1
|
Miller AW, Anderson AR, Suarez-Arnedo A, Segura T. Wound Healing Splinting Devices for Faster Access and Use. JID INNOVATIONS 2025; 5:100332. [PMID: 39886675 PMCID: PMC11780244 DOI: 10.1016/j.xjidi.2024.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 02/01/2025] Open
Abstract
With the goal of studying skin wound healing and testing new drug treatments to enhance wound healing in rodent models, there is a clear need for improved splinting techniques to increase surgical efficiency and support routine wound monitoring. Splinted wound healing models humanize wound healing in rodents to prevent contraction and instead heal through granulation tissue deposition, increasing the relevance to human wound healing. Current technologies require suturing and heavy wrapping, leading to splint failure and cumbersome monitoring of the wound. In this study, we developed a splint with resealable cap system that provides ease of access for wound inspection, therapeutic treatment delivery, and routine wound imaging without the need to unwrap and wrap the animal. Meanwhile, to overcome the challenges associated with suturing, we also developed adherent splints that can be applied to both hairless or haired mice with minimal wrapping. Both technologies are expected to improve and encourage the adoption of splinted wound healing models.
Collapse
Affiliation(s)
- Andrew W. Miller
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Alexa R. Anderson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Yang ZC, Lin H, Liu GJ, Pan H, Zhu JL, Zhang XH, Gao F, Wang Z, Wang ZH. CB-MNCs@ CS/HEC/GP promote wound healing in aged murine pressure ulcer model. Stem Cell Res Ther 2025; 16:52. [PMID: 39920794 DOI: 10.1186/s13287-025-04177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Non-healing pressure ulcers impose heavy burdens on patients and clinicians. Cord blood mononuclear cells (CB-MNCs) are a novel type of tissue repair seed cells. However, their clinical application is restricted by low retention and survival rates post-transplantation. This study aims to investigate the role of thermo-sensitive chitosan/hydroxyethyl cellulose/glycerophosphate (CS/HEC/GP) hydrogel encapsulated CB-MNCs in pressure ulcer wound healing. METHODS Pressure ulcers were induced on the backs of aged mice. After construction and validation of the characterization of thermo-sensitive CS/HEC/GP hydrogel, CB-MNCs are encapsulated in the hydrogel, called CB-MNCs@CS/HEC/GP which was locally applied to the mouse wounds. Mouse skin tissues were harvested for histological and molecular biology analyses. RESULTS CB-MNCs@CS/HEC/GP therapy accelerated pressure ulcer wound healing, attenuated inflammatory responses, promoted cell proliferation, angiogenesis, and collagen synthesis. Further investigation revealed that CB-MNCs@CS/HEC/GP exerted therapeutic effects by promoting changes in cell types, including fibroblasts, endothelial cells, keratinocytes, and smooth muscle cells. CONCLUSION CB-MNCs@CS/HEC/GP enhanced the delivery efficiency of CB-MNCs, preserved the cell viability, and contributed to pressure ulcer wound healing. Thus, CB-MNCs@CS/HEC/GP represents a novel therapeutic approach for skin regeneration of chronic wounds.
Collapse
Affiliation(s)
- Zhi-Cheng Yang
- Department of Geriatric Medicine & Laboratory of Gerontology and Anti-Aging Research, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, Shandong, China
| | - He Lin
- Department of Geriatric Medicine & Laboratory of Gerontology and Anti-Aging Research, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Guo-Jun Liu
- Shandong Qilu Stem Cell Engineering Co., Ltd, Jinan, 250012, Shandong, China
| | - Hui Pan
- Department of Geriatric Medicine & Laboratory of Gerontology and Anti-Aging Research, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jun-Lu Zhu
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Hong Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, Shandong, China
| | - Feng Gao
- Shandong Qilu Stem Cell Engineering Co., Ltd, Jinan, 250012, Shandong, China
| | - Zhong Wang
- Shandong Qilu Stem Cell Engineering Co., Ltd, Jinan, 250012, Shandong, China
| | - Zhi-Hao Wang
- Department of Geriatric Medicine & Laboratory of Gerontology and Anti-Aging Research, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Jin H, Wu Y, Zhang C, Zheng R, Xu H, Yang J, Li L. Tranilast alleviates skin inflammation and fibrosis in rosacea-like mice induced by long-term exposure to LL-37. Biochem Biophys Res Commun 2024; 737:150523. [PMID: 39133985 DOI: 10.1016/j.bbrc.2024.150523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 11/13/2024]
Abstract
Rosacea, a prevalent chronic facial inflammatory condition, afflicts millions worldwide. Its multifaceted pathogenesis poses challenges for effective treatment. Tranilast (TR), an analog of a tryptophan metabolite, has demonstrated anti-inflammatory and anti-fibrotic properties across various diseases. Yet, its potential in rosacea treatment remains understudied. Here, we induced rosacea-like symptoms in mice via prolonged LL-37 injections and administered TR intervention. Our findings reveal that TR mitigated skin lesions, reduced skin thickness, and suppressed inflammatory cell infiltration within the dermis of LL-37 mice. Notably, TR downregulated the expression of rosacea-associated inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-18) and the antimicrobial peptide CAMP, while also inhibiting NLRP3 inflammasome activation and the TLR4 signaling pathway. Furthermore, TR attenuated LL-37-induced fibrosis and hindered the transforming growth factor-β1 (TGF-β1)/Smad2/3 pathway. In summary, our study underscores TR's therapeutic potential in rosacea by mitigating both skin inflammation and fibrosis, thereby offering a promising treatment avenue for this condition.
Collapse
Affiliation(s)
- Hui Jin
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, China
| | - Yiling Wu
- Clinical Medical College, North China University of Science and Technology, Tangshan, 063210, China
| | - Chuanxi Zhang
- Clinical Medical College, North China University of Science and Technology, Tangshan, 063210, China
| | - Ruiping Zheng
- Clinical Medical College, North China University of Science and Technology, Tangshan, 063210, China
| | - Hong Xu
- Health Science Center, North China University of Science and Technology, Tangshan, 063210, China
| | - Jie Yang
- Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, China.
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, China.
| |
Collapse
|
4
|
Ishii N, Akaishi S, Akimoto M, Ichinose S, Usami S, Dohi T, Ogawa R. Finite Element Analysis of the Stress Changes Associated With the Growth of Acne Keloids. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6365. [PMID: 39712380 PMCID: PMC11661706 DOI: 10.1097/gox.0000000000006365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 12/24/2024]
Abstract
Background Almost half of all spontaneously occurring keloids are acne keloids on the anterior chest. These keloids often grow in a crab-claw shape due to predominant tractional stresses on the scar; such stresses are risk factors for keloid growth/progression. To understand the relationship between acne keloid growth and mechanical stress, we conducted finite element analysis (FEA), measured the long/short dimensions of photographed acne keloids, and subjected acne keloids to microscopy. Methods FEA was conducted on 10 identically shaped ellipsoidal keloids whose long-axis length rose from 5 to 50 mm in 5-mm increments. They were embedded in the skin and subjected to traction. The stress on the keloid and its surrounding tissues was determined. Dimensions of 220 acne keloids were measured. Electron/light microscopy was conducted on the center, margins, and surrounding tissues of chest acne keloids. Results FEA showed that as the keloid "grew," the tractional stress centered on its core, then became evenly distributed, and then focused increasingly on the tractioned keloid margin, especially its shallow dermis. This is associated with increasing stress in the surrounding tissues at the keloid margin. Clinical dimension measurements showed that acne keloids remained round until 4-5 mm, after which they elongated rapidly. Electron microscopy showed that in the surrounding skin, fragments of keratinocyte, fibrin, and numerous cell fragments were observed just below the epidermal basement membrane. Conclusions Keloid-prone acne should be treated with steroid tape or other keloid therapy when it reaches 4-5 mm in diameter.
Collapse
Affiliation(s)
- Nobuaki Ishii
- From the Department of Plastic Surgery, Nippon Medical School Chibahokusoh Hospital, Inzai City, Chiba Prefecture, Japan
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Bunkyo Ward, Tokyo, Japan
| | - Satoshi Akaishi
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Bunkyo Ward, Tokyo, Japan
- Department of Plastic Surgery, Nippon Medical School Musashikosugi Hospital, Kawasaki City, Kanagawa Prefecture, Japan
| | - Masataka Akimoto
- From the Department of Plastic Surgery, Nippon Medical School Chibahokusoh Hospital, Inzai City, Chiba Prefecture, Japan
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Bunkyo Ward, Tokyo, Japan
| | - Shizuko Ichinose
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Bunkyo Ward, Tokyo, Japan
| | - Satoshi Usami
- Graduate School of Education, University of Tokyo, Bunkyo Ward, Tokyo, Japan
| | - Teruyuki Dohi
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Bunkyo Ward, Tokyo, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo Ward, Tokyo, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Bunkyo Ward, Tokyo, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo Ward, Tokyo, Japan
| |
Collapse
|
5
|
Huang R, Han B, Peng J, Jiao H. PTB Regulates Keloid Fibroblast Migration and Proliferation Through Autophagy. Aesthetic Plast Surg 2024. [DOI: 10.1007/s00266-024-04375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
|
6
|
Liu Y, Han B, Tan L, Ji D, Chen X. IGF1 and CXCR4 Respectively Related With Inhibited M1 Macrophage Polarization in Keloids. J Craniofac Surg 2024; 35:00001665-990000000-01799. [PMID: 39145631 PMCID: PMC11556827 DOI: 10.1097/scs.0000000000010479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
PURPOSE The pathophysiology of keloid remains unclear. Exploring the immune heterogeneity and new biomarkers of keloids can help design new therapeutic targets for keloid treatments and prevention. METHODS The authors performed single-cell RNA sequencing analysis and bulk data differential gene expression analysis of public datasets(GSE92566 and GSE163973). They used Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and immune infiltration analysis to identify the function of the differential expressed genes. Besides, the authors performed qt-PCR on keloid tissue and adjacent normal tissues from 3 patients for further verification. RESULTS M2 macrophage increased in keloid samples than M1 macrophage. The authors identified 2 potential novel biomarkers of keloid, IGF1 and CXCR4, which could inhibit M1 macrophage polarization. The potential mechanism could be inhibiting immune responses and anti-inflammatory activities through INF signaling and E2F targeting. The differential expression of the 2 genes was verified by clinical samples. CONCLUSIONS The authors identified 2 immune signaling molecules associated with keloid formation (IGF1 and CXCR4) and analyzed their potential pathogenic mechanisms.
