1
|
Tits A, Blouin S, Rummler M, Kaux JF, Drion P, van Lenthe GH, Weinkamer R, Hartmann MA, Ruffoni D. Structural and functional heterogeneity of mineralized fibrocartilage at the Achilles tendon-bone insertion. Acta Biomater 2023; 166:409-418. [PMID: 37088163 DOI: 10.1016/j.actbio.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery unit, GIGA & Credec, University of Liège, Liège, Belgium
| | | | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Intradiscal Autologous Platelet-Rich Plasma Injection for Discogenic Low Back Pain: A Clinical Trial. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9563693. [PMID: 36262971 PMCID: PMC9576382 DOI: 10.1155/2022/9563693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Background. Platelet-rich plasma (PRP) contains high concentrations of growth factors and cytokines and may promote healing and tissue formation and exert anti-inflammatory effects. PRP has been shown to improve intervertebral disc degeneration in vivo and in vitro. This study is aimed at evaluating the effectiveness of autologous PRP on discogenic low back pain (DLBP) at 48 weeks postinjection in patients who received a single intradiscal injection. Methods. All patients received a single intradiscal injection of PRP in a prospective trial. The pain scores, lumbar function, and adverse events were assessed at 1 week, 4 weeks, 8 weeks, 12 weeks, 24 weeks, and 48 weeks postinjection and compared to the preinjection values (0 weeks). Results. Data were analysed from 31 patients with a 94% follow-up rate. Compared to preinjection, pain and lumbar function were significantly improved, and there were significant differences (
) over the 48-week follow-up. Twenty-two (71%) patients were classified as successes after the intradiscal injection of PRP. One patient received surgery at two weeks postinjection due to intervertebral discitis. Conclusions. Intradiscal injection of PRP can significantly relieve pain sensation and improve lumbar function in patients with DLBP over a 48-week follow-up period. Further randomized controlled clinical trials are needed to assess the effects of this injection therapy.
Collapse
|
3
|
Viganò M, Ragni E, Marmotti A, de Girolamo L. The effects of orthobiologics in the treatment of tendon pathologies: a systematic review of preclinical evidence. J Exp Orthop 2022; 9:31. [PMID: 35394237 PMCID: PMC8994001 DOI: 10.1186/s40634-022-00468-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose The aim of this systematic review is to explore the current available knowledge about tendon disorders and orthobiologics derived by preclinical experiments to evaluate their role and efficacy in the different stages and conditions related to the tendon healing processes. Methods The systematic review was performed according to the PRISMA guidelines. Different electronic databases (MEDLINE, Web of Science, EMBASE) were searched for studies investigating orthobiologics (PRP and cell-based products from adipose tissue or bone marrow) in animal models or veterinary clinical trials for tendon pathologies (complete/partial tendon ruptures, rotator cuff tears, tendinopathy, enthesis-related injuries). Data regarding the specific product used, the treatment site/pathology, the host and the model were collected. The results were classified into the following categories: histological, biomechanical, molecular and imaging. Results A large pool of preclinical studies on tendon disorders have been found on platelet-rich plasma (PRP), while data about stromal vascular fraction (SVF) and bone marrow concentrate (BMAC) are still limited and frequently focused on expanded cells, rather than orthobiologics prepared at the point of care. The effect of PRP is related to an acceleration of the healing process, without improvements in the final structure and properties of repaired tendon. Cell-based products have been reported to produce more durable results, but the level of evidence is currently insufficient to draw clear indications. Conclusions The preclinical results about orthobiologics applications to tendon pathologies would support the rationale of their clinical use and encourage the performance of clinical trials aimed to confirm these data in human subjects. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00468-w.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Enrico Ragni
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | - Antonio Marmotti
- San Luigi Gonzaga Hospital, Orthopedics and Traumatology Department, University of Turin - Medical School, Turin, Italy
| | - Laura de Girolamo
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| |
Collapse
|
4
|
Roberts JH, Halper J. Growth Factor Roles in Soft Tissue Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:139-159. [PMID: 34807418 DOI: 10.1007/978-3-030-80614-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Repair and healing of injured and diseased tendons has been traditionally fraught with apprehension and difficulties, and often led to rather unsatisfactory results. The burgeoning research field of growth factors has opened new venues for treatment of tendon disorders and injuries, and possibly for treatment of disorders of the aorta and major arteries as well. Several chapters in this volume elucidate the role of transforming growth factor β (TGFß) in pathogenesis of several heritable disorders affecting soft tissues, such as aorta, cardiac valves, and tendons and ligaments. Several members of the bone morphogenetic group either have been approved by the FDA for treatment of non-healing fractures or have been undergoing intensive clinical and experimental testing for use of healing bone fractures and tendon injuries. Because fibroblast growth factors (FGFs) are involved in embryonic development of tendons and muscles among other tissues and organs, the hope is that applied research on FGF biological effects will lead to the development of some new treatment strategies providing that we can control angiogenicity of these growth factors. The problem, or rather question, regarding practical use of imsulin-like growth factor I (IGF-I) in tendon repair is whether IGF-I acts independently or under the guidance of growth hormone. FGF2 or platelet-derived growth factor (PDGF) alone or in combination with IGF-I stimulates regeneration of periodontal ligament: a matter of importance in Marfan patients with periodontitis. In contrast, vascular endothelial growth factor (VEGF) appears to have rather deleterious effects on experimental tendon healing, perhaps because of its angiogenic activity and stimulation of matrix metalloproteinases-proteases whose increased expression has been documented in a variety of ruptured tendons. Other modalities, such as local administration of platelet-rich plasma (PRP) and/or of mesenchymal stem cells have been explored extensively in tendon healing. Though treatment with PRP and mesenchymal stem cells has met with some success in horses (who experience a lot of tendon injuries and other tendon problems), the use of PRP and mesenchymal stem cells in people has been more problematic and requires more studies before PRP and mesenchymal stem cells can become reliable tools in management of soft tissue injuries and disorders.
Collapse
Affiliation(s)
- Jennifer H Roberts
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Nauwelaers AK, Van Oost L, Peers K. Evidence for the use of PRP in chronic midsubstance Achilles tendinopathy: A systematic review with meta-analysis. Foot Ankle Surg 2021; 27:486-495. [PMID: 32798020 DOI: 10.1016/j.fas.2020.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) injections have been proposed as an additional therapy in the treatment of chronic midsubstance Achilles tendinopathy (AT). The use of PRP injections as pharmacological treatment added to a conservative approach has gained growing interest, but the efficacy remains highly debated. The varying methodological quality of the available studies may contribute to these contradictory results. The aim of this systematic review with meta-analysis was to establish the existing evidence of PRP injections for chronic midsubstance AT on the functional outcome, with a risk of bias assessment of each included study. METHODS According to the PRISMA guidelines systematic searches were performed in Embase, the Cochrane library and Pubmed on June 12, 2020 for relevant literature. Only clinical trials comparing PRP injections with placebo, additional to an eccentric training program, in midsubstance AT were included. The primary outcome was Victorian Institute of Sport Assessment - Achilles (VISA-A) score at 3, 6 and 12 months post-injection. Risk of bias was assessed using the Cochrane risk-of-bias tool for randomized trials (Rob 2). As secondary outcome we assessed reported changes in tendon structure after PRP injections. RESULTS A total of 367 studies were identified with the initial database search. Finally, four randomized controlled trials (RCTs) met inclusion criteria for systematic review and meta-analysis with data of 170 patients available for pooling. Results showed no difference in clinical outcome between the PRP and placebo group at different points in time using the VISA-A score as outcome parameter (3 months 0.23 (CI -0.45, 0.91); 6 months 0.83 (CI -0.26, 1.92); 12 months 0.83 (CI -0.77, 2.44)). The bias analysis showed a low or intermediate risk of bias profile for all studies which supports the good methodological quality of each included article. Finally, it is unclear whether PRP injections cause an improvement in tendon structure. However, no direct relationship between tendon structure and clinical presentation of AT could be found. CONCLUSION PRP has no clear additional value in management of chronic midsubstance Achilles tendinopathy and therefore should not be used as a first-line treatment option.
