1
|
Zadrożniak M, Szymański M, Łuszczki JJ. N-Acetyl-L-cysteine Affects Ototoxicity Evoked by Amikacin and Furosemide Either Alone or in Combination in a Mouse Model of Hearing Threshold Decrease. Int J Mol Sci 2023; 24:ijms24087596. [PMID: 37108758 PMCID: PMC10143461 DOI: 10.3390/ijms24087596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Drug-induced ototoxicity resulting from therapy with aminoglycoside antibiotics and loop diuretics is one of the main well-known causes of hearing loss in patients. Unfortunately, no specific protection and prevention from hearing loss are recommended for these patients. This study aimed at evaluating the ototoxic effects produced by mixtures of amikacin (AMI, an aminoglycoside antibiotic) and furosemide (FUR, a loop diuretic) in the mouse model as the hearing threshold decreased by 20% and 50% using auditory brainstem responses (ABRs). Ototoxicity was produced by the combinations of a constant dose of AMI (500 mg/kg; i.p.) on FUR-induced hearing threshold decreases, and a fixed dose of FUR (30 mg/kg; i.p.) on AMI-induced hearing threshold decreases, which were determined in two sets of experiments. Additionally, the effects of N-acetyl-L-cysteine (NAC; 500 mg/kg; i.p.) on the hearing threshold decrease of 20% and 50% were determined by means of an isobolographic transformation of interactions to detect the otoprotective action of NAC in mice. The results indicate that the influence of a constant dose of AMI on FUR-induced hearing threshold decreases was more ototoxic in experimental mice than a fixed dose of FUR on AMI-induced ototoxicity. Moreover, NAC reversed the AMI-induced, but not FUR-induced, hearing threshold decreases in this mouse model of hearing loss. NAC could be considered an otoprotectant in the prevention of hearing loss in patients receiving AMI alone and in combination with FUR.
Collapse
Affiliation(s)
- Marek Zadrożniak
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Marcin Szymański
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
2
|
Lin JN, Wang JS, Lin CC, Lin HY, Yu SH, Wen YH, Tseng GF, Hsu CJ, Wu HP. Ameliorative effect of taxifolin on gentamicin-induced ototoxicity via down-regulation of apoptotic pathways in mouse cochlear UB/OC-2 cells. J Chin Med Assoc 2022; 85:617-626. [PMID: 35286283 DOI: 10.1097/jcma.0000000000000708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Taxifolin is a flavanonol with efficacious cytoprotective properties, such as anti-inflammatory, antioxidant, anticancer, hepatoprotective, and nephroprotective effects. However, the potential protective effects of taxifolin against gentamicin-induced ototoxicity have not been confirmed. In this study, the possible mechanisms underlying the effects of taxifolin on gentamicin-induced death of UB/OC-2 cochlear cells were investigated. METHODS Mouse cochlear UB/OC-2 cells with or without taxifolin pretreatment were exposed to gentamicin, and the effects on cytotoxicity, reactive oxygen species (ROS) production, mitochondrial permeability transition, and apoptotic marker expression were examined using biochemical techniques, flow cytometry, western blotting, and fluorescent staining. RESULTS Little or no apparent effect of taxifolin on cell viability was observed at concentrations less than 40 μM. Further investigations showed that gentamicin significantly inhibited cell viability in a concentration-dependent manner. Pretreatment with taxifolin attenuated gentamicin-induced lactate dehydrogenase release, as well as cellular cytotoxicity. In addition, taxifolin significantly prevented gentamicin-induced cell damage by decreasing ROS production, stabilizing mitochondrial membrane potential, and downregulating the mitochondrial pathway of apoptosis. CONCLUSION In summary, pretreatment with taxifolin is effective for mitigating gentamicin-induced apoptotic cell death mediated by the mitochondrial pathway. Our data suggest that taxifolin provides a new approach to combat gentamicin-induced ototoxicity.
