosis of ALS received 6 infusions of tegoprubart administered intravenously every 2 weeks. The study was comprised of 4 dose cohorts: 1 mg/kg, 2 mg/kg, 4 mg/kg, and 8 mg/kg. The primary endpoint of the study was safety and tolerability. Exploratory endpoints assessed the pharmacokinetics of tegoprubart as well as anti-drug antibody (ADA) responses, changes in disease progression utilizing the Revised ALS Functional Rating Scale (ALSFRS-R), CD154 target engagement, changes in pro-inflammatory biomarkers, and neurofilament light chain (NFL). Seventy subjects were screened, and 54 subjects were enrolled in the study. Forty-nine of 54 subjects completed the study (90.7%) receiving all 6 infusions of tegoprubart and completing their final follow-up visit. The most common treatment emergent adverse events (TEAEs) overall (>10%) were fatigue (25.9%), falls (22.2%), headaches (20.4%), and muscle spasms (11.1%). Mean tegoprubart plasma concentrations increased proportionally with increasing dose with a half-life of approximately 24 days. ADA titers were low and circulating levels of tegoprubart were as predicted for all cohorts. Tegoprubart demonstrated dose dependent target engagement associated and a reduction in 18 pro-inflammatory biomarkers in circulation. CONCLUSIONS Tegoprubart appeared to be safe and well tolerated in adults with ALS demonstrating dose-dependent reduction in pro-inflammatory chemokines and cytokines associated with ALS. These results warrant further clinical studies with sufficient power and duration to assess clinical outcomes as a potential treatment for adults with ALS. TRIAL REGISTRATION Clintrials.gov ID:NCT04322149.
Collapse
MESH Headings
- Humans
- Amyotrophic Lateral Sclerosis/drug therapy
- Amyotrophic Lateral Sclerosis/immunology
- Male
- Middle Aged
- Female
- Aged
- Adult
- CD40 Ligand/blood
- Biomarkers/blood
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Neurofilament Proteins/blood
- Dose-Response Relationship, Drug
- Treatment Outcome
- Disease Progression
- Imidazoles
- Pyrazines
Collapse
Affiliation(s)
- Steven Perrin
- Eledon Pharmaceuticals, Irvine, California, United States of America
| | - Shafeeq Ladha
- Departments of Neurology and Translational Neuroscience, St. Joseph’s Hospital and Medical Center and Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Nicholas Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael H. Rivner
- Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Jonathan Katz
- California Pacific Medical Center Research Institute and Forbes Norris MDA/ALS Research and Treatment Center, San Francisco, California, United States of America
| | - Angela Genge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Nicholas Olney
- Providence Portland Medical Center, Providence Brain and Spine Institute, Portland, Oregon, United States of America
| | - Dale Lange
- Department of Neurology, Hospital for Special Surgery, Weill Cornell School of Medicine, New York, New York, United States of America
| | - Daragh Heitzman
- ALS Clinic, Texas Neurology, Dallas, Texas, United States of America
| | - Cynthia Bodkin
- Department of Neurology, University of Indiana, Indianapolis, Indiana, United States of America
| | - Omar Jawdat
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Namita A. Goyal
- Department of Neurology, University of California Irvine School of Medicine, Irvine, California, United States of America
| | | | - Carmen Mak
- Eledon Pharmaceuticals, Irvine, California, United States of America
| | - Stanley H. Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston, Texas, United States of America
| | - Sabrina Paganoni
- Harvard Medical School, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Allard CC, Salti S, Mourad W, Hassan GS. Implications of CD154 and Its Receptors in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Cells 2024; 13:1621. [PMID: 39404385 PMCID: PMC11482534 DOI: 10.3390/cells13191621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
CD154, also known as CD40 ligand, is a costimulatory molecule involved in humoral and adaptive immune responses upon pairing with its classical receptor, CD40. The CD154/CD40 dyad is a key participant in the pathogenesis of many autoimmune diseases, including systemic lupus erythematosus (SLE). In SLE, the major cells at play, T and B lymphocytes, are shown to overexpress CD154 and CD40, respectively. Subsequently, these cells and other CD40-positive cells engage in numerous effector functions contributing to SLE development. With the recent identification of additional receptors for CD154, all belonging to the integrin family, the role of CD154 in SLE is more complex and calls for deeper investigation into its biological significance. Many therapeutic strategies directed against the CD154/CD40 couple have been deployed for the treatment of SLE and proved efficient in animal models and human studies. However, the incidence of thromboembolic complications in patients treated with these anti-CD154/CD40 antibodies halted their further clinical assessments and called for another class of therapies targeting these molecules. Second-generation antibodies directed against CD154 or CD40 are showing promising results in the advanced stages of clinical testing. Our review presents a thorough description of CD154 and its receptors, CD40 and the integrin family members in SLE pathogenesis. All these elements of the CD154 system represent important therapeutic targets for the treatment of SLE.
Collapse
Affiliation(s)
| | | | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Rue Saint-Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; (C.C.A.); (S.S.)
