1
|
Vellutini BC, Martín-Durán JM, Børve A, Hejnol A. Combinatorial Wnt signaling landscape during brachiopod anteroposterior patterning. BMC Biol 2024; 22:212. [PMID: 39300453 PMCID: PMC11414264 DOI: 10.1186/s12915-024-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wnt signaling pathways play crucial roles in animal development. They establish embryonic axes, specify cell fates, and regulate tissue morphogenesis from the early embryo to organogenesis. It is becoming increasingly recognized that these distinct developmental outcomes depend upon dynamic interactions between multiple ligands, receptors, antagonists, and other pathway modulators, consolidating the view that a combinatorial "code" controls the output of Wnt signaling. However, due to the lack of comprehensive analyses of Wnt components in several animal groups, it remains unclear if specific combinations always give rise to specific outcomes, and if these combinatorial patterns are conserved throughout evolution. RESULTS In this work, we investigate the combinatorial expression of Wnt signaling components during the axial patterning of the brachiopod Terebratalia transversa. We find that T. transversa has a conserved repertoire of ligands, receptors, and antagonists. These genes are expressed throughout embryogenesis but undergo significant upregulation during axial elongation. At this stage, Frizzled domains occupy broad regions across the body while Wnt domains are narrower and distributed in partially overlapping patches; antagonists are mostly restricted to the anterior end. Based on their combinatorial expression, we identify a series of unique transcriptional subregions along the anteroposterior axis that coincide with the different morphological subdivisions of the brachiopod larval body. When comparing these data across the animal phylogeny, we find that the expression of Frizzled genes is relatively conserved, whereas the expression of Wnt genes is more variable. CONCLUSIONS Our results suggest that the differential activation of Wnt signaling pathways may play a role in regionalizing the anteroposterior axis of brachiopod larvae. More generally, our analyses suggest that changes in the receptor context of Wnt ligands may act as a mechanism for the evolution and diversification of the metazoan body axis.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - José M Martín-Durán
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London, E1 4NS, UK
| | - Aina Børve
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Andreas Hejnol
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
2
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
4
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
5
|
Yuan H, Hatleberg WL, Degnan BM, Degnan SM. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica. Dev Growth Differ 2022; 64:455-468. [PMID: 36155915 PMCID: PMC9828451 DOI: 10.1111/dgd.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Transcription factors encoded by the Forkhead (Fox) gene family have diverse, sometimes conserved, regulatory roles in eumetazoan development, immunity, and physiology. Although this gene family includes members that predate the origin of the animal kingdom, the majority of metazoan Fox genes evolved after the divergence of animals and choanoflagellates. Here, we characterize the composition, structure, and expression of Fox genes in the marine demosponge Amphimedon queenslandica to better understand the origin and evolution of this family. The Fox gene repertoire in A. queenslandica appears to be similar to the ancestral metazoan Fox gene family. All 17 A. queenslandica Fox genes are differentially expressed during development and in adult cell types. Remarkably, eight of these, all of which appear to be metazoan-specific, are induced within just 1 h of larval settlement and commencement of metamorphosis. Gene co-expression analyses suggest that these eight Fox genes regulate developmental and physiological processes similar to their roles in other animals. These findings are consistent with Fox genes playing deeply ancestral roles in animal development and physiology, including in response to changes in the external environment.
Collapse
Affiliation(s)
- Huifang Yuan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - William L. Hatleberg
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia,Present address:
Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bernard M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Sandie M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
6
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
7
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
8
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
9
|
Wijesena N, Sun H, Kumburegama S, Wikramanayake AH. Distinct Frizzled receptors independently mediate endomesoderm specification and primary archenteron invagination during gastrulation in Nematostella. Dev Biol 2021; 481:215-225. [PMID: 34767794 DOI: 10.1016/j.ydbio.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/03/2022]
Abstract
Endomesodermal cell fate specification and archenteron formation during gastrulation are tightly linked developmental processes in most metazoans. However, studies have shown that in the anthozoan cnidarian Nematostella vectensis, Wnt/β-catenin (cWnt) signalling-mediated endomesodermal cell fate specification can be experimentally uncoupled from Wnt/Planar Cell Polarity (PCP) signalling-mediated primary archenteron invagination. The upstream signalling mechanisms regulating cWnt signalling-dependent endomesoderm cell fate specification and Wnt/PCP signalling-mediated primary archenteron invagination in Nematostella embryos are not well understood. By screening for potential upstream mediators of cWnt and Wnt/PCP signalling, we identified two Nematostella Frizzled homologs that are expressed early in development. NvFzd1 is expressed maternally and in a broad pattern during early development while NvFzd10 is zygotically expressed at the animal pole in blastula stage embryos and is restricted to the invaginating cells of the presumptive endomesoderm. Molecular and morphological characterization of NvFzd1 and NvFzd10 knock-down phenotypes provide evidence for distinct regulatory roles for the two receptors in endomesoderm cell fate specification and primary archenteron invagination. These results provide further experimental evidence for the independent regulation of endomesodermal cell fate specification and primary archenteron invagination during gastrulation in Nematostella. Moreover, these results provide additional support for the previously proposed two-step model for the independent evolution of cWnt-mediated cell fate specification and Wnt/PCP-mediated primary archenteron invagination.
Collapse
Affiliation(s)
- Naveen Wijesena
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Biology, University of Bergen, Bergen, Norway
| | - Hongyan Sun
- Department of Biology, University of Miami, Coral Gables, FL33146, USA
| | - Shalika Kumburegama
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Zoology, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
10
|
Vernale A, Prünster MM, Marchianò F, Debost H, Brouilly N, Rocher C, Massey-Harroche D, Renard E, Le Bivic A, Habermann BH, Borchiellini C. Evolution of mechanisms controlling epithelial morphogenesis across animals: new insights from dissociation-reaggregation experiments in the sponge Oscarella lobularis. BMC Ecol Evol 2021; 21:160. [PMID: 34418961 PMCID: PMC8380372 DOI: 10.1186/s12862-021-01866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals. For this reason, several transcriptomic, genomic, histological, physiological and biochemical studies focused on sponge epithelia. Nevertheless, the complete and precise protein composition of cell-cell junctions and mechanisms that regulate epithelial morphogenetic processes still remain at the center of attention. RESULTS To get insights into the early evolution of epithelial morphogenesis, we focused on morphogenic characteristics of the homoscleromorph sponge Oscarella lobularis. Homoscleromorpha are a sponge class with a typical basement membrane and adhaerens-like junctions unknown in other sponge classes. We took advantage of the dynamic context provided by cell dissociation-reaggregation experiments to explore morphogenetic processes in epithelial cells in a non-bilaterian lineage by combining fluorescent and electron microscopy observations and RNA sequencing approaches at key time-points of the dissociation and reaggregation processes. CONCLUSIONS Our results show that part of the molecular toolkit involved in the loss and restoration of epithelial features such as cell-cell and cell-matrix adhesion is conserved between Homoscleromorpha and Bilateria, suggesting their common role in the last common ancestor of animals. In addition, sponge-specific genes are differently expressed during the dissociation and reaggregation processes, calling for future functional characterization of these genes.