Collapse
Affiliation(s)
- Ying Liu
- Department of Plastic Surgery, Beijing Hospital of Integrated Traditional Chinese and Western Medicine
- Department of Scar & Wound Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Bing Han
- Department of Scar & Wound Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Liuchang Tan
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongshuo Ji
- Department of Plastic Surgery, Beijing Hospital of Integrated Traditional Chinese and Western Medicine
| | - Xiaofang Chen
- Department of Plastic and Reconstructive Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing
| |
Collapse
|
7
|
Cui J, Zhang S, Acharya K, Xu Y, Guo H, Li T, Fu D, Yang Z, Hou L, Xing X, Hu X. Decorin attenuates hypertrophic scar fibrosis via TGFβ/Smad signalling. Exp Dermatol 2024; 33:e15133. [PMID: 39045898 DOI: 10.1111/exd.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/25/2024]
Abstract
The management of hypertrophic scars (HSs), characterized by excessive collagen production, involves various nonsurgical and surgical interventions. However, the absence of a well-defined molecular mechanism governing hypertrophic scarring has led to less-than-ideal results in clinical antifibrotic treatments. Therefore, our study focused on the role of decorin (DCN) and its regulatory role in the TGF-β/Smad signalling pathway in the development of HSs. In our research, we observed a decrease in DCN expression within hypertrophic scar tissue and its derived cells (HSFc) compared to that in normal tissue. Then, the inhibitory effect of DCN on collagen synthesis was confirmed in Fc and HSFc via the detection of fibrosis markers such as COL-1 and COL-3 after the overexpression and knockdown of DCN. Moreover, functional assessments revealed that DCN suppresses the proliferation, migration and invasion of HSFc. We discovered that DCN significantly inhibits the TGF-β1/Smad3 pathway by suppressing TGF-β1 expression, as well as the formation and phosphorylation of Smad3. This finding suggested that DCN regulates the synthesis of collagen-based extracellular matrix and fibrosis through the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Jiangtao Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shiyi Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kiran Acharya
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Heng Guo
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Donghe Fu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zizhen Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lingnan Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaotao Xing
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyi Hu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Kyriazidis I, Demiri E, Foroglou P. Familial Spontaneous Keloids: Examining Thoracic Manifestations in Two Brothers. Cureus 2024; 16:e64163. [PMID: 39119435 PMCID: PMC11309079 DOI: 10.7759/cureus.64163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Keloids are complex fibroproliferative disorders with diverse clinical presentations. Spontaneous keloids (SKs) represent a rare subtype that emerges without any known preceding traumatic event. This report presents a case of familial spontaneous keloids appearing on the thoracic region in two brothers with no prior history of trauma or keloid occurrence in other family members. The lesions exhibited progressive growth over several years but responded to cycles of triamcinolone treatment. This case underscores an unusual spontaneous occurrence of keloids in the thoracic region of two siblings, highlighting the potential genetic predisposition in the aetiology of these lesions. Additionally, this instance reinforces the concept that keloids can develop spontaneously without any apparent trauma in the affected area.
Collapse
Affiliation(s)
- Ioannis Kyriazidis
- Department of Plastic and Reconstructive Surgery, General Hospital Papageorgiou, Thessaloniki, GRC
| | - Efterpi Demiri
- Department of Plastic and Reconstructive Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Department of Plastic and Reconstructive Surgery, General Hospital Papageorgiou, Thessaloniki, GRC
| | - Pericles Foroglou
- Department of Plastic and Reconstructive Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Department of Plastic and Reconstructive Surgery, General Hospital Papageorgiou, Thessaloniki, GRC
| |
Collapse
|
9
|
Jiang H, Hu X, Xiang H, Kou H, Zhang J, Zhang X, Li X, He K, Lu Y. Efficacy and safety of fractional carbon dioxide laser followed by 5-aminolevulinic acid photodynamic therapy for keloids. Photodiagnosis Photodyn Ther 2024; 45:103979. [PMID: 38242189 DOI: 10.1016/j.pdpdt.2024.103979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Keloids are aggressive fibroproliferative disorders that cause aesthetic and functional damage. Photodynamic therapy (PDT) has shown promise as a novel treatment for keloids. However, the limited penetration of 5-aminolevulinic acid (ALA) and unsatisfactory outcomes in dense scars hinder its effectiveness as a monotherapy. The objective of this study is to assess the efficacy and safety of fractional CO2 laser followed by 5-ALA PDT for keloids. METHODS A total of 12 patients with keloid were included in our study. Each lesion was pretreated by fractional CO2 laser with 26-28 W to create microthermal zones. After topical application of 5-ALA solution, an irradiation of 635 nm red light with 120 J/cm2 was performed. The treatment was repeated at least every 2 weeks. Efficacy and safety were evaluated using the Vancouver Scar Scale (VSS), the Visual Analogue Scale (VAS) for keloid-related symptoms and documentation of postoperative complications. Statistical analysis was performed to compare VSS and keloid-related symptom VAS scores of the baseline and final treatment sessions. RESULTS The final treatment resulted in a statistically significant decrease in all parameters of VSS and VAS for pruritus and pain compared to the baseline. Except for postoperative hyperpigmentation, no infections, scar aggravation, or recurrence were observed during at least 6 months of follow-up. Overall, patients expressed a high level of satisfaction with the treatment outcome. CONCLUSIONS Fractional CO2 laser followed by 5-ALA PDT is a promising method for treating keloids. However, its synergetic effects need to be validated through clinical trials involving larger patient cohorts.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China
| | - Xiuhua Hu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China
| | - Haiyan Xiang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China
| | - Huiling Kou
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China
| | - Junbo Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China
| | - Xingcun Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China
| | - Xinying Li
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China
| | - Kunqian He
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China
| | - Yuangang Lu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Street, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
10
|
Hong YK, Lin YC, Cheng TL, Lai CH, Chang YH, Huang YL, Hung CY, Wu CH, Hung KS, Ku YC, Ho YT, Tang MJ, Lin SW, Shi GY, McGrath JA, Wu HL, Hsu CK. TEM1/endosialin/CD248 promotes pathologic scarring and TGF-β activity through its receptor stability in dermal fibroblasts. J Biomed Sci 2024; 31:12. [PMID: 38254097 PMCID: PMC10804696 DOI: 10.1186/s12929-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. METHODS To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-β-mediated responses in pathologic scars. RESULTS The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-β1 signaling through binding with and stabilizing TGF-β receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. CONCLUSIONS Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-β signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.
Collapse
Affiliation(s)
- Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science Technology, Pingtung, Taiwan
| | - Chao-Han Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Chang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lun Huang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yi Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Han Wu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Shu Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chu Ku
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ting Ho
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Hospital, Taipei, Taiwan
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Hua-Lin Wu
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Stocks M, Walter AS, Akova E, Gauglitz G, Aszodi A, Boecker W, Saller MM, Volkmer E. RNA-seq unravels distinct expression profiles of keloids and Dupuytren's disease. Heliyon 2024; 10:e23681. [PMID: 38187218 PMCID: PMC10770622 DOI: 10.1016/j.heliyon.2023.e23681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Keloid scars and Dupuytren's disease are two common, chronic, and incurable fibroproliferative disorders that, among other shared clinical features, may induce joint contractures. We employed bulk RNA sequencing to discern potential shared gene expression patterns and underlying pathological pathways between these two conditions. Our aim was to uncover potential molecular targets that could pave the way for novel therapeutic strategies. Differentially expressed genes (DEGs) were functionally annotated using Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The protein-protein-interaction (PPI) networks were constructed by using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. The Molecular Complex Detection (MCODE) plugin was used for downstream analysis of the PPI networks. A total of 1922 DEGs were identified within Dupuytren's and keloid samples, yet no overlapping gene expression profiles were detected. Significantly enriched GO terms were related to skin development and tendon formation in keloid scars and Dupuytren's disease, respectively. The PPI network analysis revealed 10 genes and the module analysis provided six protein networks, which might play an integral part in disease development. These genes, including CDH1, ERBB2, CASP3 and RPS27A, may serve as new targets for future research to develop biomarkers and/or therapeutic agents.
Collapse
Affiliation(s)
- Marcus Stocks
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximillians-University (LMU), Frauenhoferstr. 12, 80336 Munich, Germany
| | - Annika S. Walter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximillians-University (LMU), Frauenhoferstr. 12, 80336 Munich, Germany
| | - Elif Akova
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximillians-University (LMU), Frauenhoferstr. 12, 80336 Munich, Germany
| | - Gerd Gauglitz
- Department of Dermatology and Allergy, University Hospital, LMU, Thalkirchnerstr. 48, 80337 Munich, Germany
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximillians-University (LMU), Frauenhoferstr. 12, 80336 Munich, Germany
| | - Wolfgang Boecker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximillians-University (LMU), Frauenhoferstr. 12, 80336 Munich, Germany
| | - Maximilian M. Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximillians-University (LMU), Frauenhoferstr. 12, 80336 Munich, Germany
| | - Elias Volkmer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximillians-University (LMU), Frauenhoferstr. 12, 80336 Munich, Germany
- Clinic of Hand Surgery, Helios Klinikum Muenchen West, Steinerweg 5, 81241 Munich, Germany
| |
Collapse
|
12
|
Wang Q, Huang X, Zeng S, Zhou R, Wang D. Weighted gene co-expression network analysis and machine learning identified the lipid metabolism-related gene LGMN as a novel biomarker for keloid. Exp Dermatol 2024; 33:e14974. [PMID: 37930112 DOI: 10.1111/exd.14974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The aetiology of keloid formation remains unclear, and existing treatment modalities have not definitively established a successful approach. Therefore, it is necessary to identify reliable and novel keloid biomarkers as potential targets for therapeutic interventions. In this study, we performed differential expression analysis and functional enrichment analysis on the keloid related datasets, and found that multiple metabolism-related pathways were associated with keloid formation. Subsequently, the differentially expressed genes (DEGs) were intersected with the results of weighted gene co-expression network analysis (WGCNA) and the lipid metabolism-related genes (LMGs). Then, three learning machine algorithms (SVM-RFE, LASSO and Random Forest) together identified legumain (LGMN) as the most critical LMGs. LGMN was overexpressed in keloid and had a high diagnostic performance. The protein-protein interaction (PPI) network related to LGMN was constructed by GeneMANIA database. Functional analysis of indicated PPI network was involved in multiple immune response-related biological processes. Furthermore, immune infiltration analysis was conducted using the CIBERSORT method. M2-type macrophages were highly infiltrated in keloid tissues and were found to be significantly and positively correlated with LGMN expression. Gene set variation analysis (GSVA) indicated that LGMN may be related to promoting fibroblast proliferation and inhibiting their apoptosis. Moreover, eight potential drug candidates for keloid treatment were predicted by the DSigDB database. Western blot, qRT-PCR and immunohistochemistry staining results confirmed that LGMN was highly expressed in keloid. Collectively, our findings may identify a new biomarker and therapeutic target for keloid and contribute to the understanding of the potential pathogenesis of keloid.
