1
|
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. The Molecular Mechanism of Body Axis Induction in Lampreys May Differ from That in Amphibians. Int J Mol Sci 2024; 25:2412. [PMID: 38397089 PMCID: PMC10889193 DOI: 10.3390/ijms25042412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.
Collapse
Affiliation(s)
- Galina V. Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Aleksandr V. Kucheryavyy
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia;
| | - Andrey G. Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrey V. Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| |
Collapse
|
2
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
3
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
4
|
Yokoyama H, Yoshimura M, Suzuki DG, Higashiyama H, Wada H. Development of the lamprey velum and implications for the evolution of the vertebrate jaw. Dev Dyn 2020; 250:88-98. [PMID: 32865292 DOI: 10.1002/dvdy.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The vertebrate jaw is thought to have evolved through developmental modification of the mandibular arch. An extant jawless vertebrate, the lamprey, possesses a structure called "velum"-a mandibular arch derivative-in addition to the oral apparatus. This leads us to assess the velum's possible contribution to the evolution of jaws. RESULTS The velar muscles develop from progenitor cells distinct from those from which the oral muscles develop. In addition, the oral and velar regions originate from the different sub-population of the trigeminal neural crest cells (NCCs): the former region receives NCCs from the midbrain, whereas the latter region receives NCCs from the anterior hindbrain. The expression of patterning genes (eg, DlxA and MsxA) is activated at a later developmental stage in the velum compared to the oral region, and more importantly, in different cells from those in the oral region. CONCLUSION The lamprey mandibular arch consists of two developmental units: the anterior oral unit and the posterior velar unit. Because structural elements of the lamprey velum may be homologous to the jaw, the evolution of vertebrate jaws may have occurred by the velum being released from its functional roles in feeding or respiration in jawless vertebrates.
Collapse
Affiliation(s)
- Hiromasa Yokoyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Miho Yoshimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Daichi G Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Asymmetric paralog evolution between the "cryptic" gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Sci Rep 2019; 9:3136. [PMID: 30816280 PMCID: PMC6395752 DOI: 10.1038/s41598-019-40055-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/07/2019] [Indexed: 12/05/2022] Open
Abstract
The vertebrate gene repertoire is characterized by “cryptic” genes whose identification has been hampered by their absence from the genomes of well-studied species. One example is the Bmp16 gene, a paralog of the developmental key genes Bmp2 and -4. We focus on the Bmp2/4/16 group of genes to study the evolutionary dynamics following gen(om)e duplications with special emphasis on the poorly studied Bmp16 gene. We reveal the presence of Bmp16 in chondrichthyans in addition to previously reported teleost fishes and reptiles. Using comprehensive, vertebrate-wide gene sampling, our phylogenetic analysis complemented with synteny analyses suggests that Bmp2, -4 and -16 are remnants of a gene quartet that originated during the two rounds of whole-genome duplication (2R-WGD) early in vertebrate evolution. We confirm that Bmp16 genes were lost independently in at least three lineages (mammals, archelosaurs and amphibians) and report that they have elevated rates of sequence evolution. This finding agrees with their more “flexible” deployment during development; while Bmp16 has limited embryonic expression domains in the cloudy catshark, it is broadly expressed in the green anole lizard. Our study illustrates the dynamics of gene family evolution by integrating insights from sequence diversification, gene repertoire changes, and shuffling of expression domains.
Collapse
|
7
|
Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-4-431-56609-0_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Effect of bone morphogenetic proteins 2 and 4 on survival and development of bovine secondary follicles cultured in vitro. Theriogenology 2017; 110:44-51. [PMID: 29331831 DOI: 10.1016/j.theriogenology.2017.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
Abstract
This study evaluated the effect of bone morphogenetic proteins 2 (BMP2) and 4 (BMP2) on follicle development and mRNA expression for GDF9, Cyclin B1, BMPR1A, BMPR1B, BMPRII, FSHR and SMAD1 in bovine secondary follicles cultured in vitro. Isolated secondary follicles were cultured for 18 days in TCM199+ medium alone or supplemented with BMP2 (10 ng/mL), BMP4 (100 ng/mL) or combination of both BMP2 and 4. Real-time PCR was used to analyze mRNA levels in fresh and cultured follicles. After 18 days of culture, follicles cultured with BMP2 alone or with BMP4 alone had larger diameters when compared to control (P < .05). In addition, all treatments promoted antrum formation and maintained a high viability rate through the growing period. The presence of BMP2, BMP4 or both together did not influence mRNA expression for the tested genes. However, the in vitro culture induces down-regulation for mRNA expression of BMPR1A. In conclusion, the addition of BMP2 or BMP4 alone in cultured medium promotes follicular growth and antrum formation in bovine follicles after 18 days of in vitro culture.