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Rue Saint-Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; (C.C.A.); (S.S.)
| |
Collapse
|
3
|
Takada Y, Fujita M, Takada YK. Virtual Screening of Protein Data Bank via Docking Simulation Identified the Role of Integrins in Growth Factor Signaling, the Allosteric Activation of Integrins, and P-Selectin as a New Integrin Ligand. Cells 2023; 12:2265. [PMID: 37759488 PMCID: PMC10527219 DOI: 10.3390/cells12182265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Integrins were originally identified as receptors for extracellular matrix (ECM) and cell-surface molecules (e.g., VCAM-1 and ICAM-1). Later, we discovered that many soluble growth factors/cytokines bind to integrins and play a critical role in growth factor/cytokine signaling (growth factor-integrin crosstalk). We performed a virtual screening of protein data bank (PDB) using docking simulations with the integrin headpiece as a target. We showed that several growth factors (e.g., FGF1 and IGF1) induce a integrin-growth factor-cognate receptor ternary complex on the surface. Growth factor/cytokine mutants defective in integrin binding were defective in signaling functions and act as antagonists of growth factor signaling. Unexpectedly, several growth factor/cytokines activated integrins by binding to the allosteric site (site 2) in the integrin headpiece, which is distinct from the classical ligand (RGD)-binding site (site 1). Since 25-hydroxycholesterol, a major inflammatory mediator, binds to site 2, activates integrins, and induces inflammatory signaling (e.g., IL-6 and TNFα secretion), it has been proposed that site 2 is involved in inflammatory signaling. We showed that several inflammatory factors (CX3CL1, CXCL12, CCL5, sPLA2-IIA, and P-selectin) bind to site 2 and activate integrins. We propose that site 2 is involved in the pro-inflammatory action of these proteins and a potential therapeutic target. It has been well-established that platelet integrin αIIbβ3 is activated by signals from the inside of platelets induced by platelet agonists (inside-out signaling). In addition to the canonical inside-out signaling, we showed that αIIbβ3 can be allosterically activated by inflammatory cytokines/chemokines that are stored in platelet granules (e.g., CCL5, CXCL12) in the absence of inside-out signaling (e.g., soluble integrins in cell-free conditions). Thus, the allosteric activation may be involved in αIIbβ3 activation, platelet aggregation, and thrombosis. Inhibitory chemokine PF4 (CXCL4) binds to site 2 but did not activate integrins, Unexpectedly, we found that PF4/anti-PF4 complex was able to activate integrins, indicating that the anti-PF4 antibody changed the phenotype of PF4 from inhibitory to inflammatory. Since autoantibodies to PF4 are detected in vaccine-induced thrombocytopenic thrombosis (VIPP) and autoimmune diseases (e.g., SLE, and rheumatoid arthritis), we propose that this phenomenon is related to the pathogenesis of these diseases. P-selectin is known to bind exclusively to glycans (e.g., sLex) and involved in cell-cell interaction by binding to PSGL-1 (CD62P glycoprotein ligand-1). Unexpectedly, through docking simulation, we discovered that the P-selectin C-type lectin domain functions as an integrin ligand. It is interesting that no one has studied whether P-selectin binds to integrins in the last few decades. The integrin-binding site and glycan-binding site were close but distinct. Also, P-selectin lectin domain bound to site 2 and allosterically activated integrins.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Masaaki Fujita
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| | - Yoko K. Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| |
Collapse
|
4
|
Perrin S, Magill M. The Inhibition of CD40/CD154 Costimulatory Signaling in the Prevention of Renal Transplant Rejection in Nonhuman Primates: A Systematic Review and Meta Analysis. Front Immunol 2022; 13:861471. [PMID: 35464470 PMCID: PMC9022482 DOI: 10.3389/fimmu.2022.861471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
The prevention of allograft transplant rejection by inhibition of the CD40/CD40L costimulatory pathway has been described in several species. We searched pubmed for studies reporting the prevention of kidney transplant rejection in nonhuman primates utilizing either anti CD40 or anti CD40L (CD154) treatment. Inclusion of data required treatment with anti CD40 or anti CD154 as monotherapy treatment arms, full text available, studies conducted in nonhuman primate species, the transplant was renal transplantation, sufficient duration of treatment to assess long term rejection, and the reporting of individual graft survival or survival duration. Eleven publications were included in the study. Rejection free survival was calculated using the Kaplan-Meier (KM) life test methods to estimate the survival functions. The 95% CI for the medians was also calculated. A log-rank test was used to test the equality of the survival curves between control and treatment arms (CD40 and CD154). The hazard ratio for CD154 compared to CD40 and 95% CI was calculated using a Cox proportional-hazards model including treatment as the covariate to assess the magnitude of the treatment effect. Both anti CD40 and anti CD154 treatments prevented acute and long term graft rejection. The median (95% CI) rejection free survival was 131 days (84,169 days) in the anti CD40 treated animals and 352 days (173,710 days) in the anti CD154 treated animals. Median survival in the untreated animals was 6 days. The inhibition of transplant rejection was more durable in the anti CD154 group compared to the anti CD40 group after cessation of treatment. The median (95% CI) rejection free survival after cessation of treatment was 60 days (21,80 days) in the anti CD40 treated animals and 230 days (84,552 days) in the anti CD154 treated animals.
Collapse
|
5
|
Qiao X, Wang H, Lu L, Chen J, Cheng Q, Guo M, Hou Y, Dou H. Hippocampal microglia CD40 mediates NPSLE cognitive dysfunction in mice. J Neuroimmunol 2021; 357:577620. [PMID: 34062352 DOI: 10.1016/j.jneuroim.2021.577620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is the most serious and complicated clinical manifestation of lupus erythematosus. Cognitive dysfunction is the most common symptom of NPSLE. A variety of potential mechanisms or mediators related to the pathogenesis of NPSLE cognitive dysfunction have been proposed. However, the involvement of microglia CD40 has not been reported yet. This study aimed to investigate whether hippocampal microglia CD40 of MRL/MpJ-Faslpr (MRL/lpr) mice was involved in NPSLE cognitive dysfunction. This study found, using quantitative polymerase chain reaction, western blotting and immunohistochemistry, that hippocampal CD40 was aberrantly overexpressed in the MRL/lpr lupus mice. It also determined using flow cytometry and immunofluorescence that the aberrantly overexpressed CD40 was mainly derived from hippocampal microglia. The adeno-associated virus was used to inhibit microglia CD40 expression, and the brain damage and cognitive dysfunction of MRL/lpr mice improved. Also, imiquimod (IMQ)-induced lupus mice had the same NPSLE cognitive dysfunction, brain damage, and overexpressed hippocampal microglia CD40 as MRL/lpr mice. Therefore, IMQ-induced lupus mouse was proposed as one of the mouse models for studying NPSLE cognitive dysfunction for the first time in this study. The findings indicated that hippocampal microglia CD40 was involved in the development of NPSLE cognitive dysfunction, thus providing a novel research direction for the study of the pathogenesis of NPSLE.