Collapse
Affiliation(s)
- Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingtai Huang
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Ghorbani R, Hosseinzadeh S, Azari A, Taghipour N, Soleimani M, Rahimpour A, Abbaszadeh HA. The Current Status and Future Direction of Extracellular Nano-vesicles in the Alleviation of Skin Disorders. Curr Stem Cell Res Ther 2024; 19:351-366. [PMID: 37073662 DOI: 10.2174/1574888x18666230418121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezo Azari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Tosa M, Abe Y, Egawa S, Hatakeyama T, Iwaguro C, Mitsugi R, Moriyama A, Sano T, Ogawa R, Tanaka N. The HEDGEHOG-GLI1 pathway is important for fibroproliferative properties in keloids and as a candidate therapeutic target. Commun Biol 2023; 6:1235. [PMID: 38062202 PMCID: PMC10703807 DOI: 10.1038/s42003-023-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Keloids are benign fibroproliferative skin tumors caused by aberrant wound healing that can negatively impact patient quality of life. The lack of animal models has limited research on pathogenesis or developing effective treatments, and the etiology of keloids remains unknown. Here, we found that the characteristics of stem-like cells from keloid lesions and the surrounding dermis differ from those of normal skin. Furthermore, the HEDGEHOG (HH) signal and its downstream transcription factor GLI1 were upregulated in keloid patient-derived stem-like cells. Inhibition of the HH-GLI1 pathway reduced the expression of genes involved in keloids and fibrosis-inducing cytokines, including osteopontin. Moreover, the HH signal inhibitor vismodegib reduced keloid reconstituted tumor size and keloid-related gene expression in nude mice and the collagen bundle and expression of cytokines characteristic for keloids in ex vivo culture of keloid tissues. These results implicate the HH-GLI1 pathway in keloid pathogenesis and suggest therapeutic targets of keloids.
Collapse
Affiliation(s)
- Mamiko Tosa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshinori Abe
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Seiko Egawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomoka Hatakeyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Chihiro Iwaguro
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ryotaro Mitsugi
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ayaka Moriyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
15
|
Abstract
Wound healing occurs as a response to disruption of the epidermis and dermis. It is an intricate and well-orchestrated response with the goal to restore skin integrity and function. However, in hundreds of millions of patients, skin wound healing results in abnormal scarring, including keloid lesions or hypertrophic scarring. Although the underlying mechanisms of hypertrophic scars and keloid lesions are not well defined, evidence suggests that the changes in the extracellular matrix are perpetuated by ongoing inflammation in susceptible individuals, resulting in a fibrotic phenotype. The lesions then become established, with ongoing deposition of excess disordered collagen. Not only can abnormal scarring be debilitating and painful, it can also cause functional impairment and profound changes in appearance, thereby substantially affecting patients' lives. Despite the vast demand on patient health and the medical society, very little progress has been made in the care of patients with abnormal scarring. To improve the outcome of pathological scarring, standardized and innovative approaches are required.
Collapse
Affiliation(s)
- Marc G Jeschke
- Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Fiona M Wood
- Burns Service of Western Australia, Fiona Stanley Hospital, Perth Children's Hospital, Perth, Western Australia, Australia
- Burn Injury Research Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Esther Middelkoop
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands
- Association of Dutch Burn Centers (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Ardeshir Bayat
- Medical Research Council Wound Healing Unit, Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Luc Teot
- Department of Plastic Surgery, Burns, Wound Healing, Montpellier University Hospital, Montpellier, France
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Gerd G Gauglitz
- Department of Dermatology and Allergy, Ludwig-Maximilian University Munich, Munich, Germany
- Haut- und Laserzentrum Glockenbach, Munich, Germany
| |
Collapse
|
16
|
Zhang X, Wu X, Li D. The Communication from Immune Cells to the Fibroblasts in Keloids: Implications for Immunotherapy. Int J Mol Sci 2023; 24:15475. [PMID: 37895153 PMCID: PMC10607157 DOI: 10.3390/ijms242015475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Keloids are a type of fibrotic disease characterized by excessive collagen production and extracellular matrix (ECM) deposition. The symptoms of pain and itching and frequent recurrence after treatment significantly impact the quality of life and mental health of patients. A deeper understanding of the pathogenesis of keloids is crucial for the development of an effective therapeutic approach. Fibroblasts play a central role in the pathogenesis of keloids by producing large amounts of collagen fibers. Recent evidence indicates that keloids exhibit high immune cell infiltration, and these cells secrete cytokines or growth factors to support keloid fibroblast proliferation. This article provides an update on the knowledge regarding the keloid microenvironment based on recent single-cell sequencing literature. Many inflammatory cells gathered in keloid lesions, such as macrophages, mast cells, and T lymphocytes, indicate that keloids may be an inflammatory skin disease. In this review, we focus on the communication from immune cells to the fibroblasts and the potential of immunotherapy for keloids. We hope that this review will trigger interest in investigating keloids as an inflammatory disease, which may open up new avenues for drug development by targeting immune mediators.
Collapse
Affiliation(s)
- Xiya Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China;
| | - Xinfeng Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China;
| | - Dongqing Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China;
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| |
Collapse
|
17
|
Xi L, Wang L, Zhang M, He C, Yang X, Pang Y, Chen H, Cheng F. TNF-R1 Cellular Nanovesicles Loaded on the Thermosensitive F-127 Hydrogel Enhance the Repair of Scalded Skin. ACS Biomater Sci Eng 2023; 9:5843-5854. [PMID: 37043416 PMCID: PMC10566511 DOI: 10.1021/acsbiomaterials.2c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
Excessive inflammatory response after severe scalding is an important cause of delayed wound healing and is even life-threatening. Tumor necrosis factor α (TNF-α) is a key pro-inflammatory factor of skin trauma. Interacting with tumor necrosis factor receptor 1 (TNF-R1), TNF-α causes excessive inflammation and poor prognosis by activating NF-κB pathway. Antagonizing high levels of TNF-α is one of the therapeutic approaches for diseases associated with the overactivation of inflammatory responses. However, the available monoclonal antibodies are limited in their application due to their complex preparation process, high price, and the lack of cell targeting ability leading to systemic toxicity and side effects. In this study, by using a genetic bioengineering technique, we modified TNF-R1 on the cell membrane surface-derived nanovesicles (NVs). We confirmed that TNF-R1 NVs stably expressed TNF-R1 on the membrane surface and interacted with its ligand TNF-α. Furthermore, TNF-R1 NVs competitively antagonized the effect of TNF-α in the wound healing assay in vitro. In the scalded mouse model, TNF-R1 NVs were released continuously from the thermosensitive hydrogel Pluronic F-127, resulting in less inflammation and better wound healing. Our results revealed TNF-R1 NVs as promising cell-free therapeutic agents in alleviating TNF-α-mediated pro-inflammatory signaling and promoting wound repair.
Collapse
Affiliation(s)
- Lifang Xi
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China, 518107
| | - Linglu Wang
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China, 518107
| | - Manqi Zhang
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China, 518107
| | - Chao He
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China, 518107
| | - Xinrui Yang
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China, 518107
| | - Yuxin Pang
- School
of Pharmacy, Guizhou University of Traditional
Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Hongbo Chen
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China, 518107
| | - Fang Cheng
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China, 518107
| |
Collapse
|
18
|
Choi S, Ham S, Lee YI, Kim J, Lee WJ, Lee JH. Silibinin Downregulates Types I and III Collagen Expression via Suppression of the mTOR Signaling Pathway. Int J Mol Sci 2023; 24:14386. [PMID: 37762688 PMCID: PMC10531945 DOI: 10.3390/ijms241814386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Keloid scars are fibro-proliferative conditions characterized by abnormal fibroblast proliferation and excessive extracellular matrix deposition. The mammalian target of the rapamycin (mTOR) pathway has emerged as a potential therapeutic target in keloid disease. Silibinin, a natural flavonoid isolated from the seeds and fruits of the milk thistle, is known to inhibit the mTOR signaling pathway in human cervical and hepatoma cancer cells. However, the mechanisms underlying this inhibitory effect are not fully understood. This in vitro study investigated the effects of silibinin on collagen expression in normal human dermal and keloid-derived fibroblasts. We evaluated the effects of silibinin on the expressions of collagen types I and III and assessed its effects on the suppression of the mTOR signaling pathway. Our findings confirmed elevated mTOR phosphorylation levels in keloid scars compared to normal tissue specimens. Silibinin treatment significantly reduced collagen I and III expressions in normal human dermal and keloid-derived fibroblasts. These effects were accompanied by the suppression of the mTOR signaling pathway. Our findings suggest the potential of silibinin as a promising therapeutic agent for preventing and treating keloid scars. Further studies are warranted to explore the clinical application of silibinin in scar management.
Collapse
Affiliation(s)
- Sooyeon Choi
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
| | - Seoyoon Ham
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
| | - Jihee Kim
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Won Jai Lee
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
- Department of Plastic Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
| |
Collapse
|
19
|
Zheng Y, Huang Q, Zhang Y, Geng L, Wang W, Zhang H, He X, Li Q. Multimodal roles of transient receptor potential channel activation in inducing pathological tissue scarification. Front Immunol 2023; 14:1237992. [PMID: 37705977 PMCID: PMC10497121 DOI: 10.3389/fimmu.2023.1237992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Transient receptor potential (TRP) channels are a class of transmembrane proteins that can sense a variety of physical/chemical stimuli, participate in the pathological processes of various diseases and have attracted increasing attention from researchers. Recent studies have shown that some TRP channels are involved in the development of pathological scarification (PS) and directly participate in PS fibrosis and re-epithelialization or indirectly activate immune cells to release cytokines and neuropeptides, which is subdivided into immune inflammation, fibrosis, pruritus and mechanical forces increased. This review elaborates on the characteristics of TRP channels, the mechanism of PS and how TRP channels mediate the development of PS, summarizes the important role of TRP channels in the different pathogenesis of PS and proposes that therapeutic strategies targeting TRP will be important for the prevention and treatment of PS. TRP channels are expected to become new targets for PS, which will make further breakthroughs and provide potential pharmacological targets and directions for the in-depth study of PS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Chen K, Xu M, Lu F, He Y. Development of Matrix Metalloproteinases-Mediated Extracellular Matrix Remodeling in Regenerative Medicine: A Mini Review. Tissue Eng Regen Med 2023; 20:661-670. [PMID: 37160567 PMCID: PMC10352474 DOI: 10.1007/s13770-023-00536-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023] Open
Abstract
Extracellular matrix (ECM) components confer biomechanical properties, maintain cell phenotype and mediate tissue homeostasis. ECM remodeling is complex and plays a key role in both physiological and pathological processes. Matrix metalloproteinases (MMPs) are a group of enzymes responsible for ECM degradation and have been accepted as a key regulator in ECM remodeling. In this mini-review, we summarize MMPs categories, functions and the targeted substrates. We then discuss current understanding of the role of MMPs-mediated events, including inflammation reaction, angiogenesis, cellular activities, etc., in ECM remodeling in the context of regenerative medicine.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Guo C, Liang L, Zheng J, Xie Y, Qiu X, Tan G, Huang J, Wang L. UCHL1 aggravates skin fibrosis through an IGF-1-induced Akt/mTOR/HIF-1α pathway in keloid. FASEB J 2023; 37:e23015. [PMID: 37256780 DOI: 10.1096/fj.202300153rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Keloid is a heterogeneous disease featured by the excessive production of extracellular matrix. It is a great challenge for both clinicians and patients regarding the exaggerated and uncontrolled outgrowth and the therapeutic resistance of the disease. In this study, we verified that UCHL1 was drastically upregulated in keloid fibroblasts. UCHL1 had no effects on cell proliferation and migration, but instead promoted collagen I and α-SMA expression that was inhibited by silencing UCHL1 gene and by adding in LDN-57444, a pharmacological inhibitor for UCHL1 activity as well. The pathological process was mediated by IGF-1 promoted Akt/mTOR/HIF-1α signaling pathway because inhibition of any of them could reduce the expression of collagen I and α-SMA driven by UCHL1 in fibroblasts. Also, we found that UCHL1 expression in keloid fibroblasts was promoted by M2 macrophages via TGF-β1. These findings extend our understanding of the pathogenesis of keloid and provide potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Chipeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Liang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingbin Zheng
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangchun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Sutedja EK, Sundani A, Ruchiatan K, Sutedja E. Spring-Powered Needle-Free Injection of Triamcinolone Acetonide and 5-Fluorouracil for Keloid Treatment. Clin Cosmet Investig Dermatol 2023; 16:1659-1665. [PMID: 37396709 PMCID: PMC10314751 DOI: 10.2147/ccid.s415789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Introduction Keloid is an abnormal fibroproliferative healing response characterized by excessive and invasive tissue growth beyond the wound boundaries. The conventional treatment involves injecting drugs such as triamcinolone acetonide (TA), 5-fluorouracil (5-FU), or their combination intralesionally. However, the pain associated with injections often leads to low patient compliance and treatment failure. The spring-powered needle-free injector (NFI) provides an affordable alternative option for drug delivery with reduced pain. Case This case report presents a 69-year-old female patient with a keloid treated using a spring-powered needle-free injector (NFI) for drug delivery. The keloid was assessed using the Vancouver Scar Scale (VSS) and the Patient and Observer Scar Assessment Scale (POSAS). The patient's pain level was measured using the Numeric Pain Rating Scale (NPRS). TA and 5-FU mixed with lidocaine were loaded into the NFI and injected at a dose of 0.1 mL/cm2. The treatment was repeated twice a week. After four sessions, the keloid flattened by 0.5 cm, VSS score decreased from 11 to 10, and POSAS scores decreased from 49 to 43 (observer) and from 50 to 37 (patient). The NPRS during each procedure was 1, indicating minimal pain. Discussion The spring-powered NFI is a simple and cost-effective device that operates based on Hooke's law, producing a high-pressure fluid jet for effective skin penetration. The NFI demonstrated effectiveness in treating keloid lesions, resulting in visible improvement after four treatments. Conclusion The spring-powered NFI offers an affordable and painless alternative to keloid treatment.