Collapse
Affiliation(s)
- An-Katrien Nauwelaers
- Faculty of Medicine KU Leuven, Department: Physical medicine and rehabilitation, Herestraat 49, 3000 Leuven Belgium
| | - Loïc Van Oost
- Faculty of Medicine KU Leuven, Department: Physical medicine and rehabilitation, Herestraat 49, 3000 Leuven Belgium.
| | - Koen Peers
- Faculty of Medicine KU Leuven, Department: Physical medicine and rehabilitation, Herestraat 49, 3000 Leuven Belgium
| |
Collapse
|
6
|
Yu TY, Pang JHS, Lin LP, Cheng JW, Liu SJ, Tsai WC. Platelet-Rich Plasma Releasate Promotes Early Healing in Tendon After Acute Injury. Orthop J Sports Med 2021; 9:2325967121990377. [PMID: 33959667 PMCID: PMC8060760 DOI: 10.1177/2325967121990377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Background Acute tendon injury can limit motion and thereby inhibit tendon healing. Positive results have been found after the use of platelet-rich plasma (PRP) to treat tendon injury; however, the early effects of PRP on tendon regeneration are not known. Purpose/Hypothesis The purpose of this study was to evaluate the effects of PRP releasate (PRPr) on the early stages of tendon healing in a rat partial tenotomy model. It was hypothesized that PRPr can promote early healing of an Achilles tendon in rats. Study Design Controlled laboratory study. Methods PRP was prepared by a 2-step method of manual platelet concentration from 10 rats. PRPr was isolated from the clotted preparation after activation by thrombin and was applied to an Achilles tendon on 1 side of 30 rats on the second day after partial tenotomy, with normal saline used as the control on the other side. Achilles tendon samples were harvested 5 and 10 days after tenotomy. At each time point, 15 Achilles tendon samples were obtained, of which 5 samples were evaluated by Masson trichrome staining, apoptosis, and cell proliferation, while the other 10 samples were tested for tensile strength using a material testing machine. Results Compared with saline-treated control tendons, the PRPr-treated tendons showed increased collagen synthesis near the cut edge and fewer apoptotic cells (P = .01). An immunohistochemical analysis revealed more Ki-67-positive cells but fewer cluster of differentiation (CD) 68+ (ED1+) macrophages in PRPr tendons compared with saline-treated tendons (P < .01). Tendons treated with PRPr also showed higher ultimate tensile strength than those treated with saline (P = .03). Conclusion PRPr treatment promotes tissue recovery in the early phase of tendon healing by stimulating tendon cell proliferation and collagen production while inhibiting cell apoptosis and CD68+ (ED1+) macrophage infiltration. Clinical Relevance These findings suggest that with PRPr treatment, higher loads can be applied to the healing tendon at an earlier time, which can help the patient resume activity earlier.
Collapse
Affiliation(s)
- Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Kobayashi Y, Saita Y, Takaku T, Yokomizo T, Nishio H, Ikeda H, Takazawa Y, Nagao M, Kaneko K, Komatsu N. Platelet-rich plasma (PRP) accelerates murine patellar tendon healing through enhancement of angiogenesis and collagen synthesis. J Exp Orthop 2020; 7:49. [PMID: 32642866 PMCID: PMC7343697 DOI: 10.1186/s40634-020-00267-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Although platelet-rich plasma (PRP) therapy has become an increasingly popular treatment for sports-related injuries, the molecular mechanisms of PRP on tissue healing process remain poorly understood. The aim of the present study was to develop an experimental method quantifying the efficacy of PRP with murine patellar tendon injury model, leading to future elucidation of the mechanisms of PRP on healing processes. METHODS Full-thickness defects were created in the central third of the murine patellar tendon. The prepared allogenic PRP gel was applied on the defect of the patellar tendon (PRP group), while the remaining mice served as the untreated control group. Mice were sacrificed at 2, 4, 6, 8, and 10 weeks after the operation, with histological sections obtained in each time point (n = 4 / time point / group). Semi-quantitative histological evaluation was performed in accordance with the Bonar score. The variables included in this scoring system were cell morphology, ground substance, collagen arrangement, and vascularity, with higher grades indicating worse tendon structures. In addition, the ratio of the collagen fibers to the entire tendon tissue (FT ratio) was measured using KS400 software as a quantitative histological evaluation. RESULTS The total Bonar score in the PRP group was significantly lower than in control group. With regard to the variables in the Bonar score, the vascularity score was significantly higher in the PRP group at 2 and 4 weeks, while the collagen arrangement score was significantly lower in the PRP group at 8 weeks. Based on a quantitative evaluation, the recovery speed of the patellar tendon determined by FT ratio was significantly faster in the PRP group than in the control group at 6 and 8 weeks. CONCLUSIONS We have developed an experimental method for histological and quantitative evaluation of the effects of PRP on tissue healing using murine patellar tendon injury model. The results of this study suggest that the local application of PRP could enhance the tissue-healing process both directly through action on localized cells and indirectly through the recruitment of reparative cells through the blood flow. Further investigations will be needed to confirm the mechanisms of PRP in tissue-healing processes with the development of this experimental model.
Collapse
Affiliation(s)
- Yohei Kobayashi
- Department of Orthopaedics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoshitomo Saita
- Department of Orthopaedics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomoiku Takaku
- Department of Hematology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Nishio
- Department of Orthopaedics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hiroshi Ikeda
- Department of Orthopaedics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuji Takazawa
- Department of Orthopaedics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masashi Nagao
- Department of Orthopaedics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Orthopaedics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
8
|
Genç E, Yüksel S, Çağlar A, Beytemur O, Güleç MA. Comparison on effects of platelet-rich plasma versus autologous conditioned serum on Achilles tendon healing in a rat model. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2020; 54:438-444. [PMID: 32812877 DOI: 10.5152/j.aott.2020.18498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to compare the effects of local administrations of platelet-rich plasma (PRP) with autologous conditioned serum (ACS) on Achilles tendon healing in a rat model. METHODS In this study, 40 male Sprague-Dawley rats, aged 12 months and weighing 350 to 400 g were used. The rats were divided into three groups (n=10 in each group): a control group and two treatment groups (PRP vs ACS). A standardized procedure was applied for the complete rupture and repair of the Achilles tendon in each group. The PRP group received one dose of PRP on the operative area, and ACS group received ACS at 24, 48, and 72 hours after the surgery. The control group received no injection. Animals were sacrificed 30 days after the operation, and tendon healing in each group was assessed histopathologically based on Bonar's semi-quantitative score and Movin's semi-quantitative grading scale. For the biomechanical analyses, unoperated Achilles tendons of all rats in the control and ACS groups were also harvested, and pulling tests were applied to the specimen to measure the longitudinal axis strength. The highest force value among the data obtained was defined as the maximum strength value (Fmax). RESULTS The mean Bonar's score was significantly lower in the PRP group (3.8±0.8) than in the ACS (4.8±0.45) and control groups (5.2±0.837) (p=0.0028). The mean Movin's score was significantly lower in the PRP group (7.80±1.49) than in the ACS (9.8±1) and control groups (11.2±2.4) (p=0.029). The ratio of type I collagen was significantly higher in the PRP group (60±6) than in the ACS (52±4.5) and control groups (42±9) (p=0.005). Biomechanical results obtained from operated sites were comparable in terms of Fmax among groups (PRP, 33.93±2.61; ACS, 35.24±3.26; control, 35.69±3.62) (p=0.674). Similarly, the results obtained from unoperated sites were comparable among groups (PRP, 47.71±1.21; ACS, 48.14±2; control, 49.14.69±1.88) (p=0.395). CONCLUSION In terms of histopathological results, PRP seems to be more effective than ACS for Achilles tendon healing in rats.
Collapse
Affiliation(s)
- Erdinç Genç
- Department of Orthopedics and Traumatology, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Serdar Yüksel
- Department of Orthopedics and Traumatology, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Aysel Çağlar
- Department of Pathology, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Ozan Beytemur
- Department of Orthopedics and Traumatology, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - M Akif Güleç
- Department of Orthopedics and Traumatology, Bağcılar Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
9
|
Jafari L, Hassanisaber H, Savard M, Gobeil F, Langelier E. Efficacy of Combining PRP and MMP Inhibitors in Treating Moderately Damaged Tendons Ex Vivo. J Orthop Res 2019; 37:1838-1847. [PMID: 31042324 DOI: 10.1002/jor.24319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/25/2019] [Indexed: 02/04/2023]
Abstract
Platelet-rich plasma (PRP) and broad-spectrum matrix metalloproteinase inhibitors (MMPIs) have been used as therapeutic options for tendinopathy. However, mixed results have been reported regarding their efficacy. We posited that the combination of these two treatment strategies would be more beneficial for healing tendons than each treatment alone. Rat tail tendons were harvested and cultured without mechanical stress for 0, 4, or 10 days. Single and combination treatment with PRP and MMPIs with either broad- or narrow-spectrum (MMP-13 selective), was administered to 4-day stress-deprived (SD) tendons, an ex vivo model for moderate tendinopathy. This treatment was applied to the damaged tendons over 6 days. At the end of their culture time, the tendons were subjected to traction testing and pathohistology, immunohistochemistry, and viability assays. The results showed better histological features for the PRP + narrow-spectrum MMPI group compared with all individual treatment modalities. Moreover, higher fiber density, more elongated nucleus shape, smaller space between fibers, and a trend toward higher mechanical strength were noted for PRP + narrow-spectrum MMPI group compared with 10-day SD tendons. This study shows that the combination of PRP + narrow-spectrum MMPI is a potentially effective treatment approach for tendinopathy. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1838-1847, 2019.