Collapse
|
9
|
Square T, Jandzik D, Romášek M, Cerny R, Medeiros DM. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Dev Biol 2017; 427:219-229. [DOI: 10.1016/j.ydbio.2016.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 11/20/2016] [Indexed: 01/30/2023]
|
10
|
Tai A, Cheung M, Huang YH, Jauch R, Bronner ME, Cheah KSE. SOXE neofunctionalization and elaboration of the neural crest during chordate evolution. Sci Rep 2016; 6:34964. [PMID: 27734831 PMCID: PMC5062122 DOI: 10.1038/srep34964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
During chordate evolution, two genome-wide duplications facilitated acquisition of vertebrate traits, including emergence of neural crest cells (NCCs), in which neofunctionalization of the duplicated genes are thought to have facilitated development of craniofacial structures and the peripheral nervous system. How these duplicated genes evolve and acquire the ability to specify NC and their derivatives are largely unknown. Vertebrate SoxE paralogues, most notably Sox9/10, are essential for NC induction, delamination and lineage specification. In contrast, the basal chordate, amphioxus, has a single SoxE gene and lacks NC-like cells. Here, we test the hypothesis that duplication and divergence of an ancestral SoxE gene may have facilitated elaboration of NC lineages. By using an in vivo expression assay to compare effects of AmphiSoxE and vertebrate Sox9 on NC development, we demonstrate that all SOXE proteins possess similar DNA binding and homodimerization properties and can induce NCCs. However, AmphiSOXE is less efficient than SOX9 in transactivation activity and in the ability to preferentially promote glial over neuronal fate, a difference that lies within the combined properties of amino terminal and transactivation domains. We propose that acquisition of AmphiSoxE expression in the neural plate border led to NCC emergence while duplication and divergence produced advantageous mutations in vertebrate homologues, promoting elaboration of NC traits.
Collapse
Affiliation(s)
- Andrew Tai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong-Heng Huang
- Genome Regulation Laboratory, Drug Discovery Pipeline, Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Marianne E Bronner
- Division of Biology 139-74, California Institute of Technology, Pasadena, USA
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Marques CL, Fernández I, Viegas MN, Cox CJ, Martel P, Rosa J, Cancela ML, Laizé V. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci 2016; 73:841-57. [PMID: 26341094 PMCID: PMC11108344 DOI: 10.1007/s00018-015-2024-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 07/27/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
BMP2, BMP4 and BMP16 form a subfamily of bone morphogenetic proteins acting as pleiotropic growth factors during development and as bone inducers during osteogenesis. BMP16 is the most recent member of this subfamily and basic data regarding protein structure and function, and spatio-temporal gene expression is still scarce. In this work, insights on BMP16 were provided through the comparative analysis of structural and functional data for zebrafish BMP2a, BMP2b, BMP4 and BMP16 genes and proteins, determined from three-dimensional models, patterns of gene expression during development and in adult tissues, regulation by retinoic acid and capacity to activate BMP-signaling pathway. Structures of Bmp2a, Bmp2b, Bmp4 and Bmp16 were found to be remarkably similar; with residues involved in receptor binding being highly conserved. All proteins could activate the BMP-signaling pathway, suggesting that they share a common function. On the contrary, stage- and tissue-specific expression of bmp2, bmp4 and bmp16 suggested the genes might be differentially regulated (e.g. different transcription factors, enhancers and/or regulatory modules) but also that they are involved in distinct physiological processes, although with the same function. Retinoic acid, a morphogen known to interact with BMP-signaling during bone formation, was shown to down-regulate the expression of bmp2, bmp4 and bmp16, although to different extents. Taxonomic and phylogenetic analyses indicated that bmp16 diverged before bmp2 and bmp4, is not restricted to teleost fish lineage as previously reported, and that it probably arose from a whole genomic duplication event that occurred early in vertebrate evolution and disappeared in various tetrapod lineages through independent events.