Collapse
Affiliation(s)
- Eva Krishna Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Annisa Sundani
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Kartika Ruchiatan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Endang Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
23
|
Kidzeru EB, Lebeko M, Sharma JR, Nkengazong L, Adeola HA, Ndlovu H, P Khumalo N, Bayat A. Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars. Exp Dermatol 2023; 32:570-587. [PMID: 36562321 PMCID: PMC10947010 DOI: 10.1111/exd.14734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Raised dermal scars including hypertrophic, and keloid scars as well as scalp-associated fibrosing Folliculitis Keloidalis Nuchae (FKN) are a group of fibrotic raised dermal lesions that mostly occur following cutaneous injury. They are characterized by increased extracellular matrix (ECM) deposition, primarily excessive collagen type 1 production by hyperproliferative fibroblasts. The extent of ECM deposition is thought to be proportional to the severity of local skin inflammation leading to excessive fibrosis of the dermis. Due to a lack of suitable study models, therapy for raised dermal scars remains ill-defined. Immune cells and their associated markers have been strongly associated with dermal fibrosis. Therefore, modulation of the immune system and use of anti-inflammatory cytokines are of potential interest in the management of dermal fibrosis. In this review, we will discuss the importance of immune factors in the pathogenesis of raised dermal scarring. The aim here is to provide an up-to-date comprehensive review of the literature, from PubMed, Scopus, and other relevant search engines in order to describe the known immunological factors associated with raised dermal scarring. The importance of immune cells including mast cells, macrophages, lymphocytes, and relevant molecules such as cytokines, chemokines, and growth factors, antibodies, transcription factors, and other immune-associated molecules as well as tissue lymphoid aggregates identified within raised dermal scars will be presented. A growing body of evidence points to a shift from proinflammatory Th1 response to regulatory/anti-inflammatory Th2 response being associated with the development of fibrogenesis in raised dermal scarring. In summary, a better understanding of immune cells and associated molecular markers in dermal fibrosis will likely enable future development of potential immune-modulated therapeutic, diagnostic, and theranostic targets in raised dermal scarring.
Collapse
Affiliation(s)
- Elvis Banboye Kidzeru
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Maribanyana Lebeko
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Present address:
Cape Biologix Technologies (PTY, LTD)Cape TownSouth Africa
| | - Jyoti Rajan Sharma
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
- Present address:
Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
| | - Lucia Nkengazong
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Henry Ademola Adeola
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Hlumani Ndlovu
- Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla P Khumalo
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ardeshir Bayat
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
24
|
Vásquez-Echeverri E, Yamazaki-Nakashimada MA, Venegas Montoya E, Scheffler Mendoza SC, Castano-Jaramillo LM, Medina-Torres EA, González-Serrano ME, Espinosa-Navarro M, Bustamante Ogando JC, González-Villarreal MG, Ortega Cisneros M, Valencia Mayoral PF, Consuelo Sanchez A, Varela-Fascinetto G, Ramírez-Uribe RMN, Salazar Gálvez Y, Bonifaz Alonzo LC, Fuentes-Pananá EM, Gómez Hernández N, Rojas Maruri CM, Casanova JL, Espinosa-Padilla SE, Staines Boone AT, López-Velázquez G, Boisson B, Lugo Reyes SO. Is Your Kid Actin Out? A Series of Six Patients With Inherited Actin-Related Protein 2/3 Complex Subunit 1B Deficiency and Review of the Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1261-1280.e8. [PMID: 36708766 PMCID: PMC10085853 DOI: 10.1016/j.jaip.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hereditary actin-related protein 2/3 complex subunit 1B deficiency is characterized clinically by ear, skin, and lung infections, bleeding, eczema, food allergy, asthma, skin vasculitis, colitis, arthritis, short stature, and lymphadenopathy. OBJECTIVE We aimed to describe the clinical, laboratory, and genetic features of six patients from four Mexican families. METHODS We performed exome sequencing in patients of four families with suspected actinopathy, collected their data from medical records, and reviewed the literature for reports of other patients with actin-related protein 2/3 complex subunit 1B deficiency. RESULTS Six patients from four families were included. All had recurrent infections, mainly bacterial pneumonia, and cellulitis. A total of 67% had eczema whereas 50% had food allergies, failure to thrive, hepatomegaly, and bleeding. Eosinophilia was found in all; 84% had thrombocytopenia, 67% had abnormal-size platelets and anemia. Serum levels of IgG, IgA, and IgE were highly increased in most; IgM was normal or low. T cells were decreased in 67% of patients, whereas B and NK cells were increased in half of patients. Two of the four probands had compound heterozygous variants. One patient was successfully transplanted. We identified 28 other patients whose most prevalent features were eczema, recurrent infections, failure to thrive, bleeding, diarrhea, allergies, vasculitis, eosinophilia, platelet abnormalities, high IgE/IgA, low T cells, and high B cells. CONCLUSION Actin-related protein 2/3 complex subunit 1B deficiency has a variable and heterogeneous clinical spectrum, expanded by these cases to include keloid scars and Epstein-Barr virus chronic hepatitis. A novel deletion in exon 8 was shared by three unrelated families and might be the result of a founder effect.
Collapse
Affiliation(s)
| | | | - Edna Venegas Montoya
- Immunology Service, Unidad Médica de Alta Especialidad, Monterrey, Nuevo Leon, Mexico
| | | | - Lina Maria Castano-Jaramillo
- Clinical Immunology Service, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico; Fundación Hospital de la Misericordia, Bogotá, Colombia
| | | | | | - Melissa Espinosa-Navarro
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | | | | | - Margarita Ortega Cisneros
- Allergy and Clinical Immunology Service, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente IMSS, Guadalajara, Jalisco, Mexico
| | | | - Alejandra Consuelo Sanchez
- Pediatric Gastroenterology and Nutrition Department, Hospital Infantil de Mexico "Dr Federico Gomez," Mexico City, Mexico
| | | | | | | | - Laura Cecilia Bonifaz Alonzo
- Immunochemistry Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | | | - Noemí Gómez Hernández
- Allergy and Clinical Immunology Service, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente IMSS, Guadalajara, Jalisco, Mexico
| | | | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York City, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, Paris, France
| | - Sara Elva Espinosa-Padilla
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico.
| | | | - Gabriel López-Velázquez
- Laboratory of Biomolecules and Infant Health, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York City, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France
| | - Saul Oswaldo Lugo Reyes
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico.
| |
Collapse
|
25
|
Le X, Fan YF. ADAM17 regulates the proliferation and extracellular matrix of keloid fibroblasts by mediating the EGFR/ERK signaling pathway. J Plast Surg Hand Surg 2023; 57:129-136. [PMID: 34978504 DOI: 10.1080/2000656x.2021.2017944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To investigate the role of a disintegrin and metalloprotease protein 17 (ADAM17) in regulating the proliferation and extracellular matrix (ECM) expression of keloid fibroblasts (KFs) via the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) pathway. ADAM17 expression in keloid tissues was detected by western blotting. KFs were isolated, cultured and divided into the control, shNC (negative control), shADAM17, transforming growth factor-β1 (TGF-β1), TGF-β1 + shNC and TGF-β1 + shADAM17 groups. The expression of ECM was detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Western blotting was performed to detect the expression of proteins. Cell proliferation was detected by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, while cell invasion and migration were examined by Transwell and wound healing assays. The expression of ADAM17 was increased in keloid tissues and KFs. Compared with the control group, the expression of p-EGFR and p-ERK/1/2/ERK1/2, as well as the expression of collagen I, collagen III, connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA), were decreased in KFs from the shADAM17 group, with decreased cell proliferation, invasion and migration. In contrast, the TGF-β1 group presented the opposite trend in these aspects. In addition, compared with the TGF-β1 group, KFs from the TGF-β1 + shADAM17 group had decreased ECM expression, proliferation, invasion and migration. ADAM17 expression was upregulated in keloid tissues. Silencing ADAM17 may inhibit the activity of the EGFR/ERK pathway to limit the deposition of ECM in KFs with reduced proliferation, invasion and migration.