Collapse
Affiliation(s)
- Amélie Vernale
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Maria Mandela Prünster
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Fabio Marchianò
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Henry Debost
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Nicolas Brouilly
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
| | - Dominique Massey-Harroche
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Bianca H Habermann
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France.
| |
Collapse
|
11
|
Expression of Wnt and TGF-Beta Pathway Components during Whole-Body Regeneration from Cell Aggregates in Demosponge Halisarca dujardinii. Genes (Basel) 2021; 12:genes12060944. [PMID: 34203064 PMCID: PMC8235796 DOI: 10.3390/genes12060944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
The phenomenon of whole-body regeneration means rebuilding of the whole body of an animal from a small fragment or even a group of cells. In this process, the old axial relationships are often lost, and new ones are established. An amazing model for studying this process is sponges, some of which are able to regenerate into a definitive organism after dissociation into cells. We hypothesized that during the development of cell aggregates, primmorphs, new axes are established due to the activation of the Wnt and TGF-beta signaling pathways. Using in silico analysis, RNA-seq, and whole-mount in situ hybridization, we identified the participants in these signaling pathways and determined the spatiotemporal changes in their expression in demosponge Halisarca dujardinii. It was shown that Wnt and TGF-beta ligands are differentially expressed during primmorph development, and transcripts of several genes are localized at the poles of primmorphs, in the form of a gradient. We suppose that the Wnt and TGF-beta signaling cascades are involved in the initial axial patterning of the sponge body, which develops from cells after dissociation.
Collapse
|
12
|
Fierro-Constaín L, Rocher C, Marschal F, Schenkelaars Q, Séjourné N, Borchiellini C, Renard E. In Situ Hybridization Techniques in the Homoscleromorph Sponge Oscarella lobularis. Methods Mol Biol 2021; 2219:181-194. [PMID: 33074541 DOI: 10.1007/978-1-0716-0974-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Porifera are one of the best candidates as the sister group to all other metazoans. Studies on this phylum are therefore expected to shed light on the origin and early evolution of key animal features. Transcriptomic or genomic data acquired during the last 10 years have highlighted the conservation of most of the main genes and pathways involved in the development of the other metazoans. The next step is to determine how similar genetic tool boxes can result in widely dissimilar body plan organization, dynamics, and life histories. To answer these questions, three main axes of research are necessary: (1) conducting more gene expression studies; (2) developing knockdown protocols; and (3) reinterpreting sponge cell biology using modern tools. In this chapter we focus on the in situ hybridization (ISH) technique, needed to establish the spatiotemporal expression of genes, both on whole mount individuals and paraffin sections, and at different stages of development (adults, embryos, larvae, buds) of the homoscleromorph sponge Oscarella lobularis.
Collapse
Affiliation(s)
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Florent Marschal
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Quentin Schenkelaars
- Department of Genetics and Evolution, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (IGe3), University of Geneva, Geneva, Switzerland
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Nina Séjourné
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| |
Collapse
|
13
|
Beljan S, Herak Bosnar M, Ćetković H. Rho Family of Ras-Like GTPases in Early-Branching Animals. Cells 2020; 9:cells9102279. [PMID: 33066017 PMCID: PMC7600811 DOI: 10.3390/cells9102279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Non-bilaterian animals consist of four phyla; Porifera, Cnidaria, Ctenophora, and Placozoa. These early-diverging animals are crucial for understanding the evolution of the entire animal lineage. The Rho family of proteins make up a major branch of the Ras superfamily of small GTPases, which function as key molecular switches that play important roles in converting and amplifying external signals into cellular responses. This review represents a compilation of the current knowledge on Rho-family GTPases in non-bilaterian animals, the available experimental data about their biochemical characteristics and functions, as well as original bioinformatics analysis, in order to gain a general insight into the evolutionary history of Rho-family GTPases in simple animals.