Collapse
Affiliation(s)
- Leila Jafari
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Hamid Hassanisaber
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Martin Savard
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Fernand Gobeil
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eve Langelier
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
10
|
Jafari L, Savard M, Gobeil F, Langelier E. Characterization of moderate tendinopathy in ex vivo stress-deprived rat tail tendons. Biomed Eng Online 2019; 18:54. [PMID: 31068196 PMCID: PMC6507059 DOI: 10.1186/s12938-019-0673-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/20/2019] [Indexed: 12/02/2022] Open
Abstract
Background Stress deprivation (SD) has frequently been used as a model to study tendinopathy. Most of these studies have investigated either short-term (early tendinopathy) or long-term SD (advanced tendinopathy), while the transient mid-term SD has been given less attention. Therefore, the main objective of this study was to characterize mid-term SD. Methods To this end, live, healthy rat tail tendons (RTTs) were harvested and cultured without mechanical stress and then were divided into five groups based on their culture time (fresh, 2-day SD, 4-day SD, 6-day SD, and 10-day SD). For each group, the tendons were subjected to traction testing and pathohistology, immunohistochemistry, and viability assays. Results Our results showed that 4 days of SD resulted in moderate pathological changes in RTTs. These changes included increases in the space area between fibers, cell density, and fiber tortuosity as well as a decrease in collagen density and elongation of cell nuclei. No changes in the stress at failure of tendons were observed at this time point. Conclusions This simple ex vivo model is expected to be useful for studying the progression of tendinopathy as well as for testing potential mechanobiological or pharmacological therapy strategies to stop or reverse the progression of the pathology.
Collapse
Affiliation(s)
- Leila Jafari
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Martin Savard
- Department of Pharmacology-Physiology, Université de Sherbrooke - Campus de la santé, Sherbrooke, QC, J1H 5N4, Canada
| | - Fernand Gobeil
- Department of Pharmacology-Physiology, Université de Sherbrooke - Campus de la santé, Sherbrooke, QC, J1H 5N4, Canada
| | - Eve Langelier
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
11
|
Abstract
Platelet-rich plasma (PRP) is a promising treatment for musculoskeletal maladies and clinical data to date have shown that PRP is safe. However, evidence of its efficacy has been mixed and highly variable depending on the specific indication. Additional future high-quality large clinical trials will be critical in shaping our perspective of this treatment option. The heterogeneity of PRP preparations, both presently and historically, leads sweeping recommendations about its utility impossible to make. This heterogeneity has also made interpreting existing literature more complicated.
Collapse
Affiliation(s)
- Adrian D K Le
- Department of Orthopedic Surgery, Stanford University, 450 Broadway Street, Redwood City, CA 94063, USA
| | - Lawrence Enweze
- Department of Orthopedic Surgery, Stanford University, 450 Broadway Street, Redwood City, CA 94063, USA
| | - Malcolm R DeBaun
- Department of Orthopedic Surgery, Stanford University, 450 Broadway Street, Redwood City, CA 94063, USA
| | - Jason L Dragoo
- Department of Orthopedic Surgery, Stanford University, 450 Broadway Street, Redwood City, CA 94063, USA.
| |
Collapse
|
12
|
Güleç A, Türk Y, Aydin BK, Erkoçak ÖF, Safalı S, Ugurluoglu C. Effect of curcumin on tendon healing: an experimental study in a rat model of Achilles tendon injury. INTERNATIONAL ORTHOPAEDICS 2018; 42:1905-1910. [PMID: 29922838 DOI: 10.1007/s00264-018-4017-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE This in vivo study aims to investigate the effects of curcumin which is recently developed for tendon healing using a rat Achilles tendon injury model. MATERIALS AND METHODS Eighteen male Wistar albino rats weighing 300-400 g were used in this study. Under anesthesia, Achilles tendon injuries were created and repaired surgically. Nine rats of the study group received curcumin (suspended in saline at a dose of 200 mg/kg orally) and eight rats of the control group received only saline solution by oral gavage for a period of 28 days. Animals were euthanized on the 28th post-operative day, and all the Achilles tendons were removed and transferred immediately for biomechanic and histological analysis. RESULTS Macroscopically, all the tendons were fully healed. Total mean Bonar score was higher in the control group. When the parameters of Bonar score were analysed separately, tenocyte morphology, collogen, and ground substance scores were statistically lower than the control group (p = 0.03, 0.041, 0.049, respectively). Vascularity parameter did not show any statistical difference (p > 0.05). Of the nine biomechanical parameters, five of them (failure load, cross-sectional area, length, ultimate stress, strain) showed better results which were also statistically significant (p = 0.046, 0.027, 0.011, 0.021, 0.002, respectively). When the remaining four parameters were examined, the study group also had better results, but this difference was not statistically significant. CONCLUSION Curcumin had better results for total tendon healing not only histologically but also biomechanically. Curcumin could be an additional agent in the management of surgically repaired tendon injuries.
Collapse
Affiliation(s)
- Ali Güleç
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Selcuk University, Alaeddin Keykubat Campus, 42130, Konya, Turkey
| | - Yılmaz Türk
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Selcuk University, Alaeddin Keykubat Campus, 42130, Konya, Turkey
| | - Bahattin Kerem Aydin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Selcuk University, Alaeddin Keykubat Campus, 42130, Konya, Turkey.
| | - Ömer Faruk Erkoçak
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Selcuk University, Alaeddin Keykubat Campus, 42130, Konya, Turkey
| | - Selim Safalı
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Selcuk University, Alaeddin Keykubat Campus, 42130, Konya, Turkey
| | - Ceyhan Ugurluoglu
- Department of Pathology, Faculty of Medicine, Selcuk University, Alaeddin Keykubat Campus, 42130, Konya, Turkey
| |
Collapse
|
13
|
González-Quevedo D, Martínez-Medina I, Campos A, Campos F, Carriel V. Tissue engineering strategies for the treatment of tendon injuries: a systematic review and meta-analysis of animal models. Bone Joint Res 2018; 7:318-324. [PMID: 29922450 PMCID: PMC5987687 DOI: 10.1302/2046-3758.74.bjr-2017-0326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries. METHODS We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis. RESULTS A total of 388 references were retrieved and 35 studies were included in this systematic review. The different biomaterials developed were analyzed and we found that they improve the biomechanical and histological characteristics of the repaired tendon. At meta-analysis, despite a high heterogeneity, it revealed a statistically significant effect in favour of the maximum load, the maximum stress, and the Young's modulus between experimental and control groups. In the forest plot, the diamond was on the right side of the vertical line and did not intersect with the line, favouring experimental groups. CONCLUSIONS This review of the literature demonstrates the heterogeneity in the tendon tissue engineering literature. Several biomaterials have been developed and have been shown to enhance tendon healing and regeneration with improved outcomes.Cite this article: D. González-Quevedo, I. Martínez-Medina, A. Campos, F. Campos, V. Carriel. Tissue engineering strategies for the treatment of tendon injuries: a systematic review and meta-analysis of animal models. Bone Joint Res 2018;7:318-324. DOI: 10.1302/2046-3758.74.BJR-2017-0326.
Collapse
Affiliation(s)
- D. González-Quevedo
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain, PhD Program in Biomedicine, University of Granada, Spain
| | - I. Martínez-Medina
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain
| | - A. Campos
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| | - F. Campos
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| | - V. Carriel
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| |
Collapse
|
14
|
Shahidi M, Vatanmakanian M, Arami MK, Sadeghi Shirazi F, Esmaeili N, Hydarporian S, Jafari S. A comparative study between platelet-rich plasma and platelet-poor plasma effects on angiogenesis. Med Mol Morphol 2017; 51:21-31. [DOI: 10.1007/s00795-017-0168-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
|
15
|
Platelet-Rich Plasma as an Autologous and Proangiogenic Cell Delivery System. Mediators Inflamm 2017; 2017:1075975. [PMID: 28845088 PMCID: PMC5563430 DOI: 10.1155/2017/1075975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a key factor in early stages of wound healing and is crucial for the repair of vascularized tissues such as the bone. However, supporting timely revascularization of the defect site still presents a clinical challenge. Tissue engineering approaches delivering endothelial cells or prevascularized constructs may overcome this problem. In the current study, we investigated platelet-rich plasma (PRP) gels as autologous, injectable cell delivery systems for prevascularized constructs. PRP was produced from human thrombocyte concentrates. GFP-expressing human umbilical vein endothelial cells (HUVECs) and human bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PRP gels in different proportions. The formation of cellular networks was assessed over 14 days by time-lapse microscopy, gene expression analysis, and immunohistology. PRP gels presented a favorable environment for the formation of a three-dimensional (3D) cellular network. The formation of these networks was apparent as early as 3 days after seeding. Networks increased in complexity and branching over time but were only stable in HUVEC-MSC cocultures. The high cell viability together with the 3D capillary-like networks observed at early time points suggests that PRP can be used as an autologous and proangiogenic cell delivery system for the repair of vascularized tissues such as the bone.
Collapse
|
16
|
Aguilar-García D, Fernández-Sarmiento JA, Granados MDM, Morgaz J, Navarrete R, Carrillo JM, Vilar JM, Cugat R, Domínguez JM. Effect of plasma rich in growth factors on the early phase of healing of surgically severed Achilles tendon in sheep: histological study. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1337017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Juan Morgaz
- Department of Animal Medicine and Surgery, University of Córdoba, Córdoba, Spain
| | - Rocío Navarrete
- Department of Animal Medicine and Surgery, University of Córdoba, Córdoba, Spain
| | - José M. Carrillo
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, Valencia, Spain
| | - José M. Vilar
- Department of Animal Pathology, University Institute of Health and Biomedical Research, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Ramón Cugat
- Artroscopia GC, Hospital Quirón, Barcelona, Spain
| | | |
Collapse
|
17
|
Kaux JF, Libertiaux V, Leprince P, Fillet M, Denoel V, Wyss C, Lecut C, Gothot A, Le Goff C, Croisier JL, Crielaard JM, Drion P. Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model. Am J Sports Med 2017; 45:1440-1446. [PMID: 28291948 DOI: 10.1177/0363546517689872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. HYPOTHESIS A combination of PRP injection and eccentric training might be more effective than either treatment alone. STUDY DESIGN Controlled laboratory study. METHODS Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. RESULTS No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. CONCLUSION Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). CLINICAL RELEVANCE This study demonstrates the necessity of eccentric rehabilitation and training in cases of tendon lesion regardless of the treatment carried out.