Collapse
Affiliation(s)
- Xin Le
- Department of Burn, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - You-Fen Fan
- Department of Burn, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
26
|
Zhu Z, Ni S, Zhang J, Yuan Y, Bai Y, Yin X, Zhu Z. Genome-wide analysis of dysregulated RNA-binding proteins and alternative splicing genes in keloid. Front Genet 2023; 14:1118999. [PMID: 36777722 PMCID: PMC9908963 DOI: 10.3389/fgene.2023.1118999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: The pathogenesis of keloids remains unclear. Methods: In this study, we analyzed RNA-Seq data (GSE113619) of the local skin tissue of 8 keloid-prone individuals (KPI) and 6 healthy controls (HC) before and 42 days after trauma from the gene expression omnibus (GEO) database. The differential alternative splicing (AS) events associated with trauma healing between KPIs and HCs were identifified, and their functional differences were analyzed by gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathways. The co-expression relationship of differentially alternative splicing genes and differentially expressed RNA binding proteins (RBPs) was established subsequently. Results: A total of 674 differential AS events between the KD42 and the KD0 and 378 differential AS events between the HD42 and the HD0 were discovered. Notably, most of the differential genes related to keloids are enriched in actin, microtubule cells, and cortical actin cytoskeletal tissue pathway. We observed a signifificant association between AS genes (EPB41, TPM1, NF2, PARD3) and trauma healing in KPIs and HCs. We also found that the differential expression of healthy controls-specifific trauma healing-related RBPs (TKT, FDPS, SAMHD1) may affect the response of HCs to trauma healing by regulating the AS of downstream trauma healing-related genes such as DCN and DST. In contrast, KPIs also has specifific differential expression of trauma healing related RBPs (S100A9, HspB1, LIMA1, FBL), which may affect the healing response of KPIs to trauma by regulating the AS of downstream trauma healing-related genes such as FN1 and TPM1. Discussion: Our results were innovative in revealing early wound healing-related genes (EPB41, TPM1, NF2, PARD3) in KPI from the perspective of AS regulated by RBPs.
Collapse
Affiliation(s)
- Zhen Zhu
- Hangzhou Plastic Surgery Hospital, Hangzhou, China
| | - Shuangying Ni
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ying Yuan
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yun Bai
- Department of Plastic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xueli Yin
- Functional Experiment Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China,*Correspondence: Zhengwei Zhu,
| |
Collapse
|
27
|
Zhang Y, Li X, Liu W, Hu G, Gu H, Cui X, Zhang D, Zeng W, Xia Y. TWEAK/Fn14 signaling may function as a reactive compensatory mechanism against extracellular matrix accumulation in keloid fibroblasts. Eur J Cell Biol 2023; 102:151290. [PMID: 36709605 DOI: 10.1016/j.ejcb.2023.151290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Overabundance of the extracellular matrix resulting from hyperproliferation of keloid fibroblasts (KFs) and dysregulation of apoptosis represents the main pathophysiology underlying keloids. TWEAK is a weak apoptosis inducer, and it plays a critical role in pathological tissue remodeling via its receptor, Fn14. However, the role of TWEAK/Fn14 signaling in the pathogenesis of keloids has not been investigated. In this study, we confirmed the overexpression levels of TWEAK and Fn14 in clinical keloid tissue specimens and primary KFs. The extracellular matrix (ECM)-related genes were also evaluated between primary KFs and their normal counterparts to determine the factors leading to the formation or development of keloids. Unexpectedly, exogenous TWEAK significantly reduced the levels of collagen I and collagen III, as well as alpha-smooth muscle actin (α-SMA). Additionally, TWEAK promoted MMPs expression and apoptosis activity of KFs. Furthermore, we verified that the inhibitory effect of TWEAK on KFs is through down-regulation of Polo-like kinase 5, which modulates cell differentiation and apoptosis. The TWEAK-Fn14 axis seems to be a secondary, although less effective, compensatory mechanism to increase the catabolic functions of fibroblasts in an attempt to further decrease the accumulation of collagen. DATA AVAILABILITY: All data generated or analyzed during this study are included in this published article (and its Supporting Information files).
Collapse
Affiliation(s)
- Yitian Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoli Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004 China
| | - Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiao Cui
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dewu Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
28
|
SPARC promotes fibroblast proliferation, migration, and collagen production in keloids by inactivation of p53. J Dermatol Sci 2023; 109:2-11. [PMID: 36642579 DOI: 10.1016/j.jdermsci.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Keloid, an aggressive fibroproliferative disease of the skin, is usually caused by infectious skin diseases, burns, and trauma. OBJECTIVE This study aimed to assess the effect of SPARC on the keloid pathogenesis. METHODS In normal skin and keloid scar tissues, changes in SPARC expression were analysed by qRT-PCR, western blotting, and immunohistochemistry. Keloid fibroblasts were isolated from human keloid tissue. GSEA was performed to investigate the signalling pathways related to SPARC. Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine, transwell assay, and scratching assays were used to assess fibroblast proliferation and migration. Changes in α-SMA, fibronectin, collagen I, and collagen III levels were examined in fibroblasts by western blotting. RESULTS SPARC expression was upregulated in keloid scar tissues. In fibroblasts, cell proliferation, migration, collagen production, and extracellular matrix (ECM) synthesis were promoted by SPARC overexpression, whereas SPARC knockdown resulted a converse result. GSEA showed that SPARC regulates the p53 pathway. In keloid scar tissues, there was a negative correlation between SPARC and p53 expression. p53 expression was decreased by SPARC overexpression, whereas SPARC knockdown increased p53 expression. Furthermore, the effects of SPARC on the fibroblast phenotype were reversed by p53 overexpression. CONCLUSIONS Fibroblast proliferation, migration, and ECM synthesis were promoted by SPARC overexpression, which was achieved by regulating the p53 pathway. Our findings provide new therapeutic targets for keloids.
Collapse
|
29
|
Jin M, Xu X. MicroRNA-182-5p Inhibits Hypertrophic Scar Formation by Inhibiting the Proliferation and Migration of Fibroblasts via SMAD4 Pathway. Clin Cosmet Investig Dermatol 2023; 16:565-580. [PMID: 36919011 PMCID: PMC10008340 DOI: 10.2147/ccid.s397808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
Introduction Secondary to war wounds, trauma, etc., hypertrophic scar formation is the cause of an excessive proliferation of fibroblasts and accumulation of collagen fibers, which might affect cosmetic appearance, and could cause malignant transformation. miRNAs play an important role in disease regulation via inhibiting post-transcriptional protein translation by targeting and binding to the 3' UTR region of mRNA. Here we explore the mechanism and interventions of scar formation from the perspective of miRNA. Methods Hypertrophic scar-associated differential miRNAs were screened by analyzing sequencing data of normal skin and hypertrophic scar, and verified by RT-qPCR. Signaling pathways that may be influenced by differentially miRNAs were analyzed using KEGG and GO. miRNA mimics were used to explore the effects of miRNAs on SMAD signaling pathway proteins. Dual-luciferase assays were used to explore the targeted binding of miRNAs. The mimics of the miRNA were used to explore the impact of miRNAs on the proliferation, migration, apoptosis and collagen synthesis levels of hypertrophic scar fibroblasts. The scar model of rabbit ear was used to verify the influence of miRNA on wound healing and scar formation in vivo. Results Expression of miR-182-5p was found to be considerably decreased in hypertrophic scars and fibroblasts. miR-182-5p was found to act mainly by targeting the 3'UTR region of SMAD4, but not SMAD1 or SMAD3. miR-182-5p overexpression may drastically suppress the proliferation and migration of fibroblasts, accompanied by enhanced apoptosis and reduced collagen fiber synthesis. The overexpression of miR-182-5p in in vivo experiments could effectively inhibit hypertrophic scar formation without affecting the speed and quality of wound healing. Conclusion miR-182-5p inhibits hypertrophic scar formation by decreasing the proliferation and migration of fibroblasts via SMAD4 pathway, and is expected to become a novel hypertrophic scar therapeutic target.
Collapse
Affiliation(s)
- Mingzhu Jin
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiao Xu
- Department of Ophthalmology, Third Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
30
|
Deng P, Liang H, Wang S, Hao R, Han J, Sun X, Pan X, Li D, Wu Y, Huang Z, Xue J, Chen Z. Combined metabolomics and network pharmacology to elucidate the mechanisms of Dracorhodin Perchlorate in treating diabetic foot ulcer rats. Front Pharmacol 2022; 13:1038656. [PMID: 36532755 PMCID: PMC9752146 DOI: 10.3389/fphar.2022.1038656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 10/10/2023] Open
Abstract
Background: Diabetic foot ulcer (DFU) is a severe chronic complication of diabetes, that can result in disability or death. Dracorhodin Perchlorate (DP) is effective for treating DFU, but the potential mechanisms need to be investigated. We aimed to explore the mechanisms underlying the acceleration of wound healing in DFU by the topical application of DP through the combination of metabolomics and network pharmacology. Methods: A DFU rat model was established, and the rate of ulcer wound healing was assessed. Different metabolites were found in the skin tissues of each group, and MetaboAnalyst was performed to analyse metabolic pathways. The candidate targets of DP in the treatment of DFU were screened using network pharmacology. Cytoscape was applied to construct an integrated network of metabolomics and network pharmacology. Moreover, the obtained hub targets were validated using molecular docking. After the topical application of DP, blood glucose, the rate of wound healing and pro-inflammatory cytokine levels were assessed. Results: The levels of IL-1, hs-CRP and TNF-α of the Adm group were significantly downregulated. A total of 114 metabolites were identified. These could be important to the therapeutic effects of DP in the treatment of DFU. Based on the network pharmacology, seven hub genes were found, which were partially consistent with the metabolomics results. We focused on four hub targets by further integrated analysis, namely, PAH, GSTM1, DHFR and CAT, and the crucial metabolites and pathways. Molecular docking results demonstrated that DP was well combined with the hub targets. Conclusion: Our research based on metabolomics and network pharmacology demonstrated that DP improves wound healing in DFU through multiple targets and pathways, and it can potentially be used for DFU treatment.
Collapse
Affiliation(s)
- Pin Deng
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Huan Liang
- Department of Orthopedics, Beijing Longfu Hospital, Beijing, China
| | - Shulong Wang
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Ruinan Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jinglu Han
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaojie Sun
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xuyue Pan
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Dongxiao Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yinwen Wu
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
| | - Zhichao Huang
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhaojun Chen
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
31
|
Chen L, Su Y, Yin B, Li S, Cheng X, He Y, Jia C. LARP6 Regulates Keloid Fibroblast Proliferation, Invasion, and Ability to Synthesize Collagen. J Invest Dermatol 2022; 142:2395-2405.e7. [PMID: 35176288 DOI: 10.1016/j.jid.2022.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Keloid is a skin fibroproliferative disease currently having no uniformly successful treatment. The lesion is composed of actively proliferating and collagen-overproducing fibroblasts. LARP6 is an RNA-binding protein able to regulate collagen synthesis in fibroblasts and to promote proliferation and invasion of tumor cells. To explore LARP6's likely functions in keloid pathogenesis, we performed immunohistochemistry staining on human keloid tissues and discovered markedly upregulated LARP6 expression in lesion fibroblasts compared with that of normal skin and hypertrophic scar tissues. In addition, the keloid tissue‒derived fibroblasts showed constitutive upregulation of LARP6 expression as well as significantly upregulated mRNA and protein expressions of type I collagen and enhanced cell proliferation and invasive behavior in cell culture system. Intriguingly, LARP6 knockdown by targeting with small interfering RNAs significantly inhibited type I collagen expression, proliferation, and invasion capability of keloid tissue‒derived fibroblasts relative to that of normal skin‒ and hypertrophic scar‒derived fibroblasts and control keloid tissue‒derived fibroblasts that were transfected with a scrambled small interfering RNA. In conclusion, the abnormally upregulated expression of LARP6 in fibroblasts may play an important role in the growth and invasive behavior of keloid lesions.