Collapse
Affiliation(s)
- Silvestar Beljan
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Division of Molecular Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-456-1115
| |
Collapse
|
14
|
Reddy PC, Gungi A, Ubhe S, Pradhan SJ, Kolte A, Galande S. Molecular signature of an ancient organizer regulated by Wnt/β-catenin signalling during primary body axis patterning in Hydra. Commun Biol 2019; 2:434. [PMID: 31799436 PMCID: PMC6879750 DOI: 10.1038/s42003-019-0680-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Wnt/β-catenin signalling has been shown to play a critical role during head organizer formation in Hydra. Here, we characterized the Wnt signalling regulatory network involved in formation of the head organizer. We found that Wnt signalling regulates genes that are important in tissue morphogenesis. We identified that majority of transcription factors (TFs) regulated by Wnt/β-catenin signalling belong to the homeodomain and forkhead families. Silencing of Margin, one of the Wnt regulated homeodomain TFs, results in loss of the ectopic tentacle phenotype typically seen upon activation of Wnt signalling. Furthermore, we show that the Margin promoter is directly bound and regulated by β-catenin. Ectopic expression of Margin in zebrafish embryos results in body axis abnormalities suggesting that Margin plays a role in axis patterning. Our findings suggest that homeobox TFs came under the regulatory umbrella of Wnt/β-catenin signalling presumably resulting in the evolution of primary body axis in animal phyla.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Saurabh J. Pradhan
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Amol Kolte
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| |
Collapse
|
15
|
Colgren J, Nichols SA. The significance of sponges for comparative studies of developmental evolution. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e359. [PMID: 31352684 DOI: 10.1002/wdev.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
Sponges, ctenophores, placozoans, and cnidarians have key evolutionary significance in that they bracket the time interval during which organized animal tissues were first assembled, fundamental cell types originated (e.g., neurons and myocytes), and developmental patterning mechanisms evolved. Sponges in particular have often been viewed as living surrogates for early animal ancestors, largely due to similarities between their feeding cells (choanocytes) with choanoflagellates, the unicellular/colony-forming sister group to animals. Here, we evaluate these claims and highlight aspects of sponge biology with comparative value for understanding developmental evolution, irrespective of the purported antiquity of their body plan. Specifically, we argue that sponges strike a different balance between patterning and plasticity than other animals, and that environmental inputs may have prominence over genetically regulated developmental mechanisms. We then present a case study to illustrate how contractile epithelia in sponges can help unravel the complex ancestry of an ancient animal cell type, myocytes, which sponges lack. Sponges represent hundreds of millions of years of largely unexamined evolutionary experimentation within animals. Their phylogenetic placement lends them key significance for learning about the past, and their divergent biology challenges current views about the scope of animal cell and developmental biology. This article is characterized under: Comparative Development and Evolution > Evolutionary Novelties Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, Colorado
| |
Collapse
|
16
|
Hogvall M, Vellutini BC, Martín-Durán JM, Hejnol A, Budd GE, Janssen R. Embryonic expression of priapulid Wnt genes. Dev Genes Evol 2019; 229:125-135. [PMID: 31273439 PMCID: PMC6647475 DOI: 10.1007/s00427-019-00636-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/02/2019] [Indexed: 01/12/2023]
Abstract
Posterior elongation of the developing embryo is a common feature of animal development. One group of genes that is involved in posterior elongation is represented by the Wnt genes, secreted glycoprotein ligands that signal to specific receptors on neighbouring cells and thereby establish cell-to-cell communication. In segmented animals such as annelids and arthropods, Wnt signalling is also likely involved in segment border formation and regionalisation of the segments. Priapulids represent unsegmented worms that are distantly related to arthropods. Despite their interesting phylogenetic position and their importance for the understanding of ecdysozoan evolution, priapulids still represent a highly underinvestigated group of animals. Here, we study the embryonic expression patterns of the complete sets of Wnt genes in the priapulids Priapulus caudatus and Halicryptus spinulosus. We find that both priapulids possess a complete set of 12 Wnt genes. At least in Priapulus, most of these genes are expressed in and around the posterior-located blastopore and thus likely play a role in posterior elongation. Together with previous work on the expression of other genetic factors such as caudal and even-skipped, this suggests that posterior elongation in priapulids is under control of the same (or very similar) conserved gene regulatory network as in arthropods.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.
| |
Collapse
|
17
|
Kozin VV, Borisenko IE, Kostyuchenko RP. Establishment of the Axial Polarity and Cell Fate in Metazoa via Canonical Wnt Signaling: New Insights from Sponges and Annelids. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Kerekes K, Bányai L, Trexler M, Patthy L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019; 37:29-52. [PMID: 31210071 DOI: 10.1080/08977194.2019.1626380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways. In this article, we review the structure, evolution, molecular interactions and functions of WIF1 with major emphasis on its role in carcinogenesis.
Collapse
Affiliation(s)
- Krisztina Kerekes
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Bányai
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Mária Trexler
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Patthy
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
19
|
Schippers KJ, Nichols SA. Evidence of Signaling and Adhesion Roles for β-Catenin in the Sponge Ephydatia muelleri. Mol Biol Evol 2019. [PMID: 29522209 DOI: 10.1093/molbev/msy033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
β-Catenin acts as a transcriptional coactivator in the Wnt/β-catenin signaling pathway and a cytoplasmic effector in cadherin-based cell adhesion. These functions are ancient within animals, but the earliest steps in β-catenin evolution remain unresolved due to limited data from key lineages-sponges, ctenophores, and placozoans. Previous studies in sponges have characterized β-catenin expression dynamics and used GSK3B antagonists to ectopically activate the Wnt/β-catenin pathway; both approaches rely upon untested assumptions about the conservation of β-catenin function and regulation in sponges. Here, we test these assumptions using an antibody raised against β-catenin from the sponge Ephydatia muelleri. We find that cadherin-complex genes coprecipitate with endogenous Em β-catenin from cell lysates, but that Wnt pathway components do not. However, through immunostaining we detect both cell boundary and nuclear populations, and we find evidence that Em β-catenin is a conserved substrate of GSK3B. Collectively, these data support conserved roles for Em β-catenin in both cell adhesion and Wnt signaling. Additionally, we find evidence for an Em β-catenin population associated with the distal ends of F-actin stress fibers in apparent cell-substrate adhesion structures that resemble focal adhesions. This finding suggests a fundamental difference in the adhesion properties of sponge tissues relative to other animals, in which the adhesion functions of β-catenin are typically restricted to cell-cell adhesions.
Collapse
Affiliation(s)
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
20
|
Genome-Wide Identification and Expression Profiling of Wnt Family Genes in the Silkworm, Bombyx mori. Int J Mol Sci 2019; 20:ijms20051221. [PMID: 30862048 PMCID: PMC6429082 DOI: 10.3390/ijms20051221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Wnt is a family of conserved glycoproteins that participate in a variety of important biological processes including embryo development, cell proliferation and differentiation, and tissue regeneration. The Wnt family is a metazoan novelty found in all animal phyla. Studies have revealed that the number of Wnt genes varies among species, presumably due to reproduction and loss of genes during evolution. However, a comprehensive inventory of Wnt genes in Lepidoptera is lacking. In this study, we identified the repertoire of Wnt genes in the silkworm and seven other species of Lepidoptera and obtained eight Wnt genes (Wnt1, Wnt5–Wnt7, Wnt9–Wnt11, and WntA) in each species. Four of these Wnt genes are clustered in two orientations (5′-Wnt9-Wnt1-Wnt6-Wnt10-3′ and 5′-Wnt10-Wnt6-Wnt1-Wnt9-3′) in both moths and butterflies. Transcript analysis of Wnt in silkworm embryonic stages showed that each BmWnt gene had a unique expression pattern during embryological development. Analysis of a larval stage revealed differential expression of Wnt family members in diverse tissues. Our study provides an overview of the Wnt family in Lepidoptera and will inspire further functional study of the Wnt genes in the silkworm.