Collapse
Affiliation(s)
- Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Jen-Shu Wang
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chung-Ching Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Hui-Yi Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan, ROC
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan, Taiwan, ROC
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Guo-Fang Tseng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
3
|
Effects of Moringa Extract on Aminoglycoside-Induced Hair Cell Death and Organ of Corti Damage. Otol Neurotol 2021; 42:1261-1268. [PMID: 34049329 DOI: 10.1097/mao.0000000000003193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Moringa extract, a naturally occurring anti-oxidant, protects against aminoglycoside-induced hair cell death and hearing loss within the organ of Corti. BACKGROUND Reactive oxygen species (ROS) arise primarily in the mitochondria and have been implicated in aminoglycoside-induced ototoxicity. Mitochondrial dysfunction results in loss of membrane potential, release of caspases, and cell apoptosis. Moringa extract has not previously been examined as a protective agent for aminoglycoside-induced ototoxicity. METHODS Putative otoprotective effects of moringa extract were investigated in an organotypic model using murine organ of Corti explants subjected to gentamicin-induced ototoxicity. Assays evaluated hair cell loss, cytochrome oxidase expression, mitochondrial membrane potential integrity, and caspase activity. RESULTS In vitro application of moringa conferred significant protection from gentamicin-induced hair cell loss at dosages from 25 to 300 μg/mL, with dosages above 100 μg/mL conferring near complete protection. Assays demonstrated moringa extract suppression of ROS, preservation of cytochrome oxidase activity, and reduction in caspase production. CONCLUSION Moringa extract demonstrated potent antioxidant properties with significant protection against gentamicin ototoxicity in cochlear explants.
Collapse
|
4
|
Toll-like Receptor 4 Signaling and Downstream Neutrophilic Inflammation Mediate Endotoxemia-Enhanced Blood-Labyrinth Barrier Trafficking. Otol Neurotol 2020; 41:123-132. [PMID: 31568132 DOI: 10.1097/mao.0000000000002447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS Both toll-like receptor 4 (TLR4) and downstream neutrophil activity are required for endotoxemia-enhanced blood-labyrinth barrier (BLB) trafficking. BACKGROUND Aminoglycoside and cisplatin are valuable clinical therapies; however, these drugs often cause life-long hearing loss. Endotoxemia enhances the ototoxicity of aminoglycosides and cisplatin in a TLR4 dependent mechanism for which downstream proinflammatory signaling orchestrates effector immune cells including neutrophils. Neutrophil-mediated vascular injury (NMVI) can enhance molecular trafficking across endothelial barriers and may contribute to endotoxemia-enhanced drug-induced ototoxicity. METHODS Lipopolysaccharide (LPS) hypo-responsive TLR4-KO mice and congenitally neutropenic granulocyte colony-stimulating factor (GCSF) GCSF-KO mice were studied to investigate the relative contributions of TLR4 signaling and downstream neutrophil activity to endotoxemia-enhanced BLB trafficking. C57Bl/6 wild-type mice were used as a positive control. Mice were treated with LPS and 24 hours later cochleae were analyzed for gene transcription of innate inflammatory cytokine/chemokine signaling molecules, neutrophil recruitment, and vascular trafficking of the paracellular tracer biocytin-TMR. RESULTS Cochlear transcription of innate proinflammatory cytokines/chemokines was increased in endotoxemic C57Bl/6 and GCSF-KO, but not in TLR4-KO mice. More neutrophils were recruited to endotoxemic C57Bl/6 cochleae compared with both TLR4 and GCSF-KO cochleae. Endotoxemia enhanced BLB trafficking of biocytin-TMR in endotoxemic C57Bl/6 cochleae and this was attenuated in both TLR4 and GCSF-KO mice. CONCLUSION Together these results suggest that TLR4-mediated innate immunity cytokine/chemokine signaling alone is not sufficient for endotoxemia-enhanced trafficking of biocytin-TMR and that downstream neutrophil activity is required to enhance BLB trafficking. Clinically, targeting neutrophilic inflammation could protect hearing during aminoglycoside, cisplatin, or other ototoxic drug therapies.