Collapse
Affiliation(s)
- Lingxi Chen
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yingjun Su
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Plastic Surgery Hospital, Xi'an International Medical Center Hospital, Xi'an, China
| | - Bin Yin
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shu Li
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xialin Cheng
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan He
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chiyu Jia
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
32
|
Liu D, Zhang Y, Zhen L, Xu R, Ji Z, Ye Z. Activation of the NFκB signaling pathway in IL6+CSF3+ vascular endothelial cells promotes the formation of keloids. Front Bioeng Biotechnol 2022; 10:917726. [PMID: 36082167 PMCID: PMC9445273 DOI: 10.3389/fbioe.2022.917726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Keloid is a disease caused by abnormal proliferation of skin fibres, the causative mechanism of which remains unclear. Method: In this study, endothelial cells of keloids were studied using scRNAseq combined with bulk-RNAseq data from keloids. The master regulators driving keloid development were identified by transcription factor enrichment analysis. The pattern of changes in vascular endothelial cells during keloid development was explored by inferring endothelial cell differentiation trajectories. Deconvolution of bulkRNAseq by CIBERSORTX verified the pattern of keloidogenesis. Immunohistochemistry for verification of the lesion process in keloid endothelial cells. Results: The endothelial cells of keloids consist of four main cell populations (MMP1+ Endo0, FOS + JUN + Endo1, IL6+CSF3+Endo2, CXCL12 + Endo3). Endo3 is an endothelial progenitor cell, Endo1 is an endothelial cell in the resting state, Endo2 is an endothelial cell in the activated state and Endo0 is an endothelial cell in the terminally differentiated state. Activation of the NFΚB signaling pathway is a typical feature of Endo2 and represents the early skin state of keloids. Conclusion: We have identified patterns of vascular endothelial cell lesions during keloidogenesis and development, and have found that activation of the NFΚB signaling pathway is an essential feature of keloid formation. These findings are expected to contribute to the understanding of the pathogenesis of keloids and to the development of new targeted therapeutic agents for the lesional characteristics of vascular endothelial cells.
Collapse
Affiliation(s)
- Delin Liu
- Department of General Surgery, Institute for Minimally Invasive Surgery, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yidi Zhang
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Lisha Zhen
- School of Statistics, Renmin University of China, Beijing, China
- Beijing Sankuai Online Technology Co.,Ltd, Dhaka, Bangladesh
| | - Rong Xu
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhenling Ji
- Department of General Surgery, Institute for Minimally Invasive Surgery, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- *Correspondence: Zhenling Ji, ; Zheng Ye,
| | - Zheng Ye
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- *Correspondence: Zhenling Ji, ; Zheng Ye,
| |
Collapse
|
33
|
Vats P, Sarin A, Mukundan H, Tyagi K, Mukherjee D, Vishwanath G. Ear Keloids Treated with Postoperative Electrons: A Case Series. South Asian J Cancer 2022. [DOI: 10.1055/s-0042-1748911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Introduction Multiple modalities exist for treating keloids ranging from surgical, medical, chemotherapeutic, and radiation therapy. Different techniques of radiation therapy have been used to treat keloids as an adjuvant to surgical excision. With this case series, we report our experience of using electron beam radiation therapy in this setting.
Materials and Methods We retrospectively analyzed 16 ear keloids treated in 10 patients from January 2013 to October 2015 with surgical excision followed by electron beam to a dose of 10 Gy in two fractions over two consecutive days in immediate postoperative period. Patients were evaluated for recurrent lesions, cosmesis, and adverse effects.
Results With a median follow-up of 78 months (range: 67–100 months), recurrent lesion was seen in five cases; a local control rate of 68.75% was seen. Median recurrence-free period was 67 months (range: 12–100 months). Acceptable cosmesis was seen in all cases and no acute or chronic adverse effects were seen.
Conclusion The large follow-up period in our series establishes the role of electron beam radiation therapy in attaining long-term control in keloid patients. The lower total dose with higher dose per fraction used in our patients has acceptable control along with good cosmesis and absent adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - G Vishwanath
- Dr DY Patil Medical College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
34
|
Effect of Mortalin on Scar Formation in Human Dermal Fibroblasts and a Rat Incisional Scar Model. Int J Mol Sci 2022; 23:ijms23147918. [PMID: 35887263 PMCID: PMC9318157 DOI: 10.3390/ijms23147918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Wound healing is a complicated cascading process; disequilibrium among reparative processes leads to the formation of pathologic scars. Herein, we explored the role of mortalin in scar formation and its association with the interleukin-1α receptor using in vitro and in vivo models. To investigate the effects of mortalin, we performed an MTT cell viability assay, qRT-PCR, and Western blot analyses, in addition to immunofluorescence and immunoprecipitation studies using cultured fibroblasts. A rat incisional wound model was used to evaluate the effect of a mortalin-specific shRNA (dE1-RGD/GFP/shMot) Ad vector in scar tissue. In vitro, the mortalin-treated human dermal fibroblast displayed a significant increase in proliferation of type I collagen, α-smooth muscle actin, transforming growth factor-β, phospho-Smad2/3-complex, and NF-κB levels. Immunofluorescence staining revealed markedly increased mortalin and interleukin-1α receptor protein in keloid tissue compared to those in normal tissue, suggesting that the association between mortalin and IL-1α receptor was responsible for the fibrogenic effect. In vivo, mortalin-specific shRNA-expressing Ad vectors significantly decreased the scar size and type-I-collagen, α-SMA, and phospho-Smad2/3-complex expression in rat incisional scar tissue. Thus, dE1-RGD/GEP/shMot can inhibit the TGF-β/α-SMA axis and NF-κB signal pathways in scar formation, and blocking endogenous mortalin could be a potential therapeutic target for keloids.
Collapse
|
35
|
Chen Y, Chen C, Fang J, Su K, Yuan Q, Hou H, Xin H, Sun J, Huang C, Li S, Yuan Z, Luo S. Targeting the Akt/PI3K/mTOR signaling pathway for complete eradication of keloid disease by sunitinib. Apoptosis 2022; 27:812-824. [PMID: 35802302 DOI: 10.1007/s10495-022-01744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
Keloid disease is a nodular lesion, tumor-like but not cancerous, and characterized of excessive proliferation of fibroblasts and deposition of extracellular matrix (ECM) components. This condition often causes itching, pain and cosmetic disfigurement, significantly reducing patient quality of life. To date, no universally effective therapies are available, possibly due to inadequate understanding of keloid pathogenesis. As an oral small-molecule inhibitor of certain tyrosine kinase receptors, sunitinib has shown significant therapeutic effects in renal cell carcinoma (RCC) and gastrointestinal stromal tumor (GIST). However, it has never been tested if keloid therapy can be effective for the management of keloids. This study thus aims to explore the potential of sunitinib for keloid treatment. Keloid-derived fibroblasts (KFs) were successfully isolated and demonstrated proliferative advantage to normal skin-derived fibroblasts (NFs). Additionally, sunitinib showed specific cytotoxicity and inhibition of invasion, and induced cell cycle arrest and significant apoptosis in KFs. These effects were accompanied by complete suppression of ECM component expression, including collagen types 1 and 3, upregulation of autophagy-associated LC3B and significant suppression of the Akt/PI3K/mTOR pathway. Moreover, a keloid explant culture model was successfully established and used to test the therapeutic efficacy of sunitinib on keloid formation in nude mice. Sunitinib was found to induce complete regression of keloid explant fragments in nude mice, showing significantly higher therapeutic efficacy than the most commonly used intralesional drug triamcinolone acetonide (TAC). These data suggest that sunitinib effectively inhibits keloid development through suppression of the Akt/PI3K/mTOR pathway and thus can be potentially developed as a monotherapy or combination therapy for the effective treatment of keloid disease.
Collapse
Affiliation(s)
- Yiqing Chen
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China.,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Chunlin Chen
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Junren Fang
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China.,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Kui Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Huan Hou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Huijuan Xin
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China
| | - Jianwu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Chaohong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Shuyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China.
| | - Shengkang Luo
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China. .,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China.
| |
Collapse
|
36
|
Pang Q, Lin X, Sun J, Hu J, Dai S, Shen Y, Xu M, Xu J. Comprehensive Analysis of Circular RNA Expression in ceRNA Networks and Identification of the Effects of hsa_circ_0006867 in Keloid Dermal Fibroblasts. Front Mol Biosci 2022; 9:800122. [PMID: 35174214 PMCID: PMC8841745 DOI: 10.3389/fmolb.2022.800122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023] Open
Abstract
Circular RNAs (circRNAs) play a crucial role in the pathogenesis of various fibrotic diseases, but the potential biological function and expression profile of circRNAs in keloids remain unknown. Herein, microarray technology was applied to detect circRNA expression in four patient-derived keloid dermal fibroblasts (KDFs) and normal dermal fibroblasts (NDFs). A total of 327 differentially expressed (DE) circRNAs (fold change > 1.5, p < 0.05) were identified with 195 upregulated and 132 downregulated circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the upregulated circRNAs were mainly enriched in the cytoskeleton and tight junctions, while the downregulated circRNAs were related to morphogenesis of the epithelium and axonal guidance. To explore the function of DE circRNAs, a circRNA-miRNA-mRNA network, including five circRNAs, nine miRNAs, and 235 correlated mRNAs, was constructed using bioinformatics analyses. The expression of five DE circRNAs was validated by qRT–PCR in 18 pairs of KDFs and NDFs, and hsa_circ_0006867 showed promising regulatory function in keloids in vitro. Silencing hsa_circ_00006867 suppressed the proliferation, migration, and invasion of keloid fibroblasts. RNA-binding protein immunoprecipitation (RIP) assays indicated that hsa_circ_00006867 may serve as a platform for miRNA binding to Argonaute (AGO) 2. In addition, hsa-miR-29a-5p may be a potential target miRNA of hsa_circ_00006867. Taken together, our research provided multiple novel clues to understand the pathophysiologic mechanism of keloids and identified hsa_circ_0006867 as a biomarker of keloids.
Collapse
|
37
|
To Explore Ideas From the Altered Metabolites: The Metabolomics of Pathological Scar. J Craniofac Surg 2022; 33:1619-1625. [PMID: 35045014 DOI: 10.1097/scs.0000000000008470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pathological scars are dermal fibroproliferative disorders due to rapid inflammatory response after dermal injury. The altered metabolites could reflect pathophysiological changes directly. However, it has not cleared how the metabolites change scars. OBJECTIVE To explore new ideas of pathological scars from the altered metabolites by using ultra-performance liquid chromatography coupled to tandem mass spectrometry and identifying the key genes. METHODS Keloid (KS, n = 10), hypertrophic scar (HS, n = 10), and normal skin (NS, n = 10) were collected. Ultra-performance liquid chromatography coupled to tandem mass spectrometry was used to identify and characterize metabolites. Differential metabolites were analyzed by orthogonal partial least square discriminant analysis and Student t test. The key pathways were analyzed via Kyoto Encyclopedia of Genes and Genomes, and the related enzymes were verified by real-time Polymerase Chain Reaction, both in tissues and their dermal fibroblasts. RESULTS Two hundred fourteen metabolites were detected in total, mostly were fatty acids and amino acids. In the KS and NS groups, 65 different metabolites were screened (P < 0.05), and the polyunsaturated fatty acids (PUFAs) metabolism and butyric acid in keloid should be concerned. The messenger Ribonucleic Acid expression of fatty acid desaturase 1 and fatty acid desaturase 2, which are the key enzyme of PUFA metabolism, were lower in KS and keloid-derived fibroblasts, P < 0.05. In HS group, 17 metabolites were significantly different and branched chain amino acids degradation was the key pathway. Moreover, branched chain keto acid dehydrogenase E1 subunit alpha was lower expressed in HS and their fibroblasts compared with NS, P < 0.05. CONCLUSIONS Polyunsaturated fatty acids and butyric acid may be associated with the generation of keloids. The pathogenesis of hypertrophic scars may be involved in branched chain amino acids degradation, which is worth paying attention to.