Collapse
|
21
|
Hall C, Rodriguez M, Garcia J, Posfai D, DuMez R, Wictor E, Quintero OA, Hill MS, Rivera AS, Hill AL. Secreted frizzled related protein is a target of PaxB and plays a role in aquiferous system development in the freshwater sponge, Ephydatia muelleri. PLoS One 2019; 14:e0212005. [PMID: 30794564 PMCID: PMC6386478 DOI: 10.1371/journal.pone.0212005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Canonical and non-canonical Wnt signaling, as well as the Pax/Six gene network, are involved in patterning the freshwater sponge aquiferous system. Using computational approaches to identify transcription factor binding motifs in a freshwater sponge genome, we located putative PaxB binding sites near a Secreted Frizzled Related Protein (SFRP) gene in Ephydatia muelleri. EmSFRP is expressed throughout development, but with highest levels in juvenile sponges. In situ hybridization and antibody staining show EmSFRP expression throughout the pinacoderm and choanoderm in a subpopulation of amoeboid cells that may be differentiating archeocytes. Knockdown of EmSFRP leads to ectopic oscula formation during development, suggesting that EmSFRP acts as an antagonist of Wnt signaling in E. muelleri. Our findings support a hypothesis that regulation of the Wnt pathway by the Pax/Six network as well as the role of Wnt signaling in body plan morphogenesis was established before sponges diverged from the rest of the metazoans.
Collapse
Affiliation(s)
- Chelsea Hall
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Melanie Rodriguez
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Josephine Garcia
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Dora Posfai
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Rachel DuMez
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Erik Wictor
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Omar A. Quintero
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Malcolm S. Hill
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Biology, Bates College, Lewiston, Maine, United States of America
| | - Ajna S. Rivera
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - April L. Hill
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Biology, Bates College, Lewiston, Maine, United States of America
| |
Collapse
|
22
|
Abstract
Regeneration of lost body parts is essential to regain the fitness of the organism for successful living. In the animal kingdom, organisms from different clades exhibit varied regeneration abilities. Hydra is one of the few organisms that possess tremendous regeneration potential, capable of regenerating complete organism from small tissue fragments or even from dissociated cells. This peculiar property has made this genus one of the most invaluable model organisms for understanding the process of regeneration. Multiple studies in Hydra led to the current understanding of gross morphological changes, basic cellular dynamics, and the role of molecular signalling such as the Wnt signalling pathway. However, cell-to-cell communication by cell adhesion, role of extracellular components such as extracellular matrix (ECM), and nature of cell types that contribute to the regeneration process need to be explored in depth. Additionally, roles of developmental signalling pathways need to be elucidated to enable more comprehensive understanding of regeneration in Hydra. Further research on cross communication among extracellular, cellular, and molecular signalling in Hydra will advance the field of regeneration biology. Here, we present a review of the existing literature on Hydra regeneration biology and outline the future perspectives.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| | - Akhila Gungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Manu Unni
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
23
|
Borisenko I, Podgornaya OI, Ereskovsky AV. From traveler to homebody: Which signaling mechanisms sponge larvae use to become adult sponges? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:421-449. [DOI: 10.1016/bs.apcsb.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
25
|
Renard E, Leys SP, Wörheide G, Borchiellini C. Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics: The disconnect between gene content and body plan evolution. Bioessays 2018; 40:e1700237. [PMID: 30070368 DOI: 10.1002/bies.201700237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Sponges are important but often-neglected organisms. The absence of classical animal traits (nerves, digestive tract, and muscles) makes sponges challenging for non-specialists to work with and has delayed getting high quality genomic data compared to other invertebrates. Yet analyses of sponge genomes and transcriptomes currently available have radically changed our understanding of animal evolution. Sponges are of prime evolutionary importance as one of the best candidates to form the sister group of all other animals, and genomic data are essential to understand the mechanisms that control animal evolution and diversity. Here we review the most significant outcomes of current genomic and transcriptomic analyses of sponges, and discuss limitations and future directions of sponge transcriptomic and genomic studies.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.,Aix Marseille Univ., CNRS, UMR 7288, IBDM, Marseille, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| | - Carole Borchiellini
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
26
|
Abstract
Background The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Results Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Conclusions Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges. Electronic supplementary material The online version of this article (10.1186/s12862-018-1118-0) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Darras S, Fritzenwanker JH, Uhlinger KR, Farrelly E, Pani AM, Hurley IA, Norris RP, Osovitz M, Terasaki M, Wu M, Aronowicz J, Kirschner M, Gerhart JC, Lowe CJ. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development. PLoS Biol 2018; 16:e2003698. [PMID: 29337984 PMCID: PMC5786327 DOI: 10.1371/journal.pbio.2003698] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/26/2018] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
The Wnt family of secreted proteins has been proposed to play a conserved role in early specification of the bilaterian anteroposterior (A/P) axis. This hypothesis is based predominantly on data from vertebrate embryogenesis as well as planarian regeneration and homeostasis, indicating that canonical Wnt (cWnt) signaling endows cells with positional information along the A/P axis. Outside of these phyla, there is strong support for a conserved role of cWnt signaling in the repression of anterior fates, but little comparative support for a conserved role in promotion of posterior fates. We further test the hypothesis by investigating the role of cWnt signaling during early patterning along the A/P axis of the hemichordate Saccoglossus kowalevskii. We have cloned and investigated the expression of the complete Wnt ligand and Frizzled receptor complement of S. kowalevskii during early development along with many secreted Wnt modifiers. Eleven of the 13 Wnt ligands are ectodermally expressed in overlapping domains, predominantly in the posterior, and Wnt antagonists are localized predominantly to the anterior ectoderm in a pattern reminiscent of their distribution in vertebrate embryos. Overexpression and knockdown experiments, in combination with embryological manipulations, establish the importance of cWnt signaling for repression of anterior fates and activation of mid-axial ectodermal fates during the early development of S. kowalevskii. However, surprisingly, terminal posterior fates, defined by posterior Hox genes, are unresponsive to manipulation of cWnt levels during the early establishment of the A/P axis at late blastula and early gastrula. We establish experimental support for a conserved role of Wnt signaling in the early specification of the A/P axis during deuterostome body plan diversification, and further build support for an ancestral role of this pathway in early evolution of the bilaterian A/P axis. We find strong support for a role of cWnt in suppression of anterior fates and promotion of mid-axial fates, but we find no evidence that cWnt signaling plays a role in the early specification of the most posterior axial fates in S. kowalevskii. This posterior autonomy may be a conserved feature of early deuterostome axis specification.