Collapse
|
5
|
Abstract
There is an urgent need for otoprotective drug agents. Prevention of noise-induced hearing loss continues to be a major challenge for military personnel and workers in a variety of industries despite the requirements that at-risk individuals use hearing protection devices such as ear plugs or ear muffs. Drug-induced hearing loss is also a major quality-of-life issue with many patients experiencing clinically significant hearing loss as a side effect of treatment with life-saving drug agents such as cisplatin and aminoglycoside antibiotics. There are no pharmaceutical agents approved by the United States Food and Drug Administration for the purpose of protecting the inner ear against damage, and preventing associated hearing loss (otoprotection). However, a variety of preclinical studies have suggested promise, with some supporting data from clinical trials now being available as well. Additional research within this promising area is urgently needed.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
6
|
Fujimoto C, Yamasoba T. Mitochondria-Targeted Antioxidants for Treatment of Hearing Loss: A Systematic Review. Antioxidants (Basel) 2019; 8:E109. [PMID: 31022870 PMCID: PMC6523236 DOI: 10.3390/antiox8040109] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial dysfunction is associated with the etiologies of sensorineural hearing loss, such as age-related hearing loss, noise- and ototoxic drug-induced hearing loss, as well as hearing loss due to mitochondrial gene mutation. Mitochondria are the main sources of reactive oxygen species (ROS) and ROS-induced oxidative stress is involved in cochlear damage. Moreover, the release of ROS causes further damage to mitochondrial components. Antioxidants are thought to counteract the deleterious effects of ROS and thus, may be effective for the treatment of oxidative stress-related diseases. The administration of mitochondria-targeted antioxidants is one of the drug delivery systems targeted to mitochondria. Mitochondria-targeted antioxidants are expected to help in the prevention and/or treatment of diseases associated with mitochondrial dysfunction. Of the various mitochondria-targeted antioxidants, the protective effects of MitoQ and SkQR1 against ototoxicity have been previously evaluated in animal models and/or mouse auditory cell lines. MitoQ protects against both gentamicin- and cisplatin-induced ototoxicity. SkQR1 also provides auditory protective effects against gentamicin-induced ototoxicity. On the other hand, decreasing effect of MitoQ on gentamicin-induced cell apoptosis in auditory cell lines has been controversial. No clinical studies have been reported for otoprotection using mitochondrial-targeted antioxidants. High-quality clinical trials are required to reveal the therapeutic effect of mitochondria-targeted antioxidants in terms of otoprotection in patients.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
- Department of Otolaryngology, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo 102-8798, Japan.
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
7
|
García-Alcántara F, Murillo-Cuesta S, Pulido S, Bermúdez-Muñoz JM, Martínez-Vega R, Milo M, Varela-Nieto I, Rivera T. The expression of oxidative stress response genes is modulated by a combination of resveratrol and N-acetylcysteine to ameliorate ototoxicity in the rat cochlea. Hear Res 2017; 358:10-21. [PMID: 29304389 DOI: 10.1016/j.heares.2017.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 09/06/2017] [Accepted: 12/10/2017] [Indexed: 11/19/2022]
Abstract
Aminoglycoside antibiotics are used widely in medicine despite their ototoxic side-effects. Oxidative stress and inflammation are key mechanisms determining the extent and severity of the damage. Here we evaluate the protective effect of a treatment with resveratrol plus N-acetylcysteine on the ototoxic actions of kanamycin and furosemide in the rat. Resveratrol (10 mg/kg) and N-acetylcysteine (400 mg/kg) were administered together to Wistar rats on 5 consecutive days. The second day, a concentrated solution of kanamycin and furosemide was placed on the round window to induce ototoxicity. Hearing was assessed by recording auditory brainstem responses before and 5, 16 and 23 days after the beginning of the treatment. Cochlear samples were taken at day 5 (end of the treatment) and at day 23, and targeted PCR arrays or RT-qPCR were performed to analyze oxidative balance and inflammation related genes, respectively. In addition, the cytoarchitecture and the presence of apoptosis, oxidative stress and inflammation markers were evaluated in cochlear sections. Results indicate that administration of resveratrol plus N-acetylcysteine reduced the threshold shifts induced by ototoxic drugs at high frequencies (≈10 dB), although this protective effect fades after the cessation of the treatment. Gene expression analysis showed that the treatment modulated the expression of genes involved in the cellular oxidative (Gpx1, Sod1, Ccs and Noxa1) and inflammatory (Il1b, Il4, Mpo and Ncf) responses to injury. Thus, co-administration of resveratrol and NAC, routinely used individually in patients, could reduce the ototoxic secondary effects of aminoglycosides.