Collapse
Affiliation(s)
- Jean-François Kaux
- Physical Medicine, Rehabilitation and Sports Traumatology Department, SportS2, FIFA Medical Centre of Excellence, University and University Hospital of Liège, Liège, Belgium
| | - Vincent Libertiaux
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Vincent Denoel
- Department ARGENCO, University of Liège, Liège, Liège, Belgium
| | - Clémence Wyss
- Physical Medicine, Rehabilitation and Sports Traumatology Department, SportS2, FIFA Medical Centre of Excellence, University and University Hospital of Liège, Liège, Belgium
| | - Christelle Lecut
- Department of Laboratory Hematology, University and University Hospital of Liège, Liège, Liège, Belgium
| | - André Gothot
- Department of Laboratory Hematology, University and University Hospital of Liège, Liège, Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, University and University Hospital of Liège, Belgium
| | - Jean-Louis Croisier
- Physical Medicine, Rehabilitation and Sports Traumatology Department, SportS2, FIFA Medical Centre of Excellence, University and University Hospital of Liège, Liège, Belgium
| | - Jean-Michel Crielaard
- Physical Medicine, Rehabilitation and Sports Traumatology Department, SportS2, FIFA Medical Centre of Excellence, University and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Animal Facility, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
Bottagisio M, Lovati AB. A review on animal models and treatments for the reconstruction of Achilles and flexor tendons. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:45. [PMID: 28155051 DOI: 10.1007/s10856-017-5858-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Tendon is a connective tissue mainly composed of collagen fibers with peculiar mechanical properties essential to functional movements. The increasing incidence of tendon traumatic injuries and ruptures-associated or not with the loss of tissue-falls on the growing interest in the field of tissue engineering and regenerative medicine. The use of animal models is mandatory to deepen the knowledge of the tendon healing response to severe damages or acute transections. Thus, the selection of preclinical models is crucial to ensure a successful translation of effective and safe innovative treatments to the clinical practice. The current review is focused on animal models of tendon ruptures and lacerations or defective injuries with large tissue loss that require surgical approaches or grafting procedures. Data published between 2000 and 2016 were examined. The analyzed articles were compiled from Pub Med-NCBI using search terms, including animal model(s) AND tendon augmentation OR tendon substitute(s) OR tendon substitution OR tendon replacement OR tendon graft(s) OR tendon defect(s) OR tendon rupture(s). This article presents the existing preclinical models - considering their advantages and disadvantages-in which translational progresses have been made by using bioactive sutures or tissue engineering that combines biomaterials with cells and growth factors to efficiently treat transections or large defects of Achilles and flexor tendons.
Collapse
Affiliation(s)
- Marta Bottagisio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161, Milan, Italy
| | - Arianna B Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161, Milan, Italy.
| |
Collapse
|
19
|
López-Nájera D, Rubio-Zaragoza M, Sopena-Juncosa JJ, Alentorn-Geli E, Cugat-Bertomeu R, Fernández-Sarmiento JA, Domínguez-Pérez JM, García-Balletbó M, Primo-Capella VJ, Carrillo-Poveda JM. Effects of plasma rich in growth factors (PRGF) on biomechanical properties of Achilles tendon repair. Knee Surg Sports Traumatol Arthrosc 2016; 24:3997-4004. [PMID: 26272059 DOI: 10.1007/s00167-015-3725-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/15/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE To assess the biomechanical effects of intra-tendinous injections of PRGF on the healing Achilles tendon after repair in a sheep model. METHODS Thirty sheep were randomly assigned into one of the six groups depending on the type of treatment received (PRGF or placebo) and survival time (2, 4 and 8 weeks). The Achilles tendon injury was repaired by suturing the tendinous edges employing a three-loop pulley pattern. A trans-articular external fixation system was then used for immobilization. The PRGF or placebo was administered on a weekly basis completing a maximum of three infiltrations. The force, section and tension values were compared between the operated and healthy Achilles tendons across all groups. RESULTS The PRGF-treated tendons had higher force at 8 weeks compared with the placebo group (p = 0.007). Between 2 and 4 weeks, a significant increase in force in both the PRGF-treated tendon (p = 0.0027) and placebo group (p = 0.0095) occurred. No significant differences were found for section ratio between PRGF-treated tendons and the placebo group for any of the time periods evaluated. At 2 weeks, PRGF-treated tendons had higher tension ratio compared with placebo group tendons (p = 0.0143). Both PRGF and placebo treatments significantly improved the force (p < 0.001 and p = 0.0095, respectively) and tension (p = 0.009 and p = 0.0039, respectively) ratios at 8 weeks compared with 2 weeks. CONCLUSION The application of PRGF increases Achilles tendon repair strength at 8 weeks compared with the use of placebo. The use of PRGF does not modify section and tension ratios compared with placebo at 8 weeks. The tension ratio progressively increases between 2 and 8 weeks compared with the placebo.
Collapse
Affiliation(s)
- Diego López-Nájera
- García-Cugat Foundation, Barcelona, Spain. .,Instituto Veterinario de Ortopedia y Traumatología (IVOT), Barcelona, Spain. .,Clínica Veterinaria Gramenet, Hospital Veterinari Montigalà , Av dels Banús 1, Santa Coloma de Gramenet, Barcelona, Spain.
| | - Mónica Rubio-Zaragoza
- García-Cugat Foundation, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Universidad CEU Cardenal Herrera, Valencia, Spain.,CEU-UCH Chair of Medicine and Regenerative Medicine, García-Cugat Foundation, Valencia, Spain
| | - Joaquín J Sopena-Juncosa
- García-Cugat Foundation, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Universidad CEU Cardenal Herrera, Valencia, Spain.,CEU-UCH Chair of Medicine and Regenerative Medicine, García-Cugat Foundation, Valencia, Spain
| | - Eduard Alentorn-Geli
- Duke Sports Sciences Institute, Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Ramón Cugat-Bertomeu
- García-Cugat Foundation, Barcelona, Spain.,CEU-UCH Chair of Medicine and Regenerative Medicine, García-Cugat Foundation, Valencia, Spain.,Artroscopia GC, Hospital Quirón, Barcelona, Spain
| | - J Andrés Fernández-Sarmiento
- García-Cugat Foundation, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain
| | - Juan M Domínguez-Pérez
- García-Cugat Foundation, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain
| | - Montserrat García-Balletbó
- García-Cugat Foundation, Barcelona, Spain.,CEU-UCH Chair of Medicine and Regenerative Medicine, García-Cugat Foundation, Valencia, Spain.,Artroscopia GC, Hospital Quirón, Barcelona, Spain
| | - Víctor J Primo-Capella
- Health Care Technology Group, Biomedical Research Networking Center Bioengineering, Biomaterials, Nanomedicine (CIBER-BBN), Valencia, Spain.,Biomechanics Institute of Valencia (IBV), Universidad Politecnica de Valencia, Valencia, Spain
| | - José M Carrillo-Poveda
- García-Cugat Foundation, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Universidad CEU Cardenal Herrera, Valencia, Spain.,CEU-UCH Chair of Medicine and Regenerative Medicine, García-Cugat Foundation, Valencia, Spain
| |
Collapse
|
20
|
Biologic and Tissue Engineering Strategies for Tendon Repair. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/s40883-016-0019-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Yuksel S, Guleç MA, Gultekin MZ, Adanır O, Caglar A, Beytemur O, Onur Küçükyıldırım B, Avcı A, Subaşı C, İnci Ç, Karaoz E. Comparison of the early period effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on the Achilles tendon ruptures in rats. Connect Tissue Res 2016; 57:360-73. [PMID: 27191749 DOI: 10.1080/03008207.2016.1189909] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION This study aims to histopathologically, biomechanically, and immunohistochemically compare the fourth-week efficiencies of local platelet-rich plasma (PRP) and bone marrow-derived mesenchymal stem cell (rBM-MSC) treatments of the Achilles tendon ruptures created surgically in rats. MATERIALS AND METHODS The study included 35 12-month-old male Sprague Dawley rats, with an average weight of 400-500 g. Five rats were used as donors for MSC and PRP, and 30 rats were separated into MSC, PRP, and control groups (n = 10). The Achilles tendons of the rats were cut transversely, the MSC from bone marrow was administered to the MSC group, the PRP group received PRP, and the control group received physiological saline to create the same surgical effect. In previous studies, it was shown that this physiological saline does not have any effect on tendon recovery. Thirty days after the treatment, the rats were sacrificed and their Achilles tendons were examined histopathologically, immunohistochemically, and biomechanically. RESULTS The use of rBM-MSC and PRP in the Achilles tendon ruptures when the tendon is in its weakest phase positively affected the recovery of the tendon in histopathologic, immunohistochemical, and biomechanical manners compared to the control group (p < 0.05). While the levels of pro-inflammatory cytokines TNF-α, IFNγ, and IL 1β were significantly low, the levels of anti-inflammatory cytokines and growth factors playing key roles in tendon recovery, such as IL2, VEGF, transforming growth factor-beta, and HGF, were significantly higher in the MSC group than those of the PRP and control groups (p < 0.05). In the MSC group, the [Formula: see text] (mm) value was significantly higher (p ˂ 0.05) than that in the PRP and control groups. CONCLUSION rBM-MSC and PRP promote the recovery of the tendon and increase its structural strength. The use of PRP and MSC provides hope for the treatment of the Achilles tendon ruptures that limit human beings' functionalities and quality of life, particularly for athletes. It is thought that the use of MSC can be more effective for tendon healing; hence, more extensive and advanced studies are needed on this topic.
