1
|
Redmond AK. Acoelomorph flatworm monophyly is a long-branch attraction artefact obscuring a clade of Acoela and Xenoturbellida. Proc Biol Sci 2024; 291:20240329. [PMID: 39288803 PMCID: PMC11407873 DOI: 10.1098/rspb.2024.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Acoelomorpha is a broadly accepted clade of bilaterian animals made up of the fast-evolving, morphologically simple, mainly marine flatworm lineages Acoela and Nemertodermatida. Phylogenomic studies support Acoelomorpha's close relationship with the slowly evolving and similarly simplistic Xenoturbella, together forming the phylum Xenacoelomorpha. The phylogenetic placement of Xenacoelomorpha amongst bilaterians is controversial, with some studies supporting Xenacoelomorpha as the sister group to all other bilaterians, implying that their simplicity may be representative of early bilaterians. Others propose that this placement is an error resulting from the fast-evolving Acoelomorpha, and instead suggest that they are the degenerate sister group to Ambulacraria. Perhaps as a result of this debate, internal xenacoelomorph relationships have been somewhat overlooked at a phylogenomic scale. Here, I employ a highly targeted approach to detect and overcome possible phylogenomic error in the relationship between Xenoturbella and the fast-evolving acoelomorph flatworms. The results indicate that the subphylum Acoelomorpha is a long-branch attraction artefact obscuring a previously undiscovered clade comprising Xenoturbella and Acoela, which I name Xenacoela. The findings also suggest that Xenacoelomorpha is not the sister group to all other bilaterians. This study provides a template for future efforts aimed at discovering and correcting unrecognized long-branch attraction artefacts throughout the tree of life.
Collapse
|
2
|
Abstract
The phylogenetic affinities of Xenacoelomorpha - the phylum comprising Xenoturbella bocki and acoelomorph worms - are debated. Two recent studies conclude they represent the earliest branching bilaterally symmetrical animals, but additional tests may be needed to confirm this notion.
Collapse
Affiliation(s)
- Maximilian J Telford
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | - Richard R Copley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche-sur-mer, France
| |
Collapse
|
3
|
Gavilán B, Perea-Atienza E, Martínez P. Xenacoelomorpha: a case of independent nervous system centralization? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150039. [PMID: 26598722 DOI: 10.1098/rstb.2015.0039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather 'simple' NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains).
Collapse
Affiliation(s)
- Brenda Gavilán
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain
| | - Elena Perea-Atienza
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain
| | - Pedro Martínez
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
4
|
Abstract
Animals make up only a small fraction of the eukaryotic tree of life, yet, from our vantage point as members of the animal kingdom, the evolution of the bewildering diversity of animal forms is endlessly fascinating. In the century following the publication of Darwin's Origin of Species, hypotheses regarding the evolution of the major branches of the animal kingdom - their relationships to each other and the evolution of their body plans - was based on a consideration of the morphological and developmental characteristics of the different animal groups. This morphology-based approach had many successes but important aspects of the evolutionary tree remained disputed. In the past three decades, molecular data, most obviously primary sequences of DNA and proteins, have provided an estimate of animal phylogeny largely independent of the morphological evolution we would ultimately like to understand. The molecular tree that has evolved over the past three decades has drastically altered our view of animal phylogeny and many aspects of the tree are no longer contentious. The focus of molecular studies on relationships between animal groups means, however, that the discipline has become somewhat divorced from the underlying biology and from the morphological characteristics whose evolution we aim to understand. Here, we consider what we currently know of animal phylogeny; what aspects we are still uncertain about and what our improved understanding of animal phylogeny can tell us about the evolution of the great diversity of animal life.
Collapse
Affiliation(s)
- Maximilian J Telford
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Hervé Philippe
- Centre de Théorisation et de Modélisation de la Biodiversité, Station d'Ecologie Expérimentale du CNRS, USR CNRS 2936 Moulis, 09200, France; Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0270-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Haszprunar G. Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0249-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Abstract
The apical organ of ciliated larvae of cnidarians and bilaterians is a true larval organ that disappears before or at metamorphosis. It appears to be sensory, probably involved in metamorphosis, but knowledge is scant. The ciliated protostome larvae show ganglia/nerve cords that are retained as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords and a small perianal loop. The anterior loop becomes part of the brain. This has been well documented through cell-lineage studies in a number of spiralians, and homologies with similar structures in the ecdysozoans are strongly indicated. The deuterostomes are generally difficult to interpret, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence of 'deuterostomian' blastopore fates both in an annelid and in a mollusk, which are both placed in families with the 'normal' spiralian gastrulation type, and in the chaetognaths demonstrates that the chordate type of gastrulation could easily have evolved from the spiralian type. This indicates that the latest common ancestor of the deuterostomes was very similar to the latest common pelago-benthic ancestor of the protostomes as described by the trochaea theory, and that the neural tube of the chordates is morphologically ventral.
Collapse
Affiliation(s)
- Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Perseke M, Golombek A, Schlegel M, Struck TH. The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Mol Phylogenet Evol 2013; 66:898-905. [DOI: 10.1016/j.ympev.2012.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/09/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
9
|
Abstract
Recent phylogenies have suggested that acoelomorph flatworms might provide insights into the nature of the ancestor of bilaterian animals. However, according to new data acoelomorphs might instead be degenerate deuterostomes closely related to Xenoturbella, muddying the waters of early animal evolution.