Collapse
Affiliation(s)
- Fernando García-Alcántara
- Príncipe de Asturias University Hospital, Universidad de Alcalá, Carretera Alcalá-Meco s/n, 28805, Alcalá de Henares, Madrid, Spain; Institute of Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centre for Biomedical Network Research in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Silvia Murillo-Cuesta
- Institute of Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centre for Biomedical Network Research in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Monforte de Lemos, 3-5, 28029, Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Pedro Rico 6, 28029, Madrid, Spain.
| | - Sara Pulido
- Institute of Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centre for Biomedical Network Research in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Monforte de Lemos, 3-5, 28029, Madrid, Spain; Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S3 7HF, United Kingdom.
| | - Jose M Bermúdez-Muñoz
- Institute of Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centre for Biomedical Network Research in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Raquel Martínez-Vega
- Institute of Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Marta Milo
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S3 7HF, United Kingdom.
| | - Isabel Varela-Nieto
- Institute of Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centre for Biomedical Network Research in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Monforte de Lemos, 3-5, 28029, Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Pedro Rico 6, 28029, Madrid, Spain.
| | - Teresa Rivera
- Príncipe de Asturias University Hospital, Universidad de Alcalá, Carretera Alcalá-Meco s/n, 28805, Alcalá de Henares, Madrid, Spain; Institute of Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centre for Biomedical Network Research in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Eschenauer GA, Lam SW, Mueller BA. Dose Timing of Aminoglycosides in Hemodialysis Patients: A Pharmacology View. Semin Dial 2016; 29:204-13. [PMID: 26756428 DOI: 10.1111/sdi.12458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoglycosides for patients undergoing intermittent hemodialysis (IHD) have traditionally been dosed at half the normal dose administered at the end of a hemodialysis session. Several investigations have suggested that administering higher doses preceding or with the initiation of dialysis would more readily optimize pharmacodynamic parameters. However, the selection of an optimal aminoglycoside dosing strategy in patients receiving IHD is complex and requires consideration of numerous factors, precluding a singular approach. By reviewing aminoglycoside pharmacokinetics, pharmacodynamics, risks for toxicity and resistance development, and practical considerations, we derive indication- and setting- specific recommendations. We identify some areas (definitive therapy of gram-negative infections in patients receiving predictable hemodialysis sessions, for example) where dosing preceding or with the initiation of dialysis is optimal and feasible, and others (gram-positive synergy, unstable patients with poor/unpredictable vascular access) where postdialysis dosing remains preferred. Finally, given the dearth of data exploring the pharmacodynamics and clinical outcomes of IHD patients receiving aminoglycoside therapy, we identify several key questions in need of investigation.