Collapse
Affiliation(s)
- Sébastien Darras
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288, Marseille, France
| | - Jens H. Fritzenwanker
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Kevin R. Uhlinger
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Ellyn Farrelly
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Ariel M. Pani
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Imogen A. Hurley
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Rachael P. Norris
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Michelle Osovitz
- Department of Natural Sciences, St. Petersburg College, Clearwater, Florida
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Mike Wu
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Jochanan Aronowicz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - John C. Gerhart
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Christopher J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| |
Collapse
|
28
|
Abstract
Over 100 years of sponge biology research has demonstrated spectacular diversity of cell behaviors during embryonic development, metamorphosis and regeneration. The past two decades have allowed the first glimpses into molecular and cellular mechanisms of these processes. We have learned that while embryonic development of sponges utilizes a conserved set of developmental regulatory genes known from other animals, sponge cell differentiation appears unusually labile. During normal development, and especially as a response to injury, sponge cells appear to have an uncanny ability to transdifferentiate. Here, I argue that sponge cell differentiation plasticity does not preclude homology of cell types and processes between sponges and other animals. Instead, it does provide a wonderful opportunity to better understand transdifferentiation processes in all animals.
Collapse
Affiliation(s)
- Maja Adamska
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia.
| |
Collapse
|
29
|
Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0476. [PMID: 27994119 PMCID: PMC5182410 DOI: 10.1098/rstb.2015.0476] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Evolving multicellularity is easy, especially in phototrophs and osmotrophs whose multicells feed like unicells. Evolving animals was much harder and unique; probably only one pathway via benthic ‘zoophytes’ with pelagic ciliated larvae allowed trophic continuity from phagocytic protozoa to gut-endowed animals. Choanoflagellate protozoa produced sponges. Converting sponge flask cells mediating larval settling to synaptically controlled nematocysts arguably made Cnidaria. I replace Haeckel's gastraea theory by a sponge/coelenterate/bilaterian pathway: Placozoa, hydrozoan diploblasty and ctenophores were secondary; stem anthozoan developmental mutations arguably independently generated coelomate bilateria and ctenophores. I emphasize animal origin's conceptual aspects (selective, developmental) related to feeding modes, cell structure, phylogeny of related protozoa, sequence evidence, ecology and palaeontology. Epithelia and connective tissue could evolve only by compensating for dramatically lower feeding efficiency that differentiation into non-choanocytes entails. Consequentially, larger bodies enabled filtering more water for bacterial food and harbouring photosynthetic bacteria, together adding more food than cell differentiation sacrificed. A hypothetical presponge of sessile triploblastic sheets (connective tissue sandwiched between two choanocyte epithelia) evolved oogamy through selection for larger dispersive ciliated larvae to accelerate benthic trophic competence and overgrowing protozoan competitors. Extinct Vendozoa might be elaborations of this organismal grade with choanocyte-bearing epithelia, before poriferan water channels and cnidarian gut/nematocysts/synapses evolved. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.
Collapse
|
30
|
Schenkelaars Q, Pratlong M, Kodjabachian L, Fierro-Constain L, Vacelet J, Le Bivic A, Renard E, Borchiellini C. Animal multicellularity and polarity without Wnt signaling. Sci Rep 2017; 7:15383. [PMID: 29133828 PMCID: PMC5684314 DOI: 10.1038/s41598-017-15557-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022] Open
Abstract
Acquisition of multicellularity is a central event in the evolution of Eukaryota. Strikingly, animal multicellularity coincides with the emergence of three intercellular communication pathways - Notch, TGF-β and Wnt - all considered as hallmarks of metazoan development. By investigating Oopsacas minuta and Aphrocallistes vastus, we show here that the emergence of a syncytium and plugged junctions in glass sponges coincides with the loss of essential components of the Wnt signaling (i.e. Wntless, Wnt ligands and Disheveled), whereas core components of the TGF-β and Notch modules appear unaffected. This suggests that Wnt signaling is not essential for cell differentiation, polarity and morphogenesis in glass sponges. Beyond providing a comparative study of key developmental toolkits, we define here the first case of a metazoan phylum that maintained a level of complexity similar to its relatives despite molecular degeneration of Wnt pathways.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France.
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Marine Pratlong
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Université, CNRS, Centrale Marseille, I2M, Equipe Evolution Biologique et Modélisation, Marseille, France
| | - Laurent Kodjabachian
- Aix Marseille Université, CNRS, Institute of Developmental Biology of Marseille (IBDM), case 907, 13288, Marseille cedex 09, France
| | - Laura Fierro-Constain
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - Jean Vacelet
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - André Le Bivic
- Aix Marseille Université, CNRS, Institute of Developmental Biology of Marseille (IBDM), case 907, 13288, Marseille cedex 09, France.
| | - Emmanuelle Renard
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | - Carole Borchiellini
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France.
| |
Collapse
|
31
|
Michiue T, Yamamoto T, Yasuoka Y, Goto T, Ikeda T, Nagura K, Nakayama T, Taira M, Kinoshita T. High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis. Dev Biol 2017; 426:270-290. [DOI: 10.1016/j.ydbio.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
32
|
Babonis LS, Martindale MQ. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150477. [PMID: 27994120 PMCID: PMC5182411 DOI: 10.1098/rstb.2015.0477] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
33
|
A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination. Results Probl Cell Differ 2017; 61:323-350. [PMID: 28409312 DOI: 10.1007/978-3-319-53150-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway is an ancient and highly conserved signalling pathway that plays fundamental roles in the regulation of embryonic development and adult homeostasis. This pathway has been implicated in numerous cellular processes, including cell proliferation, differentiation, migration, morphological changes and apoptosis. In this chapter, we aim to illustrate with specific examples the involvement of Wnt/β-catenin signalling in cell fate determination. We discuss the roles of the Wnt/β-catenin pathway in specifying cell fate throughout evolution, how its function in patterning during development is often reactivated during regeneration and how perturbation of this pathway has negative consequences for the control of cell fate.The origin of all life was a single cell that had the capacity to respond to cues from the environment. With evolution, multicellular organisms emerged, and as a result, subsets of cells arose to form tissues able to respond to specific instructive signals and perform specialised functions. This complexity and specialisation required two types of messages to direct cell fate: intra- and intercellular. A fundamental question in developmental biology is to understand the underlying mechanisms of cell fate choice. Amongst the numerous external cues involved in the generation of cellular diversity, a prominent pathway is the Wnt signalling pathway in all its forms.