Collapse
Affiliation(s)
- Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Michael N Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cymon J Cox
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo Martel
- Centre for Molecular and Structural Biomedicine (CBME/IBB-LA), University of Algarve, Faro, Portugal
| | - Joana Rosa
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal.
| |
Collapse
|
12
|
Monestier O, Servin B, Auclair S, Bourquard T, Poupon A, Pascal G, Fabre S. Evolutionary origin of bone morphogenetic protein 15 and growth and differentiation factor 9 and differential selective pressure between mono- and polyovulating species. Biol Reprod 2014; 91:83. [PMID: 25100713 DOI: 10.1095/biolreprod.114.119735] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) are TGFbeta-like oocyte-derived growth factors involved in ovarian folliculogenesis as critical regulators of many granulosa cell processes and ovulation rate. Ovarian phenotypic effect caused by alterations in BMP15 and GDF9 genes appears to differ between species and may be relevant to their mono- or polyovulating status. Through phylogenetic analysis we recently showed that these two paralogous genes are strongly divergent and in rapid evolution as compared to other members of the TGFbeta superfamily. Here, we evaluate the amino acid substitution rates of a set of proteins implicated in the ovarian function, including BMP15 and GDF9, with special attention to the mono- or polyovulating status of the species. Among a panel of mono- and polyovulating mammals, we demonstrate a better conservation of some areas in BMP15 and GDF9 within mono-ovulating species. Homology modeling of BMP15 and GDF9 homodimer and heterodimer 3-D structures was suggestive that these areas may be involved in dimer formation and stability. A phylogenetic study of BMP15/GDF9-related proteins reveals that these two genes diverged from the same ancestral gene along with BMP3 and GDF10, two other paralogous genes. A substitution rate analysis based on this phylogenetic tree leads to the hypothesis of an acquisition of BMP15/GDF9-specific functions in ovarian folliculogenesis in mammals. We propose that high variations observed in specific areas of BMP15 and GDF9 in polyovulating species change the equilibrium between homodimers and heterodimers, modifying the biological activity and thus allowing polyovulation to occur.
Collapse
Affiliation(s)
- Olivier Monestier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France
| | - Bertrand Servin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France
| | - Sylvain Auclair
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Thomas Bourquard
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Anne Poupon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Géraldine Pascal
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France
| | - Stéphane Fabre
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France
| |
Collapse
|
13
|
Cattell MV, Garnett AT, Klymkowsky MW, Medeiros DM. A maternally established SoxB1/SoxF axis is a conserved feature of chordate germ layer patterning. Evol Dev 2013; 14:104-15. [PMID: 23016978 DOI: 10.1111/j.1525-142x.2011.00525.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite deep evolutionary roots in the metazoa, the gene regulatory network driving germ layer specification is surprisingly labile both between and within phyla. In Xenopus laevis, SoxB1- and SoxF-type transcription factors are intimately involved in germ-layer specification, in part through their regulation of Nodal signaling. However, it is unclear if X. laevis is representative of the ancestral vertebrate condition, as the precise roles of SoxF and SoxB1 in germ-layer specification vary among vertebrates, and there is no evidence that SoxF mediates germ-layer specification in any invertebrate. To better understand the evolution of germ-layer specification in the vertebrate lineage, we analyzed the expression of soxB1 and soxF genes in embryos and larvae of the basal vertebrate lamprey, and the basal chordate amphioxus. We find that both species maternally deposit soxB1 mRNA in the animal pole, soxF mRNA in the vegetal hemisphere, and zygotically express soxB1 and soxF throughout nascent ectoderm and mesendoderm, respectively. We also find that soxF is excluded from the vegetalmost blastomeres in lamprey and that, in contrast to vertebrates, amphioxus does not express soxF in the oral epithelium. In the context of recent work, our results suggest that a maternally established animal/vegetal Sox axis is a deeply conserved feature of chordate development that predates the role of Nodal in vertebrate germ-layer specification. Furthermore, exclusion of this axis from the vegetal pole in lamprey is consistent with the presence of an extraembryonic yolk mass, as has been previously proposed. Finally, conserved expression of SoxF in the forming mouth across the vertebrates, but not in amphioxus, lends support to the idea that the larval amphioxus mouth is nonhomologous to the vertebrate mouth.