Collapse
|
38
|
Nazir Y, Linsaenkart P, Khantham C, Chaitep T, Jantrawut P, Chittasupho C, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Sommano SR, Tocharus J, Mingmalairak S, Wongsa A, Arjin C, Sringarm K, Berrada H, Barba FJ, Ruksiriwanich W. High Efficiency In Vitro Wound Healing of Dictyophora indusiata Extracts via Anti-Inflammatory and Collagen Stimulating (MMP-2 Inhibition) Mechanisms. J Fungi (Basel) 2021; 7:jof7121100. [PMID: 34947082 PMCID: PMC8708927 DOI: 10.3390/jof7121100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Dictyophora indusiata or Phallus indusiatus is widely used as not only traditional medicine, functional foods, but also, skin care agents. Biological activities of the fruiting body from D. indusiata were widely reported, while the studies on the application of immature bamboo mushroom extracts were limited especially in the wound healing effect. Wound healing process composed of 4 stages including hemostasis, inflammation, proliferation, and remodelling. This study divided the egg stage of bamboo mushroom into 3 parts: peel and green mixture (PGW), core (CW), and whole mushroom (WW). Then, aqueous extracts were investigated for their nucleotide sequencing, biological compound contents, and wound healing effect. The anti-inflammatory determination via the levels of cytokine releasing from macrophages, and the collagen stimulation activity on fibroblasts by matrix metalloproteinase-2 (MMP-2) inhibitory activity were determined to serve for the wound healing process promotion in the stage 2–4 (wound inflammation, proliferation, and remodelling of the skin). All D. indusiata extracts showed good antioxidant potential, significantly anti-inflammatory activity in the decreasing of the nitric oxide (NO), interleukin-1 (IL-1), interleukin-1 (IL-6), and tumour necrosis factor-α (TNF-α) secretion from macrophage cells (p < 0.05), and the effective collagen stimulation via MMP-2 inhibition. In particular, CW extract containing high content of catechin (68.761 ± 0.010 mg/g extract) which could significantly suppress NO secretion (0.06 ± 0.02 µmol/L) better than the standard anti-inflammatory drug diclofenac (0.12 ± 0.02 µmol/L) and their MMP-2 inhibition (41.33 ± 9.44%) was comparable to L-ascorbic acid (50.65 ± 2.53%). These findings support that CW of D. indusiata could be an essential natural active ingredient for skin wound healing pharmaceutical products.
Collapse
Affiliation(s)
- Yasir Nazir
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
| | - Tanakarn Chaitep
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
| | - Jiraporn Tocharus
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.T.); (S.M.)
| | - Salin Mingmalairak
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.T.); (S.M.)
| | - Anchali Wongsa
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (C.A.)
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (C.A.)
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (C.A.)
| | - Houda Berrada
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (H.B.); (F.J.B.)
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (H.B.); (F.J.B.)
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Correspondence: ; Tel.: +66-96269-5354
| |
Collapse
|
39
|
Huang S, Liao J, Luo X, Liu F, Shi G, Wen W. Kindlin-2 promoted the progression of keloids through the Smad pathway and Fas/FasL pathway. Exp Cell Res 2021; 408:112813. [PMID: 34492266 DOI: 10.1016/j.yexcr.2021.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Keloids are benign skin tumors characterized by aggressive growth. To date, there is no exact treatment because little is known about its pathological mechanism. Therefore, it is important to investigate the mechanism of its occurrence and development to identify therapeutic targets. In this study, the expression of Kindlin-2 was higher in keloid fibroblasts (KFs) than in normal skin fibroblasts (NFs). In vitro experiments showed that knocking down Kindlin-2 in KFs could promote cell apoptosis and inhibit cell proliferation, cell migration and invasion, and contractile capability. Western blot results showed that the phosphorylation of Smad3 in KFs was inhibited after knocking down Kindlin-2, inhibiting the activation of the Smad pathway. Moreover, knocking down Kindlin-2 increased the expression of Fas and FasL in KFs, which demonstrated that knocking down Kindlin-2 promoted the activation of the exogenous apoptotic pathway of KFs and then facilitated apoptosis. The above results revealed that knocking down Kindlin-2 in KFs can inhibit the activation of the Smad pathway and promote the activation of the Fas/FasL exogenous apoptosis pathway, thereby altering the cytological function of KFs. Therefore, Kindlin-2 might play an important role in the occurrence and development of keloids and could become a new target to treat keloids.
Collapse
Affiliation(s)
- Shaobin Huang
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Liao
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohua Luo
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Shi
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Weiping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
40
|
Zhou B, Gao Z, Liu W, Wu X, Wang W. Important role of mechanical microenvironment on macrophage dysfunction during keloid pathogenesis. Exp Dermatol 2021; 31:375-380. [PMID: 34665886 DOI: 10.1111/exd.14473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Keloid is considered as a tumor-like skin disease with multiple aetiologies including immunological factors and mechanical microenvironment. Macrophages are plastic and diverse immune cells that play a critical role in maintaining tissue homeostasis by removing dead cells, debris, pathogens and repairing tissues after inflammation. The imbalance of M1/M2 macrophages and disturbances in macrophage functions can steer the progression of chronic inflammation and lead to the development of pathological fibrosis in keloid disease. Recently, it has been shown that macrophages are sensitive to mechanical signals, especially stretching tension and tissue stiffness, which can determine macrophage polarization and functions. Higher stretching tension is known to be an important pathogenic factor of keloid, and the formation of keloid will lead to an increase in tissue stiffness. As little is known about the underlying reasons of macrophages dysfunction in keloid, an understanding of how the mechanical microenvironment interacting with macrophages and affecting their behaviours may help provide mechanism insights into keloid pathogenesis. We thus hypothesize that the synergistic effect of stretching tension and matrix stiffness may contribute to the major pathophysiological niche attributes of macrophages' in vivo mechanical microenvironment in keloids. These mechanism insights of how macrophages sense and respond to their mechanical microenvironment would propel the development of novel strategies for keloid treatment.
Collapse
Affiliation(s)
- Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| |
Collapse
|
41
|
Yu Y, Wu H, Zhang Q, Ogawa R, Fu S. Emerging insights into the immunological aspects of keloids. J Dermatol 2021; 48:1817-1826. [PMID: 34549462 DOI: 10.1111/1346-8138.16149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
A special kind of scar, keloid, sometimes grows huge, disturbing patients in different ways. We discussed the pathogenesis of keloids and found researches about fibroblasts and collagen disorders, with little emphasis on immunity. Coupled with few effective treatments in keloid at present, we have focused on the immunological mechanisms of keloids with an aim to unravel some new therapeutic approaches in the future. In this review, the immunological processes are separately illustrated by the classification of different immune cells. In addition, we also discuss possible reasons for the repeated recurrence of keloids, the phenomenon of cell talks, and inflammation-related signal pathways involved in the pathogenesis of keloids.
Collapse
Affiliation(s)
- Yangyiyi Yu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Zhang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Siqi Fu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Lumintang L, Adnyana IMS, Hamid AR, Sanjaya H, Golden N, Astawa P, Darmajaya M, Sumadi IWJ. The Effect of Topical Corticosteroid Time of Application on Fibroblast and Type III Collagen Expression in Oryctolagus cuniculus with Deep Dermal Burn Wound (As an Indicator for the Best Time to Start Topical Corticosteroid Application in Preventing Hypertrophic Scar). Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Hypertrophic scar is an abnormal scar that causes physical deteriorations, psychological problems, and aesthetic issues. An excessive number of fibroblasts and collagen III expressions are histopathology indicators for the hypertrophic scar. The role of topical corticosteroids in suppressing inflammation and hypergranulation had widely demonstrated in previous studies. However, there is no study related to the application of topical corticosteroids as prevention of hypertrophic scars from burn wound found. Hence, this study aimed to examine the evidence of the effects of corticosteroid topical in decreasing the number of fibroblasts and type III collagen expression and the best time to start its application in preventing hypertrophic scars.
Methods: This randomized experimental post-test only study involved 54 deep dermal burn wounds on the ventral ear of female Oryctolagus cuniculus that distributed into three groups based on the healing phases. Each group consisted of treatments and controls. Corticosteroid topical application on the first treatment group (inflammatory phase group), the second group (proliferation phase group), and the third group (remodelling phase group) was started on day 3, on day 10, and day 21, respectively. Specimens taken on day 35. Haematoxylin-Eosin and Immunohistochemically staining performed to measure the number of fibroblasts and type III collagen and to observe the epithelization and inflammation process.
Results: The number of fibroblasts significantly decreased in the second treatment group (p =0.001) and followed by the first group (p = 0.016), but no significant decrease found in the third group (p = 0.430). The type III collagen decreased significantly in the second treatment group (p = 0.000) and followed by the third group (p = 0.019), but no significant decrease found in the first group. There was no statistically different number of fibroblast and type III collagen discovered between the controls. Complete epithelization found in all groups. Also, no ongoing inflammation found in all groups.
Conclusion
: Topical corticosteroids on deep dermal burn wound revealed to be effective in reducing the number of fibroblasts and type III collagen with no healing disruption. The proliferation phase found to be the best time to start the application of topical corticosteroids.