Collapse
|
34
|
Ding F, Wang M, Du Y, Du S, Zhu Z, Yan Z. BHX Inhibits the Wnt Signaling Pathway by Suppressing β-catenin Transcription in the Nucleus. Sci Rep 2016; 6:38331. [PMID: 27910912 PMCID: PMC5133598 DOI: 10.1038/srep38331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022] Open
Abstract
BHX (N-(4-hydroxybenzyl)-1,3,4-triphenyl-4,5-dihydro-1H-pyrazole-5-carboxamide), a Wnt signaling pathway inhibitor, effectively inhibits tumor cell growth, but the underlying mechanism is unclear. Thus, we aim to investigate the effects and associated mechanism of BHX action on A549 and MCF-7 cell lines. In our study, MTT(3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) and xenograft model assay indicated that cell growth was inhibited by BHX at a range of concentrations in vitro and in vivo. The expression of β-catenin and Wnt signaling pathway downstream target genes were decreased evidently under BHX treatment. Flow cytometry also revealed that BHX treatment significantly induced G1 arrest. Further analysis showed that BHX lowered the transcriptional level of β-catenin. In conclusion, BHX inhibited the nuclear synthesis of β-catenin, thereby suppressing the Wnt signaling pathway and further inhibiting tumor growth and proliferation.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Meisa Wang
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Yibo Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Shuangshuang Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Zhongling Zhu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Zhao Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| |
Collapse
|
35
|
Adamska M. Sponges as models to study emergence of complex animals. Curr Opin Genet Dev 2016; 39:21-28. [PMID: 27318691 DOI: 10.1016/j.gde.2016.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/20/2016] [Accepted: 05/30/2016] [Indexed: 02/05/2023]
Abstract
The emergence of complex animal life forms remains poorly understood despite substantial interest and research in this area. To be informative, the ideal models to study transitions from single-cell organisms to the first animals and then to mammalian-level complexity should be phylogenetically strategically placed and retain ancestral characters. Sponges (Porifera) are likely to be the earliest branching animal phylum. When analysed from morphological, genomic and developmental perspectives, sponges appear to combine features of single-cell eukaryotic organisms and the complex multicellular animals (Eumetazoa). Intriguingly, homologues of components of the eumetazoan regulatory networks specifying the endoderm, the germ-cells and stem cells and (neuro) sensory cells are expressed in sponge choanocytes, archaeocytes and larval sensory cells. Studies using sponges as model systems are already bringing insights into animal evolution, and have opened avenues to further research benefitting from the recent spectacular expansion of genomic technologies.
Collapse
Affiliation(s)
- Maja Adamska
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
36
|
Borisenko I, Adamski M, Ereskovsky A, Adamska M. Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini. BMC Evol Biol 2016; 16:123. [PMID: 27287511 PMCID: PMC4902976 DOI: 10.1186/s12862-016-0700-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/05/2016] [Indexed: 02/05/2023] Open
Abstract
Background Wnt proteins are secreted signalling molecules found in all animal phyla. In bilaterian animals, including humans, Wnt proteins play key roles in development, maintenance of homeostasis and regeneration. While Wnt gene repertoires and roles are strongly conserved between cnidarians and bilaterians, Wnt genes from basal metazoans (sponges, ctenophores, placozoans) are difficult or impossible to assign to the bilaterian + cnidarian orthologous groups. Moreover, dramatic differences in Wnt numbers among basal metazoan exist, with only three present in the genome of Amphimedon queenslandica, a demosponge, and 21 in the genome of Sycon ciliatum, a calcisponge. To gain insight into the ancestral Wnt repertoire and function, we have chosen to investigate Wnt genes in Halisarca dujardini, a demosponge with relatively well described development and regeneration, and a very distant phylogenetic relationship to Amphimedon. Results Here we describe generation of a eukaryotic contamination-free transcriptome of Halisarca dujardini, and analysis of Wnt genes repertoire and expression in this species. We have identified ten Wnt genes, with only one orthologous to Amphimedon Wnt, and six appearing to be a result of a lineage specific expansion. Expression analysis carried out by in situ hybridization of adults and larvae revealed that two Halisarca Wnts are expressed in nested domains in the posterior half of the larvae, and six along the adult body axis, with two specific to the osculum. Strikingly, expression of one of the Wnt genes was elevated in the region undergoing regeneration. Conclusions Our results demonstrated that the three Poriferan lineages (Demospongiae, Calcarea and Homoloscleromorpha) are characterized by highly diverse Wnt gene repertoires which do not display higher similarity to each other than they do to the non-sponge (i.e. ctenophore, cnidarian and bilaterian) repertoires. This is in striking contrast to the uniform Wnt repertoires in Cnidarians and Bilaterians, suggesting that the Wnt family composition became “fixed” only in the last common ancestor of Cnidarians and Bilaterians. In contrast, expression of Wnt genes in the apical region of sponge adults and the posterior region of sponge larvae suggests conservation of the Wnt role in axial patterning across the animal kingdom. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0700-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilya Borisenko
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Marcin Adamski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.,Present Address: Research School of Biology, Australian National University, Canberra, Australia
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Present Address: Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), CNRS, Aix Marseille Université, IRD, Avignon Université, Marseille, France
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway. .,Present Address: Research School of Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
37
|
Gao J, Liu J, Yang Y, Liang J, Xie J, Li S, Zheng G, Xie L, Zhang R. Identification and expression characterization of three Wnt signaling genes in pearl oyster ( Pinctada fucata ). Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:92-101. [DOI: 10.1016/j.cbpb.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022]
|
38
|