Collapse
Affiliation(s)
- Xiaoyue Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Hailin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinglei Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Qinpei Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Meng Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
6
|
Soluble CD40L activates soluble and cell-surface integrin αvβ3, α5β1, and α4β1 by binding to the allosteric ligand-binding site (site 2). J Biol Chem 2021; 296:100399. [PMID: 33571526 PMCID: PMC7960543 DOI: 10.1016/j.jbc.2021.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
CD40L is a member of the TNF superfamily that participates in immune cell activation. It binds to and signals through several integrins, including αvβ3 and α5β1, which bind to the trimeric interface of CD40L. We previously showed that several integrin ligands can bind to the allosteric site (site 2), which is distinct from the classical ligand-binding site (site 1), raising the question of if CD40L activates integrins. In our explorations of this question, we determined that integrin α4β1, which is prevalently expressed on the same CD4+ T cells as CD40L, is another receptor for CD40L. Soluble (s)CD40L activated soluble integrins αvβ3, α5β1, and α4β1 in cell-free conditions, indicating that this activation does not require inside-out signaling. Moreover, sCD40L activated cell-surface integrins in CHO cells that do not express CD40. To learn more about the mechanism of binding, we determined that sCD40L bound to a cyclic peptide from site 2. Docking simulations predicted that the residues of CD40L that bind to site 2 are located outside of the CD40L trimer interface, at a site where four HIGM1 (hyper-IgM syndrome type 1) mutations are clustered. We tested the effect of these mutations, finding that the K143T and G144E mutants were the most defective in integrin activation, providing support that this region interacts with site 2. We propose that allosteric integrin activation by CD40L also plays a role in CD40L signaling, and defective site 2 binding may be related to the impaired CD40L signaling functions of these HIGM1 mutants.
Collapse
|
7
|
Ramanujam M, Steffgen J, Visvanathan S, Mohan C, Fine JS, Putterman C. Phoenix from the flames: Rediscovering the role of the CD40-CD40L pathway in systemic lupus erythematosus and lupus nephritis. Autoimmun Rev 2020; 19:102668. [PMID: 32942031 DOI: 10.1016/j.autrev.2020.102668] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
Lupus nephritis (LN) is a significant complication of systemic lupus erythematosus (SLE), increasing its morbidity and mortality. Although the current standard of care helps suppress disease activity, it is associated with toxicity and ultimately does not cure SLE. At present, there are no therapies specifically indicated for the treatment of LN and there is an unmet need in this disease where treatment remains a challenge. The CD40-CD40L pathway is central to SLE pathogenesis and the generation of autoantibodies and their deposition in the kidneys, resulting in renal injury in patients with LN. CD40 is expressed on immune cells (including B cells, monocytes and dendritic cells) and also non-haematopoietic cells. Interactions between CD40L on T cells and CD40 on B cells in the renal interstitium are critical for the local expansion of naive B cells and autoantibody-producing B cells in LN. CD40L-mediated activation of myeloid cells and resident kidney cells, including endothelial cells, proximal tubular epithelial cells, podocytes and mesangial cells, further amplifies the inflammatory milieu in the interstitium and the glomeruli. Several studies have highlighted the upregulated expression of CD40 in LN kidney biopsies, and preclinical data have demonstrated the importance of the CD40-CD40L pathway in murine SLE and LN. Blocking this pathway is expected to ameliorate inflammation driven by infiltrating immune cells and resident kidney cells. Initial experimental therapeutic interventions targeting the CD40-CD40L pathway, based on CD40L antibodies, were associated with an increased incidence of thrombosis. However, this safety issue has not been observed with second-generation CD40/CD40L antibodies that have been engineered to prevent platelet activation. With these advancements, together with recent preclinical and clinical findings, it is anticipated that selective blockade of the CD40-CD40L pathway may address the unmet treatment needs in SLE, LN and other autoimmune diseases.
Collapse
Affiliation(s)
- Meera Ramanujam
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA; Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| | - Jürgen Steffgen
- TA Inflammation Medicine, Boehringer Ingelheim, International GmbH, Biberach, Germany; Department of Nephrology and Rheumatology, Georg-August University of Göttingen, Göttingen, Germany
| | - Sudha Visvanathan
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Jay S Fine
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Chaim Putterman
- Albert Einstein College of Medicine, Bronx, NY, USA; Azrieli School of Medicine, Bar-Ilan Universtiy, Zefat, Israel; Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
8
|
Pucino V, Gardner DH, Fisher BA. Rationale for CD40 pathway blockade in autoimmune rheumatic disorders. THE LANCET. RHEUMATOLOGY 2020; 2:e292-e301. [PMID: 38273474 DOI: 10.1016/s2665-9913(20)30038-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
CD40 and its ligand CD40L (CD154) belong to the tumor necrosis factor receptor superfamily and are expressed by a variety of immune and non-immune cells. CD40L plays a central role in co-stimulation and regulation of the immune response via activation of cells expressing CD40. Imbalance of the CD40-CD40L co-stimulatory pathway has been reported in many autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome, thus supporting its role in the breach of immune tolerance that is typical of these diseases. Targeting CD40-CD40L signalling might represent a novel therapeutic option for several autoimmune disorders.