Collapse
Affiliation(s)
- Serdar Yuksel
- a Trabzon Kanuni Training and Research Hospital , Department of Orthopaedic and Traumatology , Trabzon , Turkey
| | - M Akif Guleç
- b Bağcılar Training and Research Hospital , Department of Orthopaedic and Traumatology , Istanbul , Turkey
| | - M Zeki Gultekin
- b Bağcılar Training and Research Hospital , Department of Orthopaedic and Traumatology , Istanbul , Turkey
| | - Oktay Adanır
- b Bağcılar Training and Research Hospital , Department of Orthopaedic and Traumatology , Istanbul , Turkey
| | - Aysel Caglar
- c Bağcılar Training and Research Hospital , Department of Pathology , Istanbul , Turkey
| | - Ozan Beytemur
- b Bağcılar Training and Research Hospital , Department of Orthopaedic and Traumatology , Istanbul , Turkey
| | - B Onur Küçükyıldırım
- d Yıldız Technical University , Department of Mechanical Engineering , Istanbul , Turkey
| | - Ali Avcı
- d Yıldız Technical University , Department of Mechanical Engineering , Istanbul , Turkey
| | - Cansu Subaşı
- e Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell) , Istanbul , Turkey
| | - Çiğdem İnci
- e Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell) , Istanbul , Turkey
| | - Erdal Karaoz
- e Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell) , Istanbul , Turkey
| |
Collapse
|
22
|
Wang X, Friis T, Glatt V, Crawford R, Xiao Y. Structural properties of fracture haematoma: current status and future clinical implications. J Tissue Eng Regen Med 2016; 11:2864-2875. [PMID: 27401283 DOI: 10.1002/term.2190] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
Blood clots (haematomas) that form immediately following a bone fracture have been shown to be vital for the subsequent healing process. During the clotting process, a number of factors can influence the fibrin clot structure, such as fibrin polymerization, growth factor binding, cellular infiltration (including platelet retraction), protein concentrations and cytokines. The modulation of the fibrin clot structure within the fracture site has important clinical implications and could result in the development of multifunctional scaffolds that mimic the natural structure of a haematoma. Artificial haematoma structures such as these can be created from the patient's own blood and can therefore act as an ideal bone defect filling material for potential clinical application to accelerate bone regeneration. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Wang
- Department of Spine, Affiliated Hospital of Zunyi Medical College, Zunyi, People's Republic of China.,Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Thor Friis
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Vaida Glatt
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ross Crawford
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Yin Xiao
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
23
|
Wang JHC, Nirmala X. Application of Tendon Stem/Progenitor Cells and Platelet-Rich Plasma to Treat Tendon Injuries. ACTA ACUST UNITED AC 2016; 26:68-72. [PMID: 27574378 DOI: 10.1053/j.oto.2015.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tendon injuries like tendinopathy are a serious healthcare problem in the United States. However, current treatments for tendon injuries are largely palliative. Biologics treatments, including tendon stem/progenitor cells (TSCs) and platelet rich plasma (PRP) hold great potential to effectively treat tendon injuries. TSCs are tendon specific stem cells and have the ability to differentiate into tenocytes, the resident tendon cells responsible for tendon homeostasis and tendon repair in case of an injury. TSCs can also self-renew and thus can replenish the tendon with tendon cells (TSCs and tenocytes) to maintain a healthy tendon. The action of PRP can be complementary; PRP can augment and accelerate tendon healing by supplying abundant growth factors contained in platelets, and fibrin matrix, which functions as a natural conducive scaffold to facilitate tissue healing. This article provides a summary of the findings in recent basic and clinical studies on the applications of TSCs and PRP to the treatment of tendon injuries. It also outlines the challenges facing their applications in clinical settings. In particular, the controversy surrounding the efficacy of PRP treatment for tendon injuries are analyzed and solutions are suggested.
Collapse
Affiliation(s)
- James H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Xavier Nirmala
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
24
|
Dex S, Lin D, Shukunami C, Docheva D. Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene. Gene 2016; 587:1-17. [PMID: 27129941 DOI: 10.1016/j.gene.2016.04.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Tenomodulin (TNMD, Tnmd) is a gene highly expressed in tendon known to be important for tendon maturation with key implications for the residing tendon stem/progenitor cells as well as for the regulation of endothelial cell migration in chordae tendineae cordis in the heart and in experimental tumour models. This review aims at providing an encompassing overview of this gene and its protein. In addition, its known expression pattern as well as putative signalling pathways will be described. A chronological overview of the discovered functions of this gene in tendon and other tissues and cells is provided as well as its use as a tendon and ligament lineage marker is assessed in detail and discussed. Last, information about the possible connections between TNMD genomic mutations and mRNA expression to various diseases is delivered. Taken together this review offers a solid synopsis on the up-to-date information available about TNMD and aids at directing and focusing the future research to fully uncover the roles and implications of this interesting gene.
Collapse
Affiliation(s)
- Sarah Dex
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Dasheng Lin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany; Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
25
|
Şen B, Güler S, Çeçen B, Kumtepe E, Bağrıyanık A, Özkal S, Ali Özcan M, Özsan H, Şanlı N, Tatari MH. The Effect of Autologous Platelet Rich Plasma in the Treatment of Achilles Tendon Ruptures: An Experimental Study on Rabbits. Balkan Med J 2016; 33:94-101. [PMID: 26966624 DOI: 10.5152/balkanmedj.2015.15549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/03/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Achilles tendon ruptures are characterized by a long recovery period, high re-rupture rate and late return to work. To overcome these difficulties and augment tendon repair, many agents have been used. AIMS To determine the effect of autologous platelet rich plasma (PRP) in the treatment of Achilles tendon ruptures in rabbits. STUDY DESIGN Animal experimentation. METHODS The study included 14 New Zealand albino rabbits that were divided randomly into 2 groups, A and B, each containing seven rabbits. On day zero, all 28 Achilles tendons were tenotomized and repaired. In group A, the tendons were injected with PRP post-surgery, whereas those in group B were left untreated. On day 28, the right tendons in both groups were examined histopathologically via both light and electron microscopy, and the left tendons were subjected to biomechanical testing. RESULTS The histological and biomechanical findings in both light and electron microscopy in group A were better than those in group B, but the difference was not significant. According to Tang's scale, the mean value in Group A was 3.57, while it was 3.0 in Group B. The mean value of Group A for the length of collagen bands was 48.09 nm while the mean value of Group B was 46.58 nm (p=0.406). In biomechanical tests, although stiffness values were higher in group A, the difference between groups was not significant. In addition, maximum load values did not differ between groups A and B. CONCLUSION PRP had no effect on the healing process 28 days post-Achilles tendon rupture.
Collapse
Affiliation(s)
- Baran Şen
- Department of Orthopaedics and Traumatology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Serkan Güler
- Department of Orthopaedics and Traumatology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Berivan Çeçen
- Department of Biomechanics, Dokuz Eylül University Institute of Health Science, İzmir, Turkey
| | - Erdem Kumtepe
- Department of Biomechanics, Dokuz Eylül University Institute of Health Science, İzmir, Turkey
| | - Alper Bağrıyanık
- Department of Histology and Embriology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Sermin Özkal
- Department of Pathology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - M Ali Özcan
- Department of Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Hayri Özsan
- Department of Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Namık Şanlı
- Department of Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - M Hasan Tatari
- Department of Orthopaedics and Traumatology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
26
|
Kaux JF, Libertiaux V, Croisier JL, Crielaard JM. Platelet-rich plasma (PRP) to treat chronic patellar tendinopathies: comparison of a single versus two closely-timed injections. Muscles Ligaments Tendons J 2016; 5:297-8. [PMID: 26958539 DOI: 10.11138/mltj/2015.5.4.297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, CHU Liège, Belgium
| | - Vincent Libertiaux
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Belgium
| | - Jean-Louis Croisier
- Department of Sports and Rehabilitation Sciences, University of Liège, Belgium
| | | |
Collapse
|
27
|
Arriaza R, Gayoso R, López-Vidriero E, Aizpurúa J, Agrasar C. Quadriceps autograft to treat Achilles Chronic tears: a simple surgical technique. BMC Musculoskelet Disord 2016; 17:116. [PMID: 26944853 PMCID: PMC4779200 DOI: 10.1186/s12891-016-0967-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/24/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic Achilles tendon tears could hinder patients and represent a challenge to surgeons. Although many different surgical techniques have been proposed for reconstruction of a neglected Achilles tendon rupture, there is no clear evidence to support one technique over the others, but the use of a technique that could allow for an "anatomical" reconstructions seems desirable. METHODS The present paper describes a new anatomic Achilles tendon reconstruction for chronic tears, using a quadriceps tendon autograft as graft source, with PRP injected into the graft and the neighbor tissue, and fixation in a bone trough with a simple small fragments screw. RESULTS Autologous quadriceps tendon graft seems an excellent option, although -surprisingly- has received little attention until now. CONCLUSIONS Autologous Quadriceps tendon graft (in bone-tendon configuration) is a simple technique that could allow surgeons to reconstruct tissue defects in the Achilles tendon with non-expensive hardware.