Schenkelaars Q, Fierro-Constain L, Renard E, Borchiellini C. Retracing the path of planar cell polarity. BMC Evol Biol 2016; 16:69. [PMID: 27039172 PMCID: PMC4818920 DOI: 10.1186/s12862-016-0641-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/22/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Planar Cell Polarity pathway (PCP) has been described as the main feature involved in patterning cell orientation in bilaterian tissues. Recently, a similar phenomenon was revealed in cnidarians, in which the inhibition of this pathway results in the absence of cilia orientation in larvae, consequently proving the functional conservation of PCP signaling between Cnidaria and Bilateria. Nevertheless, despite the growing accumulation of databases concerning basal lineages of metazoans, very few information concerning the existence of PCP components have been gathered outside of Bilateria and Cnidaria. Thus, the origin of this module or its prevalence in early emerging metazoans has yet to be elucidated. RESULTS The present study addresses this question by investigating the genomes and transcriptomes from all poriferan lineages in addition to Trichoplax (Placozoa) and Mnemiopsis (Ctenophora) genomes for the presence of the core components of this pathway. Our results confirm that several PCP components are metazoan innovations. In addition, we show that all members of the PCP pathway, including a bona fide Strabismus ortholog (Van gogh), are retrieved only in one sponge lineage (Homoscleromorpha) out of four. This highly suggests that the full PCP pathway dates back at least to the emergence of homoscleromorph sponges. Consequently, several secondary gene losses would have occurred in the three other poriferan lineages including Amphimedon queenslandica (Demospongiae). Several proteins were not retrieved either in placozoans or ctenophores leading us to discuss the difficulties to predict orthologous proteins in basally branching animals. Finally, we reveal how the study of multigene families may be helpful to unravel the relationships at the base of the metazoan tree. CONCLUSION The PCP pathway antedates the radiation of Porifera and may have arisen in the last common ancestor of animals. Oscarella species now appear as key organisms to understand the ancestral function of PCP signaling and its potential links with Wnt pathways.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
- />Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Laura Fierro-Constain
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
| | - Emmanuelle Renard
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
| | - Carole Borchiellini
- />Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE UMR 7263), Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d’Endoume, Batterie des Lions, 13007 Marseille, France
- />Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Garstang MG, Osborne PW, Ferrier DEK. TCF/Lef regulates the Gsx ParaHox gene in central nervous system development in chordates. BMC Evol Biol 2016; 16:57. [PMID: 26940763 PMCID: PMC4776371 DOI: 10.1186/s12862-016-0614-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ParaHox genes play an integral role in the anterior-posterior (A-P) patterning of the nervous system and gut of most animals. The ParaHox cluster is an ideal system in which to study the evolution and regulation of developmental genes and gene clusters, as it displays similar regulatory phenomena to its sister cluster, the Hox cluster, but offers a much simpler system with only three genes. RESULTS Using Ciona intestinalis transgenics, we isolated a regulatory element upstream of Branchiostoma floridae Gsx that drives expression within the central nervous system of Ciona embryos. The minimal amphioxus enhancer region required to drive CNS expression has been identified, along with surrounding sequence that increases the efficiency of reporter expression throughout the Ciona CNS. TCF/Lef binding sites were identified and mutagenized and found to be required to drive the CNS expression. Also, individual contributions of TCF/Lef sites varied across the regulatory region, revealing a partial division of function across the Bf-Gsx-Up regulatory element. Finally, when all TCF/Lef binding sites are mutated CNS expression is not only abolished, but a latent repressive function is also unmasked. CONCLUSIONS We have identified a B. floridae Gsx upstream regulatory element that drives CNS expression within transgenic Ciona intestinalis, and have shown that this CNS expression is dependent upon TCF/Lef binding sites. We examine the evolutionary and developmental implications of these results, and discuss the possibility of TCF/Lef not only as a regulator of chordate Gsx, but as a deeply conserved regulatory factor controlling all three ParaHox genes across the Metazoa.
Collapse
Affiliation(s)
- Myles G Garstang
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.
| | - Peter W Osborne
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
40
|
Schenkelaars Q, Quintero O, Hall C, Fierro-Constain L, Renard E, Borchiellini C, Hill AL. ROCK inhibition abolishes the establishment of the aquiferous system in Ephydatia muelleri (Porifera, Demospongiae). Dev Biol 2016; 412:298-310. [PMID: 26944094 DOI: 10.1016/j.ydbio.2016.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 01/16/2023]
Abstract
The Rho associated coiled-coil protein kinase (ROCK) plays crucial roles in development across bilaterian animals. The fact that the Rho/Rock pathway is required to initiate epithelial morphogenesis and thus to establish body plans in bilaterians makes this conserved signaling pathway key for studying the molecular mechanisms that may control early development of basally branching metazoans. The purpose of this study was to evaluate whether or not the main components of this signaling pathway exist in sponges, and if present, to investigate the possible role of the regulatory network in an early branching non-bilaterian species by evaluating ROCK function during Ephydatia muelleri development. Molecular phylogenetic analyses and protein domain predictions revealed the existence of Rho/Rock components in all studied poriferan lineages. Binding assays revealed that both Y-27632 and GSK429286A are capable of inhibiting Em-ROCK activity in vitro. Treatment with both drugs leads to impairment of growth and formation of the basal pinacoderm layer in the developing sponge. Furthermore, inhibition of Em-Rock prevents the establishment of a functional aquiferous system, including the absence of an osculum. In contrast, no effect of ROCK inhibition was observed in juvenile sponges that already possess a fully developed and functional aquiferous system. Thus, the Rho/Rock pathway appears to be essential for the proper development of the freshwater sponge, and may play a role in various cell behaviors (e.g. cell proliferation, cell adhesion and cell motility). Taken together, these data are consistent with an ancestral function of Rho/Rock signaling in playing roles in early developmental processes and may provide a new framework to study the interaction between Wnt signaling and the Rho/Rock pathway.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - UMR CNRS 7263- IRD 237 - UAPV, Aix-Marseille Université, Marseille, France; Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Switzerland.
| | - Omar Quintero
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Chelsea Hall
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Laura Fierro-Constain
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - UMR CNRS 7263- IRD 237 - UAPV, Aix-Marseille Université, Marseille, France
| | - Emmanuelle Renard
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - UMR CNRS 7263- IRD 237 - UAPV, Aix-Marseille Université, Marseille, France
| | - Carole Borchiellini
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - UMR CNRS 7263- IRD 237 - UAPV, Aix-Marseille Université, Marseille, France
| | - April L Hill
- Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| |
Collapse
|
41
|
Murata A, Hayashi SI. Notch-Mediated Cell Adhesion. BIOLOGY 2016; 5:biology5010005. [PMID: 26784245 PMCID: PMC4810162 DOI: 10.3390/biology5010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms.
Collapse
Affiliation(s)
- Akihiko Murata
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
42
|
Bosch TCG, Miller DJ. Major Events in the Evolution of Planet Earth: Some Origin Stories. THE HOLOBIONT IMPERATIVE 2016. [PMCID: PMC7121852 DOI: 10.1007/978-3-7091-1896-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With billions of years of evolution before the appearance of animals, prokaryotes shaped and continue to shape both the Earth’s biogeochemical landscape and the setting for animal existence (Fig. 2.1) (Knoll 2003).