Collapse
|
43
|
Liu X, Chen W, Zeng Q, Ma B, Li Z, Meng T, Chen J, Yu N, Zhou Z, Long X. Single-cell RNA-seq reveals lineage-specific regulatory changes of fibroblasts and vascular endothelial cells in keloids. J Invest Dermatol 2021; 142:124-135.e11. [PMID: 34242659 DOI: 10.1016/j.jid.2021.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 10/20/2022]
Abstract
Keloids are a benign dermal fibrotic disorder with features similar to malignant tumors. keloids remain a therapeutic challenge and lack medical therapies, which is partially due to the incomplete understanding of the pathogenesis mechanism. We performed single-cell RNA-seq of 28,064 cells from keloid skin tissue and adjacent relatively normal tissue. Unbiased clustering revealed substantial cellular heterogeneity of keloid tissue, which included 21 clusters assigned to 11 cell lineages. We observed significant expansion of fibroblast and vascular endothelial cell subpopulations in keloids, reflecting their strong association with keloid pathogenesis. Comparative analyses were performed to identify the dysregulated pathways, regulators and ligand-receptor interactions in keloid fibroblasts and vascular endothelial cells. Our results highlight the roles of transforming growth factor beta and Eph-ephrin signaling pathways in both the aberrant fibrogenesis and angiogenesis of keloids. Critical regulators probably involved in the fibrogenesis of keloid fibroblasts, such as TWIST1, FOXO3 and SMAD3, were identified. TWIST1 inhibitor harmine could significantly suppress the fibrogenesis of keloid fibroblasts. In addition, tumor-related pathways were activated in keloid fibroblasts and vascular endothelial cells, which may be responsible for the malignant features of keloids. Our study put insights into the pathogenesis of keloids and provides potential targets for medical therapies.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Baihui Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhujun Li
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Tian Meng
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jie Chen
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Nanze Yu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
44
|
Harman RM, Theoret CL, Van de Walle GR. The Horse as a Model for the Study of Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:381-399. [PMID: 34042536 DOI: 10.1089/wound.2018.0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significance: Cutaneous wounds are a major problem in both human and equine medicine. The economic cost of treating skin wounds and related complications in humans and horses is high, and in both species, particular types of chronic wounds do not respond well to current therapies, leading to suffering and morbidity. Recent Advances: Conventional methods for the treatment of cutaneous wounds are generic and have not changed significantly in decades. However, as more is learned about the mechanisms involved in normal skin wound healing, and how failure of these processes leads to chronic nonhealing wounds, novel therapies targeting the specific pathologies of hard-to-heal wounds are being developed and evaluated. Critical Issues: Physiologically relevant animal models are needed to (1) study the mechanisms involved in normal and impaired skin wound healing and (2) test newly developed therapies. Future Directions: Similarities in normal wound healing in humans and horses, and the natural development of distinct types of hard-to-heal chronic wounds in both species, make the horse a physiologically relevant model for the study of mechanisms involved in wound repair. Horses are also well-suited models to test novel therapies. In addition, studies in horses have the potential to benefit veterinary, as well as human medicine.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
45
|
Abstract
OBJECTIVE The burden of the management of problematic skin wounds characterised by a compromised skin barrier is growing rapidly. Almost six million patients are affected in the US alone, with an estimated market of $25 billion annually. There is an urgent requirement for efficient mechanism-based treatments and more efficacious drug delivery systems. Novel strategies are needed for faster healing by reducing infection, moisturising the wound, stimulating the healing mechanisms, speeding up wound closure and reducing scar formation. METHODS A systematic review of qualitative studies was conducted on the recent perspectives of nanotechnology in burn wounds management. Pubmed, Scopus, EMBASE, CINAHL and PsychINFO databases were all systematically searched. Authors independently rated the reporting of the qualitative studies included. A comprehensive literature search was conducted covering various resources up to 2018-2019. Traditional techniques aim to simply cover the wound without playing any active role in wound healing. However, nanotechnology-based solutions are being used to create multipurpose biomaterials, not only for regeneration and repair, but also for on-demand delivery of specific molecules. The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. CONCLUSION Nanotechnology-based therapy is in the forefront of next-generation therapy that is able to advance wound healing of hard-to-heal wounds. In this review, we will highlight the developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment. Herein we will explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.
Collapse
Affiliation(s)
- Ruan Na
- Orthopedics Department, Affiliated Tongji Hospital of Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, China
| | - Tian Wei
- Department of Biomedical Engineering
| |
Collapse
|
46
|
Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering (Basel) 2021; 8:63. [PMID: 34064689 PMCID: PMC8151502 DOI: 10.3390/bioengineering8050063] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided.
Collapse
Affiliation(s)
| | | | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.S.M.-S.); (S.R.)
| |
Collapse
|
47
|
Nagar H, Kim S, Lee I, Kim S, Choi SJ, Piao S, Jeon BH, Oh SH, Kim CS. Downregulation of CR6-interacting factor 1 suppresses keloid fibroblast growth via the TGF-β/Smad signaling pathway. Sci Rep 2021; 11:500. [PMID: 33436666 PMCID: PMC7804403 DOI: 10.1038/s41598-020-79785-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
Keloids are a type of aberrant skin scarring characterized by excessive accumulation of collagen and extracellular matrix (ECM), arising from uncontrolled wound healing responses. While typically non-pathogenic, keloids are occasionally regarded as a form of benign tumor. CR6-interacting factor 1 (CRIF1) is a well-known CR6/GADD45-interacting protein, that has both nuclear and mitochondrial functions, and also exerts regulatory effects on cell growth and apoptosis. In this study, cell proliferation, cell migration, collagen production and TGF-β signaling was compared between normal fibroblasts (NFs) and keloid fibroblasts (KFs). Subsequently, the effects of CRIF1 deficiency were investigated in both NFs and KFs. Cell proliferation, cell migration, collagen production and protein expressions of TGF-β, phosphorylation of Smad2 and Smad3 were all found to be higher in KFs compared to NFs. CRIF1 deficiency in NFs and KFs inhibited cell proliferation, migration, and collagen production. In addition, phosphorylation of Smad2 and Smad3, which are transcription factors of collagen, was decreased. In contrast, mRNA expression levels of Smad7 and SMURF2, two important inhibitory proteins of Smad2/3, were increased, suggesting that CRIF1 may regulate collagen production. CRIF1 deficiency decreases the proliferation and migration of KFs, thereby inhibiting their overgrowth via the transforming growth factor-β (TGF-β)/Smad pathway. CRIF1 may therefore represent a potential therapeutic target in keloid pathogenesis.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Sungmin Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea.,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Seonhee Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea.,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Shuyu Piao
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-Gu, Daejeon, 35015, Republic of Korea. .,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea. .,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea. .,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
48
|
Liang Y, Zhou R, Fu X, Wang C, Wang D. HOXA5 counteracts the function of pathological scar-derived fibroblasts by partially activating p53 signaling. Cell Death Dis 2021; 12:40. [PMID: 33414417 PMCID: PMC7791133 DOI: 10.1038/s41419-020-03323-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
The inactivation of p53 can lead to the formation of pathological scars, including hypertrophic scars and keloids. HOXA5 has been reported to be a critical transcription factor in the p53 pathway in cancers. However, whether HOXA5 also plays a role in pathological scar progression through activating p53 signaling remains unknown. In this study, we first demonstrated that HOXA5 overexpression in hypertrophic scar-or keloids-derived fibroblasts decreased cell proliferation, migration and collagen synthesis, whereas increased cell apoptosis. Furthermore, the results of luciferase activity assays and ChIP PCR assays indicated that HOXA5 transactivated p53 by binding to the ATTA-rich core motif in the p53 promoter. HOXA5 also increased the levels of p21 and Mdm2, which are downstream targets of p53. Interestingly, silencing p53 in these pathological scar-derived fibroblasts partially attenuated HOXA5-mediated growth inhibition effect and HOXA5-induced apoptosis. In addition, 9-cis-retinoic acid augmented the expression of HOXA5 and promoted the effects of HOXA5 on pathological scar-derived fibroblasts, and these effects could be suppressed by HOXA5 knockdown. Thus, our study reveals a role of HOXA5 in mediating the cellular processes of pathological scar-derived fibroblasts by transcriptionally activating the p53 signaling pathway, and 9-cis-retinoic acid may be a potential therapy for pathological scars.
Collapse
Affiliation(s)
- Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Xiujun Fu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
49
|
Xu L, Sun N, Li G, Liu L. LncRNA H19 promotes keloid formation through targeting the miR-769-5p/EIF3A pathway. Mol Cell Biochem 2021; 476:1477-1487. [PMID: 33389493 DOI: 10.1007/s11010-020-04024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Keloid is a skin disease characterized by fibrous hyperplasia, which is often difficult to cure. Long non-coding RNAs (lncRNAs) have been shown to be associated with the development of many diseases. However, the role and mechanism of lncRNA H19 in keloid has been less studied. Our study found that lncRNA H19 expression was increased in keloid tissues and fibroblasts. Besides, H19 knockdown hindered the proliferation, migration, invasion, extracellular matrix (ECM) deposition, and enhanced the apoptosis of keloid fibroblasts. Further experiments showed that microRNA (miR)-769-5p could be sponged by H19, and its knockdown reversed the suppression effect of H19 knockdown on keloid formation. Eukaryotic initiation factor 3A (EIF3A) was found to be a target of miR-769-5p, and its overexpression inverted the inhibition effect of miR-769-5p overexpression on keloid formation. Moreover, the expression of EIF3A was regulated by H19 and miR-769-5p in keloid fibroblasts. Collectively, LncRNA H19 might play an active role in keloid formation, which might provide a new target for the treatment of keloid.
Collapse
Affiliation(s)
- Lingang Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Sun
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangshuai Li
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
50
|
Xin Y, Min P, Xu H, Zhang Z, Zhang Y, Zhang Y. CD26 upregulates proliferation and invasion in keloid fibroblasts through an IGF-1-induced PI3K/AKT/mTOR pathway. BURNS & TRAUMA 2020; 8:tkaa025. [PMID: 33150188 PMCID: PMC7596300 DOI: 10.1093/burnst/tkaa025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/07/2020] [Indexed: 01/21/2023]
Abstract
Background Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion. These pathological behaviours may be related to the heterogeneity of keloid fibroblasts (KFs); however, because of a lack of effective biomarkers for KFs it is difficult to study the underlying mechanism. Our previous studies revealed that the expansion of CD26+ KFs was responsible for increased keloid proliferation and invasion capabilities; the intrinsic relationship and mechanism between CD26 and keloid is therefore worthy of further investigation. The aim of this study was to explore molecular mechanisms in the process of CD26 upregulated KFs proliferation and invasion abilities, and provide more evidence for CD26 as an effective biomarker of keloid and a new clinical therapeutic target. Methods Flow cytometry was performed to isolate CD26+/CD26− fibroblasts from KFs and normal fibroblasts. To generate stably silenced KFs for CD26 and insulin-like growth factor-1 receptor (IGF-1R), lentiviral particles encoding shRNA targeting CD26 and IGF-1R were used for transfection. Cell proliferations were analysed by cell counting kit-8 assay and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay. Scratching assay and transwell assay were used to assess cell migration and invasion abilities. To further quantify the regulatory role of CD26 expression in the relevant signalling pathway, RT-qPCR, western blot, ELISA, PI3K activity assay and immunofluorescence were used. Results Aberrant expression of CD26 in KFs was proven to be associated with increased proliferation and invasion of KFs. Furthermore, the role of the IGF-1/IGF-1 receptor axis was also studied in CD26 and was found to upregulate KF proliferation and invasion. The PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway was shown to affect CD26-regulated KF proliferation and invasion by increasing phosphorylation levels of S6 kinase and 4E-binding protein. Conclusions CD26 can be the effective biomarker for KFs, and its expression is closely related to proliferation and invasion in keloids through the IGF-1-induced PI3K/AKT/mTOR pathway. This work provides a novel perspective on the pathological mechanisms affecting KFs and therapeutic strategies against keloids.
Collapse
Affiliation(s)
- Yu Xin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| |
Collapse
|