Collapse
Affiliation(s)
- Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - David H Gardner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Benjamin A Fisher
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
9
|
Ramirez GA, Manfredi AA, Maugeri N. Misunderstandings Between Platelets and Neutrophils Build in Chronic Inflammation. Front Immunol 2019; 10:2491. [PMID: 31695699 PMCID: PMC6817594 DOI: 10.3389/fimmu.2019.02491] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Regulated hemostasis, inflammation and innate immunity entail extensive interactions between platelets and neutrophils. Under physiological conditions, vascular inflammation offers a template for the establishment of effective intravascular immunity, with platelets providing neutrophils with an array of signals that increase their activation threshold, thus limiting collateral damage to tissues and promoting termination of the inflammatory response. By contrast, persistent systemic inflammation as observed in immune-mediated diseases, such as systemic vasculitides, systemic sclerosis, systemic lupus erythematosus or rheumatoid arthritis is characterized by platelet and neutrophil reciprocal activation, which ultimately culminates in the generation of thrombo-inflammatory lesions, fostering vascular injury and organ damage. Here, we discuss recent evidence regarding the multifaceted aspects of platelet-neutrophil interactions from bone marrow precursors to shed microparticles. Moreover, we analyse shared and disease-specific events due to an aberrant deployment of these interactions in human diseases. To restore communications between the pillars of the immune-hemostatic continuum constitutes a fascinating challenge for the near future.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Norma Maugeri
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Abstract
Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.
Collapse
|
11
|
Perper SJ, Westmoreland SV, Karman J, Twomey R, Seagal J, Wang R, McRae BL, Clarke SH. Treatment with a CD40 Antagonist Antibody Reverses Severe Proteinuria and Loss of Saliva Production and Restores Glomerular Morphology in Murine Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2019; 203:58-75. [PMID: 31109957 DOI: 10.4049/jimmunol.1900043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
CD40 is a costimulatory receptor on APCs that is critical for the induction and maintenance of humoral and cell-mediated immunity. Accordingly, CD40 and its ligand, CD40L, have long been considered targets for the treatment of autoimmune diseases. We developed a rat/mouse chimeric anti-mouse CD40 antagonist mAb, 201A3, and evaluated its ability to alleviate murine lupus. Treatment of NZB/W-F1 mice with 201A3 after the onset of severe proteinuria rapidly reversed established severe proteinuria and nephritis and largely restored normal glomerular and tubular morphology. This coincided with a normalization of the expression of genes associated with proteinuria and injury by kidney parenchymal cells. Anti-CD40 treatment also prevented and reversed loss of saliva production and sialadenitis. These effects on kidney and salivary gland function were confirmed using mice of a second strain, MRL/Mp-lpr/lpr, and extended to alleviating joint inflammation. Immunologically, anti-CD40 treatment disrupted multiple processes that contribute to the pathogenesis of systemic lupus erythematosus (SLE), including autoreactive B cell activation, T effector cell function in target tissues, and type I IFN production. This ability to disrupt disease-critical immunological mechanisms, to reverse glomerular and tubular injury at the cellular and gene expression levels, and to confer exceptional therapeutic efficacy suggests that CD40 is a central disease pathway in murine SLE. Thus, a CD40 antagonist Ab could be an effective therapeutic in the treatment of SLE.
Collapse
Affiliation(s)
| | | | | | | | - Jane Seagal
- AbbVie Bioresearch Center, Worcester, MA 01605
| | - Rui Wang
- AbbVie Bioresearch Center, Worcester, MA 01605
| | | | | |
Collapse
|
12
|
Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
13
|
Mousa TG, Omar HH, Emad R, Salama MI, Omar W, Fawzy M, Hassoba HM. The association of CD40 polymorphism (rs1883832C/T) and soluble CD40 with the risk of systemic lupus erythematosus among Egyptian patients. Clin Rheumatol 2018; 38:777-784. [DOI: 10.1007/s10067-018-4349-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
|
14
|
Scherlinger M, Sisirak V, Richez C, Lazaro E, Duffau P, Blanco P. New Insights on Platelets and Platelet-Derived Microparticles in Systemic Lupus Erythematosus. Curr Rheumatol Rep 2018; 19:48. [PMID: 28718063 DOI: 10.1007/s11926-017-0678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Current knowledge on the role of platelets and platelet-derived microparticles (PMPs) on the immune system has been fast-growing. Systemic lupus erythematosus (SLE) is a systemic auto-immune disorder characterized by a loss of tolerance toward nuclear auto-antigens. Although recent studies allowed a better understanding of SLE pathogenesis, there is an urgent need for the development of new treatments and the identification of new biomarkers to assess the disease activity. We describe here the state-of-the-art knowledge linking platelets and PMPs to SLE. RECENT FINDINGS Platelet system activation is a key event in the pathogenesis of SLE. Circulating immune complexes, anti-phospholipid antibodies, and infectious agents such as virus are the main activators of platelets in SLE. Platelet activation can be monitored through different ways such as P-selectin expression, mean platelet volume, or circulating PMP levels, suggesting their potential use as biomarkers. Upon activation, platelets promote type I interferon production, NETosis, dendritic cell activation, and T and B lymphocyte activation, all essential events contributing to the development of SLE. Of interest, platelets also play a fundamental role in SLE organ disease such as the development of cardiovascular, thrombotic, and renal diseases. Finally, we review current knowledge on drugs targeting platelet activation and their potential impact on SLE pathogenesis. Platelets play a major role in SLE pathogenesis and organ disease and represent a great potential for novel biomarkers and drug development.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Estibaliz Lazaro
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France
| | - Pierre Duffau
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076, Bordeaux, France
| | - Patrick Blanco
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.