Collapse
Affiliation(s)
- Gregory A Eschenauer
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Simon W Lam
- Department of Pharmacy, Cleveland Clinic, Cleveland, Ohio
| | - Bruce A Mueller
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| |
Collapse
|
9
|
Kranzer K, Elamin WF, Cox H, Seddon JA, Ford N, Drobniewski F. A systematic review and meta-analysis of the efficacy and safety ofN-acetylcysteine in preventing aminoglycoside-induced ototoxicity: implications for the treatment of multidrug-resistant TB. Thorax 2015; 70:1070-7. [DOI: 10.1136/thoraxjnl-2015-207245] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/18/2015] [Indexed: 11/03/2022]
|
10
|
Protective role of L-ascorbic acid,N-acetylcysteine and apocynin on neomycin-induced hair cell loss in Zebrafish. J Appl Toxicol 2014; 35:273-9. [DOI: 10.1002/jat.3043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/17/2022]
|
11
|
Kocyigit I, Vural A, Unal A, Sipahioglu MH, Yucel HE, Aydemir S, Yazici C, İlhan Sahin M, Oymak O, Tokgoz B. Preventing amikacin related ototoxicity with N-acetylcysteine in patients undergoing peritoneal dialysis. Eur Arch Otorhinolaryngol 2014; 272:2611-20. [PMID: 25073872 DOI: 10.1007/s00405-014-3207-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/18/2014] [Indexed: 01/22/2023]
Abstract
Amikacin is a frequently used antibiotic in the treatment of peritoneal dialysis (PD)-related peritonitis. Ototoxicity is a well-known complication of amikacin for which increased oxidative stress and free oxygen radicals are thought to be responsible. In this study, the effect of N-acetyl-cysteine (NAC) on cochlear function and oxidant situation in the amikacin related ototoxicity in PD-related peritonitis patients are investigated. Forty-six patients who had their first PD-related peritonitis attacks receiving empirical amikacin treatment were enrolled in the study. The patients were randomized into two groups; the first group (n = 23) as NAC receiving and the second group (n = 23) as a placebo receiving, control group. Otoacoustic emissions were measured before, 1 week after and 4 weeks after the treatment. Oxidative stress measurements were performed concurrently in order to evaluate the effectiveness of NAC. The results of screening with otoacoustic emission testing after amikacin treatment showed that cochlear function is protected especially in higher frequencies in NAC group when compared with the control group. Evaluation of the antioxidant status of the two groups showed no differences in the basal values, but at the first week there was an increase in the NAC group compared with the control group, and this increase became significant at the fourth week. NAC is found to be safe and effective in amikacin-related ototoxicity in patients with PD-related peritonitis. We suggest a close monitoring of the patients receiving amikacin containing treatment protocols and if amikacin is administrated supplementing the treatment with NAC.
Collapse
Affiliation(s)
- Ismail Kocyigit
- Department of Nephrology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shalev M, Baasov T. When Proteins Start to Make Sense: Fine-tuning Aminoglycosides for PTC Suppression Therapy. MEDCHEMCOMM 2014; 5:1092-1105. [PMID: 25147726 DOI: 10.1039/c4md00081a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aminoglycosides (AGs) are highly potent antibacterial agents, which are known to exert their deleterious effects on bacterial cells by interfering with the translation process, leading to aberrant protein synthesis that usually results in cell death. Nearly 45 years ago, AGs were shown to induce read-through activity in prokaryotic systems by selectively encoding tRNA molecules at premature termination codon (PTC) positions; resulting in the generation of full length functional proteins. However, only in the last 20 years this ability has been demonstrated in eukaryotic systems, highlighting their potential as therapeutic agents to treat PTC induced genetic disorders. Despite the great potential, AGs use in these manners is quite restricted due to relatively high toxicity values observed upon their administration. Over the last few years several synthetic derivatives were developed to overcome some of the enhanced toxicity issues, while in parallel showed significantly improved PTC suppression activity in various in-vitro, ex-vivo and in-vivo models of a variety of different diseases models underling by PTC mutations. Although these derivatives hold great promise to serve as therapeutic candidates they also demonstrate the necessity to further understand the molecular mechanisms of which AGs confer their biological activity in eukaryotic cells for further rational drug design. Recent achievements in structural research shed light on AGs mechanism of action and opened a new avenue in the development of new and improved therapeutic derivatives. The following manuscript highlights these accomplishments and summarizes their contributions to the state of art rational drug design.
Collapse
Affiliation(s)
- Moran Shalev
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|