Collapse
Affiliation(s)
- Maria V Cattell
- Ecology and Evolutionary Biology, University of Colorado-Boulder, CO 80309-0334, USA
| | | | | | | |
Collapse
|
14
|
Fujimoto S, Oisi Y, Kuraku S, Ota KG, Kuratani S. Non-parsimonious evolution of hagfish Dlx genes. BMC Evol Biol 2013; 13:15. [PMID: 23331926 PMCID: PMC3552724 DOI: 10.1186/1471-2148-13-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Background The number of members of the Dlx gene family increased during the two rounds of whole-genome duplication that occurred in the common ancestor of the vertebrates. Because the Dlx genes are involved in the development of the cranial skeleton, brain, and sensory organs, their expression patterns have been analysed in various organisms in the context of evolutionary developmental biology. Six Dlx genes have been isolated in the lampreys, a group of living jawless vertebrates (cyclostomes), and their expression patterns analysed. However, little is known about the Dlx genes in the hagfish, the other cyclostome group, mainly because the embryological analysis of this animal is difficult. Results To identify the hagfish Dlx genes and describe their expression patterns, we cloned the cDNA from embryos of the Japanese inshore hagfish Eptatretus burgeri. Our results show that the hagfish has at least six Dlx genes and one pseudogene. In a phylogenetic analysis, the hagfish Dlx genes and those of the lampreys tended to be excluded from the clade of the gnathostome Dlx genes. In several cases, the lamprey Dlx genes clustered with the clade consisting of two hagfish genes, suggesting that independent gene duplications have occurred in the hagfish lineage. Analysis of the expression of these genes showed distinctive overlapping expression patterns in the cranial mesenchymal cells and the inner ear. Conclusions Independent duplication, pseudogenization, and loss of the Dlx genes probably occurred in the hagfish lineage after its split from the other vertebrate lineages. This pattern is reminiscent of the non-parsimonious evolution of its morphological traits, including its inner ear and vertebrae, which indicate that this group is an early-branching lineage that diverged before those characters evolved.
Collapse
Affiliation(s)
- Satoko Fujimoto
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Green SA, Bronner ME. Gene duplications and the early evolution of neural crest development. Semin Cell Dev Biol 2012; 24:95-100. [PMID: 23287633 DOI: 10.1016/j.semcdb.2012.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 11/26/2022]
Abstract
Neural crest cells are an important cell type present in all vertebrates, and elaboration of the neural crest is thought to have been a key factor in their evolutionary success. Genomic comparisons suggest there were two major genome duplications in early vertebrate evolution, raising the possibility that evolution of neural crest was facilitated by gene duplications. Here, we review the process of early neural crest formation and its underlying gene regulatory network (GRN) as well as the evolution of important neural crest derivatives. In this context, we assess the likelihood that gene and genome duplications capacitated neural crest evolution, particularly in light of novel data arising from invertebrate chordates.
Collapse
Affiliation(s)
- Stephen A Green
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States
| | | |
Collapse
|
16
|
New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Dev Biol 2012; 371:121-35. [PMID: 22960284 DOI: 10.1016/j.ydbio.2012.08.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 12/27/2022]
Abstract
Patterning of the vertebrate facial skeleton involves the progressive partitioning of neural-crest-derived skeletal precursors into distinct subpopulations along the anteroposterior (AP) and dorsoventral (DV) axes. Recent evidence suggests that complex interactions between multiple signaling pathways, in particular Endothelin-1 (Edn1), Bone Morphogenetic Protein (BMP), and Jagged-Notch, are needed to pattern skeletal precursors along the DV axis. Rather than directly determining the morphology of individual skeletal elements, these signals appear to act through several families of transcription factors, including Dlx, Msx, and Hand, to establish dynamic zones of skeletal differentiation. Provocatively, this patterning mechanism is largely conserved from mouse and zebrafish to the jawless vertebrate, lamprey. This implies that the diversification of the vertebrate facial skeleton, including the evolution of the jaw, was driven largely by modifications downstream of a conversed pharyngeal DV patterning program.