Collapse
|
43
|
Abstract
My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology , University of Debrecen , PO Box 28, 4010 Debrecen , Hungary
| |
Collapse
|
44
|
Bastin BR, Chou HC, Pruitt MM, Schneider SQ. Structure, phylogeny, and expression of the frizzled-related gene family in the lophotrochozoan annelid Platynereis dumerilii. EvoDevo 2015; 6:37. [PMID: 26640641 PMCID: PMC4669655 DOI: 10.1186/s13227-015-0032-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Background Wnt signaling pathways are highly conserved signal transduction pathways important for axis formation, cell fate specification, and organogenesis throughout metazoan development. Within the various Wnt pathways, the frizzled transmembrane receptors (Fzs) and secreted frizzled-related proteins (sFRPs) play central roles in receiving and antagonizing Wnt signals, respectively. Despite their importance, very little is known about the frizzled-related gene family (fzs & sfrps) in lophotrochozoans, especially during early stages of spiralian development. Here we ascertain the frizzled-related gene complement in six lophotrochozoan species, and determine their spatial and temporal expression pattern during early embryogenesis and larval stages of the marine annelid Platynereis dumerilii. Results Phylogenetic analyses confirm conserved homologs for four frizzled receptors (Fz1/2/7, Fz4, Fz5/8, Fz9/10) and sFRP1/2/5 in five of six lophotrochozoan species. The sfrp3/4 gene is conserved in one, divergent in two, and evidently lost in three lophotrochozoan species. Three novel fz-related genes (fzCRD1-3) are unique to Platynereis. Transcriptional profiling and in situ hybridization identified high maternal expression of fz1/2/7, expression of fz9/10 and fz1/2/7 within animal and dorsal cell lineages after the 32-cell stage, localization of fz5/8, sfrp1/2/5, and fzCRD-1 to animal-pole cell lineages after the 80-cell stage, and no expression for fz4, sfrp3/4, and fzCRD-2, and -3 in early Platynereis embryos. In later larval stages, all frizzled-related genes are expressed in distinct patterns preferentially in the anterior hemisphere and less in the developing trunk. Conclusions Lophotrochozoans have retained a generally conserved ancestral bilaterian frizzled-related gene complement (four Fzs and two sFRPs). Maternal expression of fz1/2/7, and animal lineage-specific expression of fz5/8 and sfrp1/2/5 in early embryos of Platynereis suggest evolutionary conserved roles of these genes to perform Wnt pathway functions during early cleavage stages, and the early establishment of a Wnt inhibitory center at the animal pole, respectively. Numerous frizzled receptor-expressing cells and embryonic territories were identified that might indicate competence to receive Wnt signals during annelid development. An anterior bias for frizzled-related gene expression in embryos and larvae might point to a polarity of Wnt patterning systems along the anterior–posterior axis of this annelid. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0032-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | | | | | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| |
Collapse
|
45
|
Hale R, Strutt D. Conservation of Planar Polarity Pathway Function Across the Animal Kingdom. Annu Rev Genet 2015; 49:529-51. [DOI: 10.1146/annurev-genet-112414-055224] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosalind Hale
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - David Strutt
- Bateson Centre,
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
46
|
Abstract
Genomic and transcriptomic analyses show that sponges possess a large repertoire of genes associated with neuronal processes in other animals, but what is the evidence these are used in a coordination or sensory context in sponges? The very different phylogenetic hypotheses under discussion today suggest very different scenarios for the evolution of tissues and coordination systems in early animals. The sponge genomic 'toolkit' either reflects a simple, pre-neural system used to protect the sponge filter or represents the remnants of a more complex signalling system and sponges have lost cell types, tissues and regionalization to suit their current suspension-feeding habit. Comparative transcriptome data can be informative but need to be assessed in the context of knowledge of sponge tissue structure and physiology. Here, I examine the elements of the sponge neural toolkit including sensory cells, conduction pathways, signalling molecules and the ionic basis of signalling. The elements described do not fit the scheme of a loss of sophistication, but seem rather to reflect an early specialization for suspension feeding, which fits with the presumed ecological framework in which the first animals evolved.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
47
|
Fortunato SAV, Adamski M, Adamska M. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Mar Genomics 2015; 24 Pt 2:121-9. [PMID: 26253310 DOI: 10.1016/j.margen.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum.
Collapse
Affiliation(s)
- Sofia A V Fortunato
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway; Department of Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Marcin Adamski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
| |
Collapse
|
48
|
Schenkelaars Q, Fierro-Constain L, Renard E, Hill AL, Borchiellini C. Insights into Frizzled evolution and new perspectives. Evol Dev 2015; 17:160-9. [PMID: 25801223 DOI: 10.1111/ede.12115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Frizzled proteins (FZDs) are a family of trans-membrane receptors that play pivotal roles in Wnt pathways and thus in animal development. Based on evaluation of the Amphimedon queenslandica genome, it has been proposed that two Fzd genes may have been present before the split between demosponges and other animals. The major purpose of this study is to go deeper into the evolution of this family of proteins by evaluating an extended set of available data from bilaterians, cnidarians, and different basally branching animal lineages (Ctenophora, Placozoa, Porifera). The present study provides evidence that the last common ancestor of metazoans did possess two Fzd genes, and that the last common ancestor of cnidarians and bilaterians may have possessed four Fzd. Furthermore, amino acid analyses revealed an accurate diagnostic motif for these four FZD subfamilies facilitating the assignation of Frizzled paralogs to each subfamily. By highlighting conserved amino acids for each FZD subfamily, our study could also provide a framework for further research on the precise mechanisms that have driven FZD neo-functionalization.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- Aix-Marseille Université, IMBE UMR CNRS 7263, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | | | | | | | | |
Collapse
|
49
|
Fernandez-Valverde SL, Calcino AD, Degnan BM. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica. BMC Genomics 2015; 16:387. [PMID: 25975661 PMCID: PMC4432959 DOI: 10.1186/s12864-015-1588-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/27/2015] [Indexed: 11/14/2022] Open
Abstract
Background The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence. Results Amphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3’ and 5’ untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3’ UTRs. Conclusions The inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1588-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Selene L Fernandez-Valverde
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.
| | - Andrew D Calcino
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.
| | - Bernard M Degnan
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
50
|
The hidden biology of sponges and ctenophores. Trends Ecol Evol 2015; 30:282-91. [DOI: 10.1016/j.tree.2015.03.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022]
|