| |
Collapse
|
15
|
Scherlinger M, Guillotin V, Truchetet ME, Contin-Bordes C, Sisirak V, Duffau P, Lazaro E, Richez C, Blanco P. Systemic lupus erythematosus and systemic sclerosis: All roads lead to platelets. Autoimmun Rev 2018; 17:625-635. [PMID: 29635077 DOI: 10.1016/j.autrev.2018.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are two phenotypically distincts inflammatory systemic diseases. However, SLE and SSc share pathogenic features such as interferon signature, loss of tolerance against self-nuclear antigens and increased tissue damage such as fibrosis. Recently, platelets have emerged as a major actor in immunity including auto-immune diseases. Both SLE and SSc are characterized by strong platelet system activation, which is likely to be both the witness and culprit in their pathogenesis. Platelet activation pathways are multiple and sometimes redundant. They include immune complexes, Toll-like receptors activation, antiphospholipid antibodies and ischemia-reperfusion associated with Raynaud phenomenon. Once activated, platelet promote immune dysregulation by priming interferon production by immune cells, providing CD40L supporting B lymphocyte functions and providing a source of autoantigens. Platelets are actively implicated in SLE and SSc end-organ damage such as cardiovascular and renal disease and in the promotion of tissue fibrosis. Finally, after understanding the main pathogenic implications of platelet activation in both diseases, we discuss potential therapeutics targeting platelets.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vivien Guillotin
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Elise Truchetet
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Cécile Contin-Bordes
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pierre Duffau
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Estibaliz Lazaro
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Blanco
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
16
|
Albach FN, Wagner F, Hüser A, Igel J, Joseph D, Hilbert J, Schoelch C, Padula SJ, Steffgen J. Safety, pharmacokinetics and pharmacodynamics of single rising doses of BI 655064, an antagonistic anti-CD40 antibody in healthy subjects: a potential novel treatment for autoimmune diseases. Eur J Clin Pharmacol 2017; 74:161-169. [PMID: 29127458 PMCID: PMC5765193 DOI: 10.1007/s00228-017-2362-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/27/2017] [Indexed: 10/29/2022]
Abstract
PURPOSE The CD40-CD40L pathway is a promising treatment target for autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus and lupus nephritis. The safety, pharmacokinetics and pharmacodynamics of BI 655064, a novel humanised antagonistic anti-CD40 monoclonal antibody, were investigated in this first-in-human trial. METHODS Healthy male subjects (n = 72) were randomised 3:1, within each BI 655064 dose group, to single intravenous (IV; 0.2-120 mg) or subcutaneous (SC; 40-120 mg) doses of BI 655064 or placebo. Safety, plasma exposure, CD40 receptor occupancy and CD40L-induced CD54 upregulation were assessed over 12 weeks. RESULTS Adverse events (AEs) were reported in 43% of subjects (n = 31). Frequency and intensity of AEs were generally similar between BI 655064 and placebo and showed no dose relationship. The most frequent AEs were headache and nasopharyngitis. One mild rash and one local reaction occurred with SC BI 655064; two serious AEs were reported, both judged unrelated to BI 655064. Pharmacokinetic evaluation demonstrated a more than proportional increase in plasma exposure relative to BI 655064 dose, with a terminal half-life between 4 h and 4 days IV and approximately 5 days SC; doses ≥ 20 mg IV and 120 mg SC showed > 90% CD40 receptor occupancy and inhibition of CD54 upregulation, which lasted 7 days in the 120 mg IV and SC groups. CONCLUSIONS Single doses up to 120 mg BI 655064 IV and SC were well tolerated and showed a high potential to block the CD40-CD40L pathway, supporting further clinical development of BI 655064 in patients with autoimmune disease. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01510782.
Collapse
Affiliation(s)
| | - Frank Wagner
- Charité Research Organisation GmbH, Berlin, Germany
| | | | - Julia Igel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach/Riss, Germany
| | - David Joseph
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - James Hilbert
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Corinna Schoelch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach/Riss, Germany
| | - Steven J Padula
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Jürgen Steffgen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach/Riss, Germany.
| |
Collapse
|
17
|
Nhek S, Clancy R, Lee KA, Allen NM, Barrett TJ, Marcantoni E, Nwaukoni J, Rasmussen S, Rubin M, Newman JD, Buyon JP, Berger JS. Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus. Arterioscler Thromb Vasc Biol 2017; 37:707-716. [PMID: 28153882 DOI: 10.1161/atvbaha.116.308126] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet-endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. APPROACH AND RESULTS Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte-platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β-dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β-neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. CONCLUSIONS Platelet activity measurements and subsequent interleukin-1β-dependent activation of the endothelium are increased in subjects with SLE. Platelet-endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE.