Collapse
Affiliation(s)
- Rafael Arriaza
- Instituto Médico Arriaza y Asociados, Calle Enrique Mariñas, 32, 15008, La Coruña, Spain. .,Cátedra de Traumatología del Deporte HM, Universidade da Coruña, Avenida Che Guevara 121, Oleiros, 15179, A Coruña, Spain.
| | - Raquel Gayoso
- Instituto Médico Arriaza y Asociados, Calle Enrique Mariñas, 32, 15008, La Coruña, Spain.
| | | | - Jesús Aizpurúa
- Instituto Médico Arriaza y Asociados, Calle Enrique Mariñas, 32, 15008, La Coruña, Spain.
| | - Carlos Agrasar
- Cátedra de Traumatología del Deporte HM, Universidade da Coruña, Avenida Che Guevara 121, Oleiros, 15179, A Coruña, Spain.
| |
Collapse
|
28
|
Kaux J, Croisier J, Forthomme B, Le Goff C, Buhler F, Savanier B, Delcour S, Gothot A, Crielaard J. Using platelet-rich plasma to treat jumper's knees: Exploring the effect of a second closely-timed infiltration. J Sci Med Sport 2016; 19:200-204. [DOI: 10.1016/j.jsams.2015.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 01/15/2023]
|
29
|
Venter NG, Marques RG, Santos JSD, Monte-Alto-Costa A. Use of platelet-rich plasma in deep second- and third-degree burns. Burns 2016; 42:807-14. [PMID: 26822695 DOI: 10.1016/j.burns.2016.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/28/2015] [Accepted: 01/02/2016] [Indexed: 02/08/2023]
Abstract
Unfortunately burns are a common occurrence, leading to scarring or death. Platelet-rich plasma (PRP) contains many growth factors that can accelerate wound healing. We analyzed the use of PRP in deep second-degree (dSD), deep second-degree associated with diabetes mellitus (dSDD), and third-degree (TD) burns in rats. Sixty syngeneic rats divided into three groups (dSD, dSDD, and TD) were burned, half receiving topical PRP and half being used as control; 10 additional rats per group were used for PRP preparation. On day 21, the animals were sacrificed and skin biopsies were collected. dSD and dSDD wounds treated with PRP showed faster wound closure, reduction in CD31-, CD68-, CD163-, MPO-, and in TGF-β-positive cells, and an increase in MMP2-positive cells. The neo-epidermis was thinner in the control of both the dSD and dSDD groups and granulation tissue was less reduced in the control of both the dSDD and TD groups. These results indicate that PRP can accelerate the healing process in dSD and dSDD, but not in TD burns.
Collapse
Affiliation(s)
- Neil Grant Venter
- Department of General Surgery, Post-graduation Program in Physiopathology and Surgical Sciences-Rio de Janeiro State University, Brazil
| | - Ruy Garcia Marques
- Department of General Surgery, Post-graduation Program in Physiopathology and Surgical Sciences-Rio de Janeiro State University, Brazil
| | | | | |
Collapse
|
30
|
González JC, López C, Álvarez ME, Pérez JE, Carmona JU. Autologous leukocyte-reduced platelet-rich plasma therapy for Achilles tendinopathy induced by collagenase in a rabbit model. Sci Rep 2016; 6:19623. [PMID: 26781753 PMCID: PMC4726108 DOI: 10.1038/srep19623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/14/2015] [Indexed: 01/03/2023] Open
Abstract
Leukocyte-reduced platelet-rich plasma (LR-PRP) is a therapy for tendinopathy of the Achilles tendon (TAT); however, there is scarce information regarding LR-PRP effects in rabbit models of TAT. We compared, at 4 and 12 weeks (w), the LR-PRP and placebo (PBS) effects on ultrasonography, histology and relative gene expression of collagen types I (COL1A1) and III (COL3A1) and vascular endothelial growth factor (VEGF) in 24 rabbits with TAT induced by collagenase. The rabbits (treated with both treatments) were euthanatised after either 4 or 12 w. A healthy group (HG (n = 6)) was included. At 4 and 12 w, the LR-PRP group had a no statistically different histology score to the HG. At w 4, the COL1A1 expression was significantly higher in the LR-PRP group when compared to HG, and the expression of COL3A1from both LR-PRP and PBS-treated tendons was significantly higher when compared to the HG. At w 12, the expression of COL3A1 remained significantly higher in the PBS group in comparison to the LR-PRP group and the HG. At w 4, the LR-PRP group presented a significantly higher expression of VEGF when compared to the PBS group and the HG. In conclusion, LR-PRP treatment showed regenerative properties in rabbits with TAT.
Collapse
Affiliation(s)
- Juan C González
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| | - Catalina López
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| | - María E Álvarez
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| | - Jorge E Pérez
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| | - Jorge U Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| |
Collapse
|
31
|
A mechanical and histologic comparative study of the effect of saline, steroid, autologous blood, and platelet-rich plasma on collagenase-induced Achilles tendinopathy in a rat model. CURRENT ORTHOPAEDIC PRACTICE 2015. [DOI: 10.1097/bco.0000000000000297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Sayegh ET, Sandy JD, Virk MS, Romeo AA, Wysocki RW, Galante JO, Trella KJ, Plaas A, Wang VM. Recent Scientific Advances Towards the Development of Tendon Healing Strategies. ACTA ACUST UNITED AC 2015; 4:128-143. [PMID: 26753125 DOI: 10.2174/2211542004666150713190231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There exists a range of surgical and non-surgical approaches to the treatment of both acute and chronic tendon injuries. Despite surgical advances in the management of acute tears and increasing treatment options for tendinopathies, strategies frequently are unsuccessful, due to impaired mechanical properties of the treated tendon and/or a deficiency in progenitor cell activities. Hence, there is an urgent need for effective therapeutic strategies to augment intrinsic and/or surgical repair. Such approaches can benefit both tendinopathies and tendon tears which, due to their severity, appear to be irreversible or irreparable. Biologic therapies include the utilization of scaffolds as well as gene, growth factor, and cell delivery. These treatment modalities aim to provide mechanical durability or augment the biologic healing potential of the repaired tissue. Here, we review the emerging concepts and scientific evidence which provide a rationale for tissue engineering and regeneration strategies as well as discuss the clinical translation of recent innovations.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - John D Sandy
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Mandeep S Virk
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anthony A Romeo
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Robert W Wysocki
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Jorge O Galante
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Katie J Trella
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anna Plaas
- Department of Rheumatology/Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Vincent M Wang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
33
|
Muto T, Kokubu T, Mifune Y, Inui A, Sakata R, Harada Y, Takase F, Ueda Y, Kuroda R, Kurosaka M. Can Platelet-Rich Plasma Protect Rat Achilles Tendons From the Deleterious Effects of Triamcinolone Acetonide? Orthop J Sports Med 2015; 3:2325967115590968. [PMID: 26673355 PMCID: PMC4622327 DOI: 10.1177/2325967115590968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Triamcinolone acetonide (TA) injections are widely used for tendinitis but have deleterious effects, including tendon degeneration or tendon rupture. Purpose To investigate whether adding platelet-rich plasma (PRP), a blood fraction that participates in tissue repair processes, to TA can prevent its deleterious effects. Study Design Controlled laboratory study. Methods Rat Achilles tendons were injected with TA, TA + PRP, PRP alone, or saline (control). Biomechanical testing and histological analyses were performed on Achilles tendons 1 week after injections. Results The maximum failure loads in the control, TA, TA + PRP, and PRP groups were 31.7 ± 2.3, 19.0 ± 3.6, 31.0 ± 7.1, and 30.2 ± 6.8 N, respectively. The tendon stiffness in the control, TA, TA + PRP, and PRP groups was 12.1 ± 1.8, 7.5 ± 1.8, 11.0 ± 2.8, and 11.3 ± 2.5 N/mm, respectively. The maximum failure load and stiffness were significantly lower in the TA group compared with the other 3 groups. There was no significant difference between the TA + PRP and control groups. Cell invasions, vacuolation, collagen attenuation, and increased type III collagen expression were histologically observed in the TA group; however, these changes were prevented by the simultaneous administration of PRP. Conclusion Administering PRP may prevent deleterious effects caused by TA; therefore, PRP may be used as a protective agent in clinical situations. Clinical Relevance PRP can be useful as a protective agent for sports injury patients receiving local corticosteroid injections.