Collapse
|
17
|
Lakiza O, Miller S, Bunce A, Lee EMJ, McCauley DW. SoxE gene duplication and development of the lamprey branchial skeleton: Insights into development and evolution of the neural crest. Dev Biol 2011; 359:149-161. [PMID: 21889937 DOI: 10.1016/j.ydbio.2011.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/06/2011] [Accepted: 08/19/2011] [Indexed: 11/25/2022]
Abstract
SoxE genes are multifunctional transcriptional regulators that play key roles in specification and differentiation of neural crest. Three members (Sox8, Sox9, Sox10) are expressed in the neural crest and are thought to modulate the expression and activity of each other. In addition to regulating the expression of other early neural crest marker genes, SoxE genes are required for development of cartilage. Here we investigated the role of SoxE genes in development of the neural crest-derived branchial skeleton in the sea lamprey. Using a morpholino knockdown approach, we show that all three SoxE genes described in lamprey are required for branchial basket development. Our results suggest that SoxE1 and SoxE2 are required for specification of the chondrogenic neural crest. SoxE3 plays a morphogenetic role in patterning of the branchial basket and may be required for the development of mucocartilage, a tissue unique to larval lampreys. While the lamprey branchial basket develops primarily from an elastin-like major extracellular matrix protein that is specific to lampreys, fibrillar collagen is also expressed in developing branchial cartilage and may be regulated by the lamprey SoxE genes. Our data suggest that the regulation of Type II collagen by Sox9 might have been co-opted by the neural crest in development of the branchial skeleton following the divergence of agnathan and gnathostome vertebrates. Finally, our results also have implications for understanding the independent evolution of duplicated SoxE genes among agnathan and gnathostome vertebrates.
Collapse
Affiliation(s)
- Olga Lakiza
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States
| | - Sarah Miller
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States
| | - Ashley Bunce
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States
| | - Eric Myung-Jae Lee
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States
| | - David W McCauley
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, United States.
| |
Collapse
|
18
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tominaga T, Abe H, Ueda O, Goto C, Nakahara K, Murakami T, Matsubara T, Mima A, Nagai K, Araoka T, Kishi S, Fukushima N, Jishage KI, Doi T. Activation of bone morphogenetic protein 4 signaling leads to glomerulosclerosis that mimics diabetic nephropathy. J Biol Chem 2011; 286:20109-16. [PMID: 21471216 DOI: 10.1074/jbc.m110.179382] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. We have previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix (ECM) proteins in DN. However, little is known about the regulatory mechanisms that induce and activate Smad1. Here, bone morphogenetic protein 4 (Bmp4) was found to up-regulate the expression of Smad1 in mesangial cells and subsequently to phosphorylate Smad1 downstream of the advanced glycation end product-receptor for advanced glycation end product signaling pathway. Moreover, Bmp4 utilized Alk3 and affected the activation of Smad1 and Col4 expressions in mesangial cells. In the diabetic mouse, Bmp4 was remarkably activated in the glomeruli, and the mesangial area was expanded. To elucidate the direct function of Bmp4 action in the kidneys, we generated transgenic mice inducible for the expression of Bmp4. Tamoxifen treatment dramatically induced the expression of Bmp4, especially in the glomeruli of the mice. Notably, in the nondiabetic condition, the mice exhibited not only an expansion of the mesangial area and thickening of the basement membrane but also remarkable albuminuria, which are consistent with the distinct glomerular injuries in DN. ECM protein overexpression and activation of Smad1 in the glomeruli were also observed in the mice. The mesangial expansion in the mice was significantly correlated with albuminuria. Furthermore, the heterozygous Bmp4 knock-out mice inhibited the glomerular injuries compared with wild type mice in diabetic conditions. Here, we show that BMP4 may act as an upstream regulatory molecule for the process of ECM accumulation in DN and thereby reveals a new aspect of the molecular mechanisms involved in DN.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Department of Nephrology, Graduate School of Medicine, Health-Bioscience Institute, University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Palaeophylogenomics of the Vertebrate Ancestor--Impact of Hidden Paralogy on Hagfish and Lamprey Gene Phylogeny. Integr Comp Biol 2010; 50:124-9. [DOI: 10.1093/icb/icq044] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Martin WM, Bumm LA, McCauley DW. Development of the viscerocranial skeleton during embryogenesis of the sea lamprey,Petromyzon Marinus. Dev Dyn 2009; 238:3126-38. [DOI: 10.1002/dvdy.22164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