Collapse
Affiliation(s)
- Sokha Nhek
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Robert Clancy
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Kristen A Lee
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Nicole M Allen
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Tessa J Barrett
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Emanuela Marcantoni
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Janet Nwaukoni
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Sara Rasmussen
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Maya Rubin
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Jonathan D Newman
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Jill P Buyon
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York
| | - Jeffrey S Berger
- From the Department of Medicine, Divisions of Cardiology (S.N., K.A.L., N.M.A., T.J.B., E.M., M.R., J.D.N., J.S.B.), Hematology (J.S.B.), and Rheumatology (R.C., J.N., S.R., J.P.B.), New York University School of Medicine, New York.
| |
Collapse
|
18
|
Zhang L, Zhu H, Li Y, Dai X, Zhou B, Li Q, Zuo X, Luo H. The role of IFI35 in lupus nephritis and related mechanisms. Mod Rheumatol 2017; 27:1010-1018. [PMID: 28064541 DOI: 10.1080/14397595.2016.1270387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES It's reported that multiple genes in the IFN-γ/STAT1 pathway were hypomethylated and associated with the pathogenesis of lupus nephritis (LN). Our previous study using microarray analysis suggested that interferon induced 35-kDa protein (IFI35) was hypomethylated and increased in LN. However, the role of IFI35 in LN and related mechanism remains to be elucidate. METHODS The expressions of IFNγR, STAT1, IFI35 and MBD2 in the human kidneys tissues was detected by real-time PCR and Western blot. The protein levels of IFI35 in the human kidney tissues were detected by immunohistochemistry. The methylation status of IFNγR, STAT1 and IFI35 were detected by methylation specific PCR. Cell proliferation assay was evaluated using cell counting kit 8; pcDNA-IFI35 (pcDNA-MBD2) or IFI35 RNAi (MBD2 RNAi) was used to upregulated or downregulated the expression of the IFI35 and MBD2. RESULTS The expressions of IFNγR, STAT1 and IFI35 in the LN kidneys were significantly higher than controls. IFI35 was expressed in mesangial cells, and positively correlated with the proliferation of mesangial cells. IFNγR, STAT1and IFI35 was hypomethylated and MBD2 was increased in LN kidneys. In vitro data confirmed those findings: after stimulating with the serum from LN patients, the proliferation of human renal mesangial cells (HRMCs) was increased. The expressions of the three members of IFNγ signal pathway were hypomethylated and upregulated. However, this effect was reversed by MBD2 knockdown. IFI35 promoted the proliferation of HRMCs and was regulated by MBD2. CONCLUSION Our results demonstrated that IFI35 enhances the proliferation of mesangial cells and was regulated by MBD2 in LN.
Collapse
Affiliation(s)
- Lihua Zhang
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan , People's Republic of China
| | - Honglin Zhu
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan , People's Republic of China
| | - Yisha Li
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan , People's Republic of China
| | - Xiaodan Dai
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan , People's Republic of China
| | - Bin Zhou
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan , People's Republic of China
| | - Quanzhen Li
- b Department of Immunology and Internal Medicine , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Xiaoxia Zuo
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan , People's Republic of China
| | - Hui Luo
- a Department of Rheumatology , Xiangya Hospital, Central South University , Changsha , Hunan , People's Republic of China
| |
Collapse
|
19
|
Rigothier C, Daculsi R, Lepreux S, Auguste P, Villeneuve J, Dewitte A, Doudnikoff E, Saleem M, Bourget C, Combe C, Ripoche J. CD154 Induces Matrix Metalloproteinase-9 Secretion in Human Podocytes. J Cell Biochem 2016; 117:2737-2747. [DOI: 10.1002/jcb.25571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Claire Rigothier
- INSERM U1026; Université de Bordeaux; F-33076 Bordeaux France
- Service de Néphrologie Transplantation Dialyse; Centre Hospitalier Universitaire de Bordeaux; F-33076 Bordeaux France
| | - Richard Daculsi
- INSERM U1026; Université de Bordeaux; F-33076 Bordeaux France
| | | | | | - Julien Villeneuve
- Cell and Developmental Biology Programme; Centre for Genomic Regulation; 08003 Barcelona Spain
- Department of Molecular and Cell Biology; Howard Hughes Medical Institute; University of California; Berkeley California 94720-3200
| | - Antoine Dewitte
- INSERM U1026; Université de Bordeaux; F-33076 Bordeaux France
- Service d'Anesthésie-Réanimation II; Centre Hospitalier Universitaire de Bordeaux; F-33600 Pessac France
| | - Evelyne Doudnikoff
- CNRS UMR 5293; Institut des Maladies Neurodégénératives; F-33076 Bordeaux France
| | - Moin Saleem
- Children's Renal Unit and Academic Renal Unit; University of Bristol; Bristol United Kingdom
| | - Chantal Bourget
- INSERM U1026; Université de Bordeaux; F-33076 Bordeaux France
| | - Christian Combe
- INSERM U1026; Université de Bordeaux; F-33076 Bordeaux France
- Service de Néphrologie Transplantation Dialyse; Centre Hospitalier Universitaire de Bordeaux; F-33076 Bordeaux France
| | - Jean Ripoche
- INSERM U1026; Université de Bordeaux; F-33076 Bordeaux France
| |
Collapse
|
20
|
Association of CD40 polymorphisms and haplotype with risk of systemic lupus erythematosus. Rheumatol Int 2015; 36:45-52. [PMID: 26289938 DOI: 10.1007/s00296-015-3345-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that is caused by genetic and environmental factors. Current evidence shows that the CD40-CD40L system plays a crucial role in the development, progression and outcome of SLE. CD40, which stimulates lymphocyte proliferation and differentiation, is an important immunomodulator and is expressed in the thyroid follicular cells as well as antigen-presenting cells. The aim of the present study was to investigate whether CD40 gene polymorphism confers susceptibility to SLE and its impact on CD40 expression in Chinese. We analyzed four single nucleotide polymorphisms of CD40 gene rs1883832C/T, rs13040307C/T, rs752118C/T, and rs3765459G/A in 205 patients with SLE and 220 age- and sex-matched controls, using Snapshot SNP genotyping assays and DNA sequencing method. Soluble CD40 (sCD40) levels were measured by ELISA. There were significant differences in the genotype and allele frequencies of CD40 gene rs1883832 C/T polymorphism between the group of patients with SLE and the control group (P < 0.05). sCD40 levels were increased in patients with SLE compared with controls (P < 0.01). Moreover, genotypes carrying the CD40 rs1883832 T variant allele were associated with increased CD40 levels compared with the homozygous wild-type genotype in patients with SLE. The rs1883832 C/T polymorphism of CD40 and its sCD40 levels were associated with SLE in the Chinese population. These data suggest that CD40 gene may play an essential role in the development of SLE.