Collapse
Affiliation(s)
- Christopher J Lowe
- Hopkins Marine Station, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA 94950, USA.
| | | |
Collapse
|
10
|
Ikuta T. Evolution of invertebrate deuterostomes and Hox/ParaHox genes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2011; 9:77-96. [PMID: 21802045 PMCID: PMC5054439 DOI: 10.1016/s1672-0229(11)60011-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Transcription factors encoded by Antennapedia-class homeobox genes play crucial roles in controlling development of animals, and are often found clustered in animal genomes. The Hox and ParaHox gene clusters have been regarded as evolutionary sisters and evolved from a putative common ancestral gene complex, the ProtoHox cluster, prior to the divergence of the Cnidaria and Bilateria (bilaterally symmetrical animals). The Deuterostomia is a monophyletic group of animals that belongs to the Bilateria, and a sister group to the Protostomia. The deuterostomes include the vertebrates (to which we belong), invertebrate chordates, hemichordates, echinoderms and possibly xenoturbellids, as well as acoelomorphs. The studies of Hox and ParaHox genes provide insights into the origin and subsequent evolution of the bilaterian animals. Recently, it becomes apparent that among the Hox and ParaHox genes, there are significant variations in organization on the chromosome, expression pattern, and function. In this review, focusing on invertebrate deuterostomes, I first summarize recent findings about Hox and ParaHox genes. Next, citing unsolved issues, I try to provide clues that might allow us to reconstruct the common ancestor of deuterostomes, as well as understand the roles of Hox and ParaHox genes in the development and evolution of deuterostomes.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Uruma, Japan.
| |
Collapse
|
11
|
Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV. Higher-level metazoan relationships: recent progress and remaining questions. ORG DIVERS EVOL 2011. [DOI: 10.1007/s13127-011-0044-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 2011; 470:255-8. [PMID: 21307940 DOI: 10.1038/nature09676] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/16/2010] [Indexed: 01/21/2023]
Abstract
Xenoturbellida and Acoelomorpha are marine worms with contentious ancestry. Both were originally associated with the flatworms (Platyhelminthes), but molecular data have revised their phylogenetic positions, generally linking Xenoturbellida to the deuterostomes and positioning the Acoelomorpha as the most basally branching bilaterian group(s). Recent phylogenomic data suggested that Xenoturbellida and Acoelomorpha are sister taxa and together constitute an early branch of Bilateria. Here we assemble three independent data sets-mitochondrial genes, a phylogenomic data set of 38,330 amino-acid positions and new microRNA (miRNA) complements-and show that the position of Acoelomorpha is strongly affected by a long-branch attraction (LBA) artefact. When we minimize LBA we find consistent support for a position of both acoelomorphs and Xenoturbella within the deuterostomes. The most likely phylogeny links Xenoturbella and Acoelomorpha in a clade we call Xenacoelomorpha. The Xenacoelomorpha is the sister group of the Ambulacraria (hemichordates and echinoderms). We show that analyses of miRNA complements have been affected by character loss in the acoels and that both groups possess one miRNA and the gene Rsb66 otherwise specific to deuterostomes. In addition, Xenoturbella shares one miRNA with the ambulacrarians, and two with the acoels. This phylogeny makes sense of the shared characteristics of Xenoturbellida and Acoelomorpha, such as ciliary ultrastructure and diffuse nervous system, and implies the loss of various deuterostome characters in the Xenacoelomorpha including coelomic cavities, through gut and gill slits.
Collapse
|
13
|
Mwinyi A, Bailly X, Bourlat SJ, Jondelius U, Littlewood DTJ, Podsiadlowski L. The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evol Biol 2010; 10:309. [PMID: 20942955 PMCID: PMC2973942 DOI: 10.1186/1471-2148-10-309] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022] Open
Abstract
Background Acoels are simply organized unsegmented worms, lacking hindgut and anus. Several publications over recent years challenge the long-held view that acoels are early offshoots of the flatworms. Instead a basal position as sister group to all other bilaterian animals was suggested, mainly based on molecular evidence. This led to the view that features of acoels might reflect those of the last common ancestor of Bilateria, and resulted in several evo-devo studies trying to interpret bilaterian evolution using acoels as a proxy model for the "Urbilateria". Results We describe the first complete mitochondrial genome sequence of a member of the Acoela, Symsagittifera roscoffensis. Gene content and circular organization of the mitochondrial genome does not significantly differ from other bilaterian animals. However, gene order shows no similarity to any other mitochondrial genome within the Metazoa. Phylogenetic analyses of concatenated alignments of amino acid sequences from protein coding genes support a position of Acoela and Nemertodermatida as the sister group to all other Bilateria. Our data provided no support for a sister group relationship between Xenoturbellida and Acoela or Acoelomorpha. The phylogenetic position of Xenoturbella bocki as sister group to or part of the deuterostomes was also unstable. Conclusions Our phylogenetic analysis supports the view that acoels and nemertodermatids are the earliest divergent extant lineage of Bilateria. As such they remain a valid source for seeking primitive characters present in the last common ancestor of Bilateria. Gene order of mitochondrial genomes seems to be very variable among Acoela and Nemertodermatida and the groundplan for the metazoan mitochondrial genome remains elusive. More data are needed to interpret mitochondrial genome evolution at the base of Bilateria.
Collapse
Affiliation(s)
- Adina Mwinyi
- Department of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|