22
|
Feiner N, Begemann G, Renz AJ, Meyer A, Kuraku S. The origin of bmp16, a novel Bmp2/4 relative, retained in teleost fish genomes. BMC Evol Biol 2009; 9:277. [PMID: 19951429 PMCID: PMC2801517 DOI: 10.1186/1471-2148-9-277] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 12/01/2009] [Indexed: 11/29/2022] Open
Abstract
Background Whole genome sequences have allowed us to have an overview of the evolution of gene repertoires. The target of the present study, the TGFβ superfamily, contains many genes involved in vertebrate development, and provides an ideal system to explore the relationships between evolution of gene repertoires and that of developmental programs. Results As a result of a bioinformatic survey of sequenced vertebrate genomes, we identified an uncharacterized member of the TGFβ superfamily, designated bmp16, which is confined to teleost fish species. Our molecular phylogenetic study revealed a high affinity of bmp16 to the Bmp2/4 subfamily. Importantly, further analyses based on the maximum-likelihood method unambiguously ruled out the possibility that this teleost-specific gene is a product of teleost-specific genome duplication. This suggests that the absence of a bmp16 ortholog in tetrapods is due to a secondary loss. In situ hybridization showed embryonic expression of the zebrafish bmp16 in the developing swim bladder, heart, tail bud, and ectoderm of pectoral and median fin folds in pharyngula stages, as well as gut-associated expression in 5-day embryos. Conclusion Comparisons of expression patterns revealed (1) the redundancy of bmp16 expression with its homologs in presumably plesiomorphic expression domains, such as the fin fold, heart, and tail bud, which might have permitted its loss in the tetrapod lineage, and (2) the loss of craniofacial expression and gain of swim bladder expression of bmp16 after the gene duplication between Bmp2, -4 and -16. Our findings highlight the importance of documenting secondary changes of gene repertoires and expression patterns in other gene families.
Collapse
Affiliation(s)
- Nathalie Feiner
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
23
|
Tank EM, Dekker RG, Beauchamp K, Wilson KA, Boehmke AE, Langeland JA. Patterns and consequences of vertebrate Emx gene duplications. Evol Dev 2009; 11:343-53. [PMID: 19601968 DOI: 10.1111/j.1525-142x.2009.00341.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have cloned and analyzed two Emx genes from the lamprey Petromyzon marinus and our findings provide insight into the patterns and developmental consequences of gene duplications during early vertebrate evolution. The Emx gene family presents an excellent case for addressing these issues as gnathostome vertebrates possess two or three Emx paralogs that are highly pleiotropic, functioning in or being expressed during the development of several vertebrate synapomorphies. Lampreys are the most primitive extant vertebrates and characterization of their development and genomic organization is critical for understanding vertebrate origins. We identified two Emx genes from P. marinus and analyzed their phylogeny and their embryological expression relative to other chordate Emx genes. Our phylogenetic analysis shows that the two lamprey Emx genes group independently from the gnathostome Emx1, Emx2, and Emx3 paralogy groups. Our expression analysis shows that the two lamprey Emx genes are expressed in distinct spatial and temporal patterns that together broadly encompass the combined sites of expression of all gnathostome Emx genes. Our data support a model wherein large-scale regulatory evolution of a single Emx gene occurred after the protochordate/vertebrate divergence, but before the vertebrate radiation. Both the lamprey and gnathostome lineages then underwent independent gene duplications followed by extensive paralog subfunctionalization. Emx subfunctionalization in the telencephalon is remarkably convergent and refines our understanding of lamprey forebrain patterning. We also identify lamprey-specific sites of expression that indicate either neofunctionalization in lampreys or sites-specific nonfunctionalization of all gnathostome Emx genes. Overall, we see only very limited correlation between Emx gene duplications and the acquisition of novel expression domains.