Collapse
|
21
|
Dewitte A, Tanga A, Villeneuve J, Lepreux S, Ouattara A, Desmoulière A, Combe C, Ripoche J. New frontiers for platelet CD154. Exp Hematol Oncol 2015; 4:6. [PMID: 25763299 PMCID: PMC4355125 DOI: 10.1186/s40164-015-0001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | - Annabelle Tanga
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain ; Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3200 USA
| | | | - Alexandre Ouattara
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | | | - Christian Combe
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service de Néphrologie Transplantation Dialyse, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Jean Ripoche
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
22
|
Crist SA, Elzey BD, Ahmann MT, Ratliff TL. Early growth response-1 (EGR-1) and nuclear factor of activated T cells (NFAT) cooperate to mediate CD40L expression in megakaryocytes and platelets. J Biol Chem 2013; 288:33985-33996. [PMID: 24106272 DOI: 10.1074/jbc.m113.511881] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence implicates circulating platelets as mediators of chronic inflammatory and autoimmune diseases via the expression and release of CD40L, an important modulator of inflammation and adaptive immune responses traditionally associated with activated T cells. Emerging evidence suggests that platelet CD40L is dynamically regulated in several chronic inflammatory and autoimmune diseases and may mediate progression and secondary pathology associated with those disease states. The present study identifies NFATc2 as a key transcriptional modulator of CD40L expression in megakaryocytes and inflammatory activity of platelets. Furthermore, the current data show that EGR-1, a member of the early growth response family of zinc finger transcription factors, modulates NFATc2-dependent regulation of CD40L expression in megakaryocytes. Our novel demonstration that in vivo biochemical or genetic inhibition of NFATc2 activity in megakaryocyte diminishes platelet CD40L implicates the NFATc2/EGR-1 axis as a key regulatory pathway of inflammatory and immunomodulatory activity in platelets and represents a target for the development of therapeutics for the potential treatment of chronic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Scott A Crist
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907; Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907; Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Michelle T Ahmann
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907; Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907.
| |
Collapse
|
23
|
|
24
|
|
25
|
CD154: an immunoinflammatory mediator in systemic lupus erythematosus and rheumatoid arthritis. Clin Dev Immunol 2011; 2012:490148. [PMID: 22110533 PMCID: PMC3202102 DOI: 10.1155/2012/490148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/17/2011] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus and rheumatoid arthritis are two major chronic inflammatory autoimmune diseases with significant prevalence rates among the population. Although the etiology of these diseases remains unresolved, several evidences support the key role of CD154/CD40 interactions in initiating and/or propagating these diseases. The discovery of new receptors (αIIbβ3, α5β1, and αMβ2) for CD154 has expanded our understanding about the precise role of this critical immune mediator in the physiopathology of chronic inflammatory autoimmune diseases in general, and in systemic lupus erythematosus and rheumatoid arthritis in particular. This paper presents an overview of the interaction of CD154 with its various receptors and outlines its role in the pathogenesis of systemic lupus erythematosus and rheumatoid arthritis. Moreover, the potential usefulness of various CD154-interfering agents in the treatment and prevention of these diseases is also discussed.
Collapse
|
26
|
Peters AL, Stunz LL, Bishop GA. CD40 and autoimmunity: the dark side of a great activator. Semin Immunol 2009; 21:293-300. [PMID: 19595612 DOI: 10.1016/j.smim.2009.05.012] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 02/06/2023]
Abstract
CD40 is a tumor necrosis factor receptor superfamily member expressed by immune and non-immune cells. CD40:CD154 interactions mediate T-dependent B cell responses and efficient T cell priming. Thus, CD40 is a likely candidate to play roles in autoimmune diseases in which activated T and B cells cause pathology. Diseases in which CD40 plays a pathogenic role include autoimmune thyroiditis, type 1 diabetes, inflammatory bowel disease, psoriasis, multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review discusses the role of CD40:CD154 interaction in human and mouse autoimmunity, human polymorphisms associated with disease incidence, and disrupting CD40:CD154 interactions as an autoimmune therapy.