Collapse
Affiliation(s)
- Tomoyuki Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Kokubu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshifumi Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fumiaki Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
34
|
Kaux JF, Drion P, Croisier JL, Crielaard JM. Tendinopathies and platelet-rich plasma (PRP): from pre-clinical experiments to therapeutic use. J Stem Cells Regen Med 2015. [PMID: 26195890 PMCID: PMC4498322 DOI: 10.46582/jsrm.1101003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The restorative properties of platelets, through the local release of growth factors, are used in various medical areas. This article reviews fundamental and clinical research relating to platelet-rich plasma applied to tendinous lesions. MATERIALS AND METHOD Articles in French and English, published between 1 January 2012 and 31 December 2014. dealing with PRP and tendons were searched for using the Medline and Scopus data bases. RESULTS Forty-seven articles were identified which addressed pre-clinical and clinical studies: 27 relating to in vitro and in vivo animal studies and 20 relating to human studies. Of these, five addressed lateral epicondylitis, two addressed rotator cuff tendinopathies, ten dealt with patellar tendinopathies and three looked at Achilles tendinopathies. CONCLUSIONS The majority of pre-clinical studies show that PRP stimulates the tendon's healing process. However, clinical series remain more controversial and level 1, controlled, randomised studies are still needed.
Collapse
Affiliation(s)
- Jean-François Kaux
- Physical Medicine and Sports Traumatology Department, University and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- ULg-GIGA-R, Experimental Surgery, University of Liège, Belgium
| | - Jean-Louis Croisier
- Physiotherapy Service, Department of Motility Sciences, University of Liège, Liège, Belgium
| | - Jean-Michel Crielaard
- Physical Medicine and Sports Traumatology Department, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
35
|
New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. BIOMED RESEARCH INTERNATIONAL 2015; 2015:846045. [PMID: 26075269 PMCID: PMC4436449 DOI: 10.1155/2015/846045] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions.
Collapse
|
36
|
Brossi PM, Moreira JJ, Machado TSL, Baccarin RYA. Platelet-rich plasma in orthopedic therapy: a comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions. BMC Vet Res 2015; 11:98. [PMID: 25896610 PMCID: PMC4449579 DOI: 10.1186/s12917-015-0403-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/20/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This systematic review aimed to present and critically appraise the available information on the efficacy of platelet rich plasma (PRP) in equine and human orthopedic therapeutics and to verify the influence of study design and methodology on the assumption of PRP's efficacy. We searched Medline, PubMed, Embase, Bireme and Google Scholar without restrictions until July 2013. Randomized trials, human cohort clinical studies or case series with a control group on the use of PRP in tendons, ligaments or articular lesions were included. Equine clinical studies on the same topics were included independently of their design. Experimental studies relevant to the clarification of PRP's effects and mechanisms of action in tissues of interest, conducted in any animal species, were selected. RESULTS This review included 123 studies. PRP's beneficial effects were observed in 46.7% of the clinical studies, while the absence of positive effects was observed in 43.3%. Among experimental studies, 73% yielded positive results, and 7.9% yielded negative results. The most frequent flaws in the clinical trials' designs were the lack of a true placebo group, poor product characterization, insufficient blinding, small sampling, short follow-up periods, and adoption of poor outcome measures. The methods employed for PRP preparation and administration and the selected outcome measures varied greatly. Poor study design was a common feature of equine clinical trials. From studies in which PRP had beneficial effects, 67.8% had an overall high risk of bias. From the studies in which PRP failed to exhibit beneficial effects, 67.8% had an overall low risk of bias. CONCLUSIONS Most experimental studies revealed positive effects of PRP. Although the majority of equine clinical studies yielded positive results, the human clinical trials' results failed to corroborate these findings. In both species, beneficial results were more frequently observed in studies with a high risk of bias. The use of PRP in musculoskeletal lesions, although safe and promising, has still not shown strong evidence in clinical scenarios.
Collapse
Affiliation(s)
- Patrícia M Brossi
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Juliana J Moreira
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Thaís S L Machado
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Raquel Y A Baccarin
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Abstract
Injuries of the Achilles tendon are relatively common with potentially devastating outcomes. Healing Achilles tendons form a fibrovascular scar resulting in a tendon which may be mechanically weaker than the native tendon. The resulting strength deficit causes a high risk for reinjury and other complications. Treatments using biologics aim to restore the normal properties of the native tendon and reduce the risk of rerupture and maximize tendon function. The purpose of this review was to summarize the current findings of various therapies using biologics in an attempt to improve the prognosis of Achilles tendon ruptures and tendinopathies. A PubMed search was performed using specific search terms. The search was open for original manuscripts and review papers limited to publication within the last 10 years. From these searches, papers were included in the review if they investigated the effects of biological augmentation on Achilles tendon repair or healing. Platelet-rich plasma may assist in the healing process of Achilles tendon ruptures, while the evidence to support its use in the treatment of chronic Achilles tendinopathies remains insufficient. The use of growth factors such as hepatocyte growth factor, recombinant human platelet-derived growth factor-BB, interleukin-6, and transforming growth factor beta as well as several bone morphogenetic proteins have shown promising results for Achilles tendon repair. In vitro and preclinical studies have indicated the potential effectiveness of bone marrow aspirate as well. Stem cells also have positive effects on Achilles tendon healing, particularly during the early phases. Polyhydroxyalkanoates (PHA), decellularized tendon tissue, and porcine small intestinal submucosa (SIS) are biomaterials which have shown promising results as scaffolds used in Achilles tendon repair. The application of biological augmentation techniques in Achilles tendon repair appears promising; however, several techniques require further investigation to evaluate their clinical application.
Collapse
Affiliation(s)
- Evan Shapiro
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Daniel Grande
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| | - Mark Drakos
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| |
Collapse
|
38
|
Allahverdi A, Sharifi D, Takhtfooladi MA, Hesaraki S, Khansari M, Dorbeh SS. Evaluation of low-level laser therapy, platelet-rich plasma, and their combination on the healing of Achilles tendon in rabbits. Lasers Med Sci 2015; 30:1305-13. [PMID: 25759233 DOI: 10.1007/s10103-015-1733-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Tendon repair is still one of the challenges for rehabilitation. Various treatments for tendon injuries have been used in recent decade. This study was established to investigate the effects of low-level laser therapy (LLLT), platelet-rich plasma (PRP) treatment alone, and using combined method on the healing of Achilles tendon in rabbits. Seventy-two healthy mature male white New Zealand rabbits were divided randomly into four groups of 18 animals each: control: partial tenotomy with no treatment, only 1 mL normal saline was injected on days 1, 8, and 15 at the site of splitting; PRP: partial tenotomy with PRP treatment on days 1, 8, and 15 at the site of splitting; LLLT: partial tenotomy with LLLT (K30 hand-held probe, AZOR, Technica, Russia, 650 nm, 30 mW, surface area = 1 cm(2), 60 S/cm(2), energy density = 1.8 J/cm(2)) for 15 consecutive days; LLLT + PRP: partial tenotomy with LLLT + PRP. At the end of trial, the rabbits were euthanatized and tendon specimens were harvested and were submitted for histopathological evaluation, hydroxyproline levels, and biomechanical measurement. The Tukey post hoc test was performed. The results for these parameters showed that PRP or LLLT alone has significant advantages over untreated animals (P < 0.05). Furthermore, it was found that the combined treatment with PRP and LLLT is even more efficient. There was no significant difference (P > 0.05) between the two groups of LLLT and PRP. However, the treatments combining PRP and LLLT showed significant results in comparison of PRP or LLLT alone (P < 0.05). Our results demonstrate that the healing time of injured tendon decreases by using the two therapies combined.
Collapse
Affiliation(s)
- Amin Allahverdi
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran,
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Pain and dysfunction related to tendinopathy are often refractory to traditional treatments and offer a unique challenge to physicians, because no gold standard treatment exists. Injectable biologics may represent a new modality in conjunction with a multifaceted treatment approach. Platelet-rich plasma (PRP) injections are not associated with the systemic or tendon degradation risks of corticosteroids or the inherent risks of surgery. Studies are promising but have not been replicated with high-powered evidence at the clinical level. Further evidence to expand understanding of the role of PRP in the treatment of tendinopathy is needed.
Collapse
Affiliation(s)
- Ken Mautner
- Departments of Physical Medicine and Rehabilitation and Orthopaedics, Emory Orthopaedics and Spine Center, 59 Executive Park Dr South, Suite 1000, Atlanta, GA 30329.
| | - Lee Kneer
- Departments of Physical Medicine and Rehabilitation and Orthopaedics, Emory Orthopaedics and Spine Center, 59 Executive Park Dr South, Suite 1000, Atlanta, GA 30329
| |
Collapse
|
40
|
Dimauro I, Grasso L, Fittipaldi S, Fantini C, Mercatelli N, Racca S, Geuna S, Di Gianfrancesco A, Caporossi D, Pigozzi F, Borrione P. Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. PLoS One 2014; 9:e102993. [PMID: 25054279 PMCID: PMC4108405 DOI: 10.1371/journal.pone.0102993] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/24/2014] [Indexed: 12/27/2022] Open
Abstract
Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Loredana Grasso
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Simona Fittipaldi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Silvia Racca
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Di Gianfrancesco
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- * E-mail:
| | - Fabio Pigozzi
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Paolo Borrione
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
41
|
Clinical applications of platelet-rich plasma in patellar tendinopathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:249498. [PMID: 25136568 PMCID: PMC4127290 DOI: 10.1155/2014/249498] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/26/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022]
Abstract
Platelet-rich plasma (PRP), a blood derivative with high concentrations of platelets, has been found to have high levels of autologous growth factors (GFs), such as transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), fibroblastic growth factor (FGF), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). These GFs and other biological active proteins of PRP can promote tissue healing through the regulation of fibrosis and angiogenesis. Moreover, PRP is considered to be safe due to its autologous nature and long-term usage without any reported major complications. Therefore, PRP therapy could be an option in treating overused tendon damage such as chronic tendinopathy. Here, we present a systematic review highlighting the clinical effectiveness of PRP injection therapy in patellar tendinopathy, which is a major cause of athletes to retire from their respective careers.