Collapse
Affiliation(s)
- Elizabeth M Tank
- Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Interest in understanding the transition from prevertebrates to vertebrates at the molecular level has resulted in accumulating genomic and transcriptomic sequence data for the earliest groups of extant vertebrates, namely, hagfishes (Myxiniformes) and lampreys (Petromyzontiformes). Molecular phylogenetic studies on species phylogeny have revealed the monophyly of cyclostomes and the deep divergence between hagfishes and lampreys (more than 400 million years). In parallel, recent molecular phylogenetic studies have shed light on the complex evolution of the cyclostome genome. This consists of whole genome duplications, shared at least partly with gnathostomes (jawed vertebrates), and cyclostome lineage-specific secondary modifications of the genome, such as gene gains and losses. Therefore, the analysis of cyclostome genomes requires caution in distinguishing between orthology and paralogy in gene molecular phylogeny at the gene family scale, as well as between apomorphic and plesiomorphic genomic traits in larger-scale analyses. In this review, we propose possible ways of improving the resolvability of these evolutionary events, and discuss probable scenarios for cyclostome genome evolution, with special emphasis on the hypothesis that two-round (2R) genome duplication events occurred before the divergence between cyclostomes and gnathostomes, and therefore that a post-2R state is a genomic synapomorphy for all extant vertebrates.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| |
Collapse
|
25
|
Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc Natl Acad Sci U S A 2009; 106:5720-4. [PMID: 19321424 DOI: 10.1073/pnas.0810959106] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we describe the molecular patterning of chondrichthyan branchial rays (gill rays) and reveal profound developmental similarities between gill rays and vertebrate appendages. Sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8) regulate the outgrowth and patterning of the chondrichthyan gill arch skeleton, in an interdependent manner similar to their roles in gnathostome paired appendages. Additionally, we demonstrate that paired appendages and branchial rays share other conserved developmental features, including Shh-mediated mirror-image duplications of the endoskeleton after exposure to retinoic acid, and Fgf8 expression by a pseudostratified distal epithelial ridge directing endoskeletal outgrowth. These data suggest that the skeletal patterning role of the retinoic acid/Shh/Fgf8 regulatory circuit has a deep evolutionary origin predating vertebrate paired appendages and may have functioned initially in patterning pharyngeal structures in a deuterostome ancestor of vertebrates.
Collapse
|
26
|
Murakami Y, Watanabe A. Development of the central and peripheral nervous systems in the lamprey. Dev Growth Differ 2009; 51:197-205. [DOI: 10.1111/j.1440-169x.2009.01087.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Goldman DC, Donley N, Christian JL. Genetic interaction between Bmp2 and Bmp4 reveals shared functions during multiple aspects of mouse organogenesis. Mech Dev 2008; 126:117-27. [PMID: 19116164 DOI: 10.1016/j.mod.2008.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/15/2008] [Accepted: 11/30/2008] [Indexed: 11/25/2022]
Abstract
Vertebrate Bmp2 and Bmp4 diverged from a common ancestral gene and encode closely related proteins. Mice homozygous for null mutations in either gene show early embryonic lethality, thereby precluding analysis of shared functions. In the current studies, we present phenotypic analysis of compound mutant mice heterozygous for a null allele of Bmp2 in combination with null or hypomorphic alleles of Bmp4. Whereas mice lacking a single copy of Bmp2 or Bmp4 are viable and have subtle developmental defects, compound mutants show embryonic and postnatal lethality due to defects in multiple organ systems including the allantois, placental vasculature, ventral body wall, skeleton, eye and heart. Within the heart, BMP2 and BMP4 function coordinately to direct normal lengthening of the outflow tract, proper positioning of the outflow vessels, and septation of the atria, ventricle and atrioventricular canal. Our results identify numerous BMP4-dependent developmental processes that are also very sensitive to BMP2 dosage, thus revealing novel functions of Bmp2.