Collapse
Affiliation(s)
- Anna L Peters
- Immunology Graduate Program and Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
27
|
Lee VWS, Qin X, Wang Y, Zheng G, Wang Y, Wang Y, Ince J, Tan TK, Kairaitis LK, Alexander SI, Harris DCH. The CD40-CD154 co-stimulation pathway mediates innate immune injury in adriamycin nephrosis. Nephrol Dial Transplant 2009; 25:717-30. [PMID: 19889873 DOI: 10.1093/ndt/gfp569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Blockade of CD40-CD40 ligand (CD154) interactions protects against renal injury in adriamycin nephropathy (AN) in immunocompetent mice. To investigate whether this protection relied on adaptive or cognate immunity, we tested the effect of CD40-CD154 blockade in severe combined immunodeficient (SCID) mice. METHODS SCID mice were divided into three groups: normal, AN + hamster IgG (ADR+IgG group) and AN + anti-CD154 antibody (MR1) (ADR+MR1 group). AN was induced by tail vein injection of 5.2 mg/kg of adriamycin (ADR). Hamster IgG (control Ab) or MR1 was administered intraperitoneally on days 5, 7, 9 and 11 after ADR injection. Histological and functional data were collected 4 weeks after ADR injection. In vitro experiments tested the effect of soluble and cell-bound CD154 co-cultured with CD40-expressing cells [macrophages, mesangial cells and renal tubular epithelial cells (RTEC)]. RESULTS All experimental animals developed nephropathy. Compared to the ADR+IgG group, ADR+MR1 animals had significantly less histological injury (glomerulosclerosis and tubular atrophy) and functional injury (creatinine clearance). Kidneys of ADR+MR1 animals had significantly less macrophage infiltration than those of ADR+IgG animals. Interestingly, expression of CD40 and CD41 (a platelet-specific marker) was significantly less in ADR+MR1 animals compared to ADR+IgG animals. In vitro, CD154 blockade significantly attenuated upregulation of CCL2 gene expression by RTEC stimulated by activated macrophage-conditioned medium. In contrast, platelet-induced upregulation of macrophage and mesangial cell proinflammatory cytokine gene expression were not CD154-dependent. CONCLUSION CD40-CD154 blockade has a significant innate renoprotective effect in ADR nephrosis. This is potentially due to inhibition of macrophage-derived soluble CD154.
Collapse
Affiliation(s)
- Vincent W S Lee
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Platelet influence on T- and B-cell responses. Arch Immunol Ther Exp (Warsz) 2009; 57:235-41. [DOI: 10.1007/s00005-009-0032-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/30/2009] [Indexed: 12/16/2022]
|
29
|
Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 2008; 141:84-91. [PMID: 18279456 DOI: 10.1111/j.1365-2141.2008.06999.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blood platelets link the processes of haemostasis and inflammation. This study examined the immunomodulatory factors released by platelets after Toll-Like Receptor 4 (TLR4) engagement on their surfaces. Monoclonal anti-human FcgammaRII Ab (IV.3)-treated human platelets were cultured with TLR4 ligands in the presence or absence of blocking monoclonal antibody to human TLR4. The release of sCD62p, epidermal growth factor (EGF), transforming growth factor beta (TGFbeta), interleukin (IL)-8, platelet activating factor 4 (PAF4), platelet-derived growth factor, alpha, beta polypeptide (PDGF-AB), Angiogenin, RANTES (regulated upon activation, normal T-cell expressed, and presumably secreted) and sCD40L were measured by specific enzyme-linked immunosorbent assay. TLR4 ligand [Escherichia coli lipopolysaccharide (LPS)] bound platelet TLR4, which differentially modulates the release of cytokines by platelets. It was noted that (i) sCD62p, IL-8, EGF and TGFbeta release were each independent of platelet activation after TLR4 engagement; (ii) RANTES, Angiogenin and PDGF-AB concentration were weaker in platelet supernatant after TLR4 engagement; (iii) sCD40L and PAF4 are present in large concentration in the releaseate of platelets stimulated by TLR4 ligand. The effects of LPS from E. coli on the modulation of secretory factors were attenuated by preincubation of platelets with an anti-TLR4 monoclonal antibody, consistent with the immunomodulation being specifically mediated by the TLR4 receptor. We propose that platelets adapt the subsequent responses, with polarized cytokine secretion, after TLR4 involvement.
Collapse
|
30
|
Delmas Y, Viallard JF, Villeneuve J, Grosset C, Pasquet JM, Déchanet-Merville J, Nurden P, Pellegrin JL, Rosenbaum J, Combe C, Nurden AT, Ripoche J. [Platelet-associated CD154: a new interface in haemostasis and in the inflammatory reaction]. Med Sci (Paris) 2005; 21:825-31. [PMID: 16197899 DOI: 10.1051/medsci/20052110825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Blood platelets play a crucial part in the blood clotting process by forming the platelet plug. Recent evidence indicates that they are likely to play a key role in the inflammatory reaction via CD154/CD40 interactions. CD40 was known to be widely expressed, for instance on cells of the vasculature including endothelial cells, smooth muscle cells and macrophages. It was also known that the triggering of CD40 on these cells led to the acquisition of an activated pro-inflammatory and pro-coagulant phenotype. It was subsequently shown that platelets express CD154 which is cryptic in unstimulated platelets but is expressed at the platelet surface upon platelet activation. When expressed at the platelet surface and exposed to CD40-expressing vascular cells, the platelet-associated CD154 triggers a variety of pro-inflammatory and pro-coagulant responses including induction of adhesion receptors, release of cytokines and chemokines, induction of tissue factor and of metalloproteinases. Platelet-associated CD154 is also involved in platelet/platelet interactions during platelet aggregation. Furthermore, in vivo models have emphasized the critical role of the platelet-associated CD154 in the progression of atherosclerotic disease and in the stabilization of arterial thrombi. Recent data show that CD40-bearing cells involved in fibrosis such as hepatic stellate cells and glomerular mesangial cells also respond to platelet-associated CD154, thus suggesting a new mechanism by which platelets may be instrumental in the inflammatory diseases of the liver or the kidney. Finally, platelet-associated CD154 has been shown to have immune competence both in vitro and in vivo, observations that open new fields of research on the potential implications of platelets in the immune response and auto-immune diseases.
Collapse
Affiliation(s)
- Yahsou Delmas
- GREF Inserm E362, IFR 66, Université de Bordeaux 2 et Département de Néphrologie, Hôpital Pellegrin, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|