Collapse
|
42
|
Abstract
BACKGROUND Platelet-rich plasma (PRP) has shown promise in the treatment of tendinopathy, including rotator cuff and lateral epicondylitis. Here, we evaluate the effect of PRP on healing in a rabbit zone II flexor tendon model. METHODS Thirty New Zealand white rabbits underwent transection and repair of the second and fourth flexor digitorum profundus. Half of the rabbits received autologous PRP intraoperatively, while the other half underwent standard four-strand tendon repair. Tendons were examined at 2, 4, and 8 weeks postoperatively. Range of motion and ultimate tensile strength were assessed on the fourth toes, while second toes underwent histologic analysis with hematoxylin and eosin, Masson Trichrome, and Picrosirius Red, for assessment of cell count, collagen content, and collagen maturity. RESULTS There were no significant differences in ultimate tensile strength between treatments at 2, 4, or 8 weeks. There was a trend towards lower tensile strength in the PRP group at 2 weeks. There was no statistically significant difference in excursion or range of motion between PRP and control tendons. Cell counts at 4 weeks were statistically significantly reduced in the PRP tendons as compared to controls. No difference in collagen content or maturity was detected. CONCLUSIONS In contrast to previous studies, PRP did not significantly improve ultimate tensile strength. PRP-treated tendons exhibited trends towards reduced healing, including a significant reduction in cell counts as well as a smaller increase in collagen deposition over time as compared to controls. Further study is needed to determine the precise effect of PRP on intrasynovial flexor tendon repairs.
Collapse
|
43
|
Moshiri A, Oryan A, Meimandi-Parizi A, Koohi-Hosseinabadi O. Effectiveness of xenogenous-based bovine-derived platelet gel embedded within a three-dimensional collagen implant on the healing and regeneration of the Achilles tendon defect in rabbits. Expert Opin Biol Ther 2014; 14:1065-89. [PMID: 24840092 PMCID: PMC4743604 DOI: 10.1517/14712598.2014.915305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Tissue engineering is an option in reconstructing large tendon defects and managing their healing and regeneration. We designed and produced a novel xenogeneic-based bovine platelet, embedded it within a tissue-engineered collagen implant (CI) and applied it in an experimentally induced large tendon defect model in rabbits to test whether bovine platelets could stimulate tendon healing and regeneration in vivo. METHODS One hundred twenty rabbits were randomly divided into two experimental and pilot groups. In all the animals, the left Achilles tendon was surgically excised and the tendon edges were aligned by Kessler suture. Each group was then divided into three groups of control (no implant), treated with CI and treated with collagen-platelet implant. The pilot groups were euthanized at 10, 15, 30 and 40 days post-injury (DPI), and their gross and histologic characteristics were evaluated to study host-graft interaction mechanism. To study the tendon healing and its outcome, the experimental animals were tested during the experiment using hematologic, ultrasonographic and various methods of clinical examinations and then euthanized at 60 DPI and their tendons were evaluated by gross pathologic, histopathologic, scanning electron microscopic, biophysical and biochemical methods. RESULTS Bovine platelets embedded within a CI increased inflammation at short term while it increased the rate of implant absorption and matrix replacement compared with the controls and CI alone. Treatment also significantly increased diameter, density, amount, alignment and differentiation of the collagen fibrils and fibers and approximated the water uptake and delivery behavior of the healing tendons to normal contralaterals (p < 0.05). Treatment also improved echogenicity and homogenicity of the tendons and reduced peritendinous adhesion, muscle fibrosis and atrophy, and therefore, it improved the clinical scores and physical activity related to the injured limb when compared with the controls (p < 0.05). CONCLUSION The bovine platelet gel embedded within the tissue-engineered CI was effective in healing, modeling and remodeling of the Achilles tendon in rabbit. This strategy may be a valuable option in the clinical setting.
Collapse
Affiliation(s)
- Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran +98 9123409835 ;
| | | | | | | |
Collapse
|
44
|
|
45
|
Yuan T, Zhang CQ, Wang JHC. Augmenting tendon and ligament repair with platelet-rich plasma (PRP). Muscles Ligaments Tendons J 2013. [PMID: 24367773 DOI: 10.11138/mltj/2013.3.3.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tendon and ligament injuries (TLI) commonly occur in athletes and non-athletes alike, and remarkably debilitate patients' athletic and personal abilities. Current clinical treatments, such as reconstruction surgeries, do not adequately heal these injuries and often result in the formation of scar tissue that is prone to re-injury. Platelet-rich plasma (PRP) is a widely used alternative option that is also safe because of its autologous nature. PRP contains a number of growth factors that are responsible for its potential to heal TLIs effectively. In this review, we provide a comprehensive report on PRP. While basic science studies in general indicate the potential of PRP to treat TLIs effectively, a review of existing literature on the clinical use of PRP for the treatment of TLIs indicates a lack of consensus due to varied treatment outcomes. This suggests that current PRP treatment protocols for TLIs may not be optimal, and that not all TLIs may be effectively treated with PRP. Certainly, additional basic science studies are needed to develop optimal treatment protocols and determine those TLI conditions that can be treated effectively.
Collapse
Affiliation(s)
- Ting Yuan
- Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, USA ; Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai, China
| | - Chang-Qing Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai, China
| | - James H-C Wang
- Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, USA
| |
Collapse
|
46
|
Efficacy of intra-tendinous injection of platelet-rich plasma in treating tendinosis: comprehensive assessment of a rat model. Eur Radiol 2013; 23:2830-7. [DOI: 10.1007/s00330-013-2926-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/07/2013] [Accepted: 05/12/2013] [Indexed: 12/27/2022]
|
47
|
Kaux JF, Croisier JL, Bruyère O, Rodriguez C, Daniel C, Godon B, Simoni P, Alvarez V, Brabant G, Lapraille S, Lonneux V, Noël D, Collette J, Goff CL, Gothot A, Crielaard JM. PLATELET-RICH PLASMA (PRP) TO TREAT CHRONIC UPPER PATELLAR TENDINOPATHIES. Br J Sports Med 2013. [DOI: 10.1136/bjsports-2013-092558.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Schulze-Tanzil G, Al-Sadi O, Ertel W, Lohan A. Decellularized tendon extracellular matrix-a valuable approach for tendon reconstruction? Cells 2012; 1:1010-28. [PMID: 24710540 PMCID: PMC3901141 DOI: 10.3390/cells1041010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023] Open
Abstract
Tendon healing is generally a time-consuming process and often leads to a functionally altered reparative tissue. Using degradable scaffolds for tendon reconstruction still remains a compromise in view of the required high mechanical strength of tendons. Regenerative approaches based on natural decellularized allo- or xenogenic tendon extracellular matrix (ECM) have recently started to attract interest. This ECM combines the advantages of its intrinsic mechanical competence with that of providing tenogenic stimuli for immigrating cells mediated, for example, by the growth factors and other mediators entrapped within the natural ECM. A major restriction for their therapeutic application is the mainly cell-associated immunogenicity of xenogenic or allogenic tissues and, in the case of allogenic tissues, also the risk of disease transmission. A survey of approaches for tendon reconstruction using cell-free tendon ECM is presented here, whereby the problems associated with the decellularization procedures, the success of various recellularization strategies, and the applicable cell types will be thoroughly discussed. Encouraging in vivo results using cell-free ECM, as, for instance, in rabbit models, have already been reported. However, in comparison to native tendon, cells remain mostly inhomogeneously distributed in the reseeded ECM and do not align. Hence, future work should focus on the optimization of tendon ECM decellularization and recolonization strategies to restore tendon functionality.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Campus Benjamin Franklin, Charité-University of Medicine Berlin, Garystrasse 5, Berlin 14195, Germany.
| | - Onays Al-Sadi
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Campus Benjamin Franklin, Charité-University of Medicine Berlin, Garystrasse 5, Berlin 14195, Germany.
| | - Wolfgang Ertel
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Campus Benjamin Franklin, Charité-University of Medicine Berlin, Garystrasse 5, Berlin 14195, Germany.
| | - Anke Lohan
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Campus Benjamin Franklin, Charité-University of Medicine Berlin, Garystrasse 5, Berlin 14195, Germany.
| |
Collapse
|
49
|
Tendinopathies et plasma riche en plaquettes (PRP) : applications cliniques. Revue de la littérature. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.jts.2012.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|