Collapse
Affiliation(s)
- Devorah C Goldman
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
28
|
McCauley DW. SoxE, Type II collagen, and Evolution of the Chondrogenic Neural Crest. Zoolog Sci 2008; 25:982-9. [DOI: 10.2108/zsj.25.982] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Osório J, Rétaux S. The lamprey in evolutionary studies. Dev Genes Evol 2008; 218:221-35. [PMID: 18274775 DOI: 10.1007/s00427-008-0208-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/22/2008] [Indexed: 12/13/2022]
Abstract
Lampreys are a key species to study the evolution of morphological characters at the dawn of Craniates and throughout the evolution of the craniate's phylum. Here, we review a number of research fields where studies on lampreys have recently brought significant and fundamental insights on the timing and mechanisms of evolution, on the amazing diversification of morphology and on the emergence of novelties among Craniates. We report recent example studies on neural crest, muscle and the acquisition of jaws, where important technical advancements in lamprey developmental biology have been made (morpholino injections, protein-soaked bead applications or even the first transgenesis trials). We describe progress in the understanding and knowledge about lamprey anatomy and physiology (skeleton, immune system and buccal secretion), ecology (life cycle, embryology), phylogeny (genome duplications, monophyly of cyclostomes), paleontology, embryonic development and the beginnings of lamprey genomics. Finally, in a special focus on the nervous system, we describe how changes in signaling, neurogenesis or neuronal migration patterns during brain development may be at the origin of some important differences observed between lamprey and gnathostome brains.
Collapse
Affiliation(s)
- Joana Osório
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred Fessard, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
30
|
Wise SB, Stock DW. Conservation and divergence of Bmp2a, Bmp2b, and Bmp4 expression patterns within and between dentitions of teleost fishes. Evol Dev 2007; 8:511-23. [PMID: 17073935 DOI: 10.1111/j.1525-142x.2006.00124.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The diversity of tooth location in teleost fishes provides an excellent system for comparing genetic divergence between teeth in different species (phylogenetic homologs) with divergence between teeth within one species (iterative homologs). We have chosen to examine the expression of three members of the bone morphogenetic protein (Bmp) family because they are known to play multiple roles in tooth development and evolution in tetrapod vertebrates. We characterized expression of Bmp2a, Bmp2b, and Bmp4 during the development of oral and pharyngeal dentitions in three species of teleost fishes, the zebrafish (Danio rerio), Mexican tetra (Astyanax mexicanus), and Japanese medaka (Oryzias latipes). We found that expression in teleosts is generally highly conserved, with minor differences found among both iteratively homologous and phylogenetically homologous teeth. Expression of orthologous genes differs in several ways between the teeth of teleost fishes and those of the mouse, but between these vertebrate groups the summed expression pattern of Bmp genes is highly conserved. Significantly, the toothless oral region of the zebrafish lacks Bmp expression domains found in teleosts with oral teeth, implicating these genes in evolutionary tooth loss. We conclude that Bmp expression has been largely conserved in vertebrate tooth development over evolutionary time, and that loss of Bmp expression is correlated with region-specific loss of the dentition in a major group of fishes.
Collapse
Affiliation(s)
- Sarah B Wise
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
31
|
Kusakabe R, Kuratani S. Evolution and developmental patterning of the vertebrate skeletal muscles: Perspectives from the lamprey. Dev Dyn 2005; 234:824-34. [PMID: 16252276 DOI: 10.1002/dvdy.20587] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myotome in gnathostome vertebrates, which gives rise to the trunk skeletal muscles, consists of epaxial (dorsal) and hypaxial (ventral) portions, separated by the horizontal myoseptum. The hypaxial portion contains some highly derived musculature that is functionally as well as morphologically well differentiated in all the gnathostome species. In contrast, the trunk muscles of agnathan lampreys lack these distinctions and any semblance of limb muscles. Therefore, the lamprey myotomes probably represent a primitive condition compared with gnathostomes. In this review, we compare the patterns of expression of some muscle-specific genes between the lamprey and gnathostomes. Although the cellular and tissue morphology of lamprey myotomes seems uniform and undifferentiated, some of the muscle-specific genes are expressed in a spatially restricted manner. The lamprey Pax3/7 gene, a cognate of gnathostome Pax3, is expressed only at the lateral edge of the myotomes and in the hypobranchial muscle, which we presume is homologous to the gnathostome hypobranchial muscle. Thus, the emergence of some part of a hypaxial-specific gene regulatory cascade might have evolved before the agnathan/gnathostome divergence, or before the evolutionary separation of epaxial and hypaxial muscles.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan.
| | | |
Collapse
|
32
|
Kuratani S. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. J Anat 2005; 207:489-99. [PMID: 16313390 PMCID: PMC1571557 DOI: 10.1111/j.1469-7580.2005.00483.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2005] [Indexed: 11/28/2022] Open
Abstract
The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|