1
|
Tan M, Redmond AK, Dooley H, Nozu R, Sato K, Kuraku S, Koren S, Phillippy AM, Dove ADM, Read T. The whale shark genome reveals patterns of vertebrate gene family evolution. eLife 2021; 10:e65394. [PMID: 34409936 PMCID: PMC8455134 DOI: 10.7554/elife.65394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also discovered a new toll-like receptor (TLR29) and three NOD1 copies in the whale shark. We found chondrichthyan and giant vertebrate genomes had decreased substitution rates compared to other vertebrates, but gene family expansion rates varied among vertebrate giants, suggesting substitution and expansion rates of gene families are decoupled in vertebrate genomes. Finally, we found gene families that shifted in expansion rate in vertebrate giants were enriched for human cancer-related genes, consistent with gigantism requiring adaptations to suppress cancer.
Collapse
Affiliation(s)
- Milton Tan
- Illinois Natural History Survey at University of Illinois Urbana-ChampaignChampaignUnited States
| | | | - Helen Dooley
- University of Maryland School of Medicine, Institute of Marine & Environmental TechnologyBaltimoreUnited States
| | - Ryo Nozu
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
| | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
- Okinawa Churaumi Aquarium, MotobuOkinawaJapan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research (BDR), RIKENKobeJapan
| | - Sergey Koren
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Adam M Phillippy
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | | | - Timothy Read
- Department of Infectious Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
2
|
Bayramov AV, Ermakova GV, Kuchryavyy AV, Zaraisky AG. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Gąsiorowski L, Hejnol A. Hox gene expression during development of the phoronid Phoronopsis harmeri. EvoDevo 2020; 11:2. [PMID: 32064072 PMCID: PMC7011278 DOI: 10.1186/s13227-020-0148-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Phoronida is a small group of marine worm-like suspension feeders, which together with brachiopods and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcription factors. Here, we present a description of the expression patterns of Hox genes during the embryonic and larval development of the phoronid Phoronopsis harmeri. Results We identified sequences of eight Hox genes in the transcriptome of Ph. harmeri and determined their expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later developmental stages, when the larval body is already formed. In the investigated initial larval stages the Hox genes are expressed in the non-collinear manner in the posterior body of the larvae: in the telotroch and the structures that represent rudiments of the adult worm. Additionally, we found that certain head-specific transcription factors are expressed in the oral hood, apical organ, preoral coelom, digestive system and developing larval tentacles, anterior to the Hox-expressing territories. Conclusions The lack of Hox gene expression during early development of Ph. harmeri indicates that the larval body develops without positional information from the Hox patterning system. Such phenomenon might be a consequence of the evolutionary intercalation of the larval form into an ancestral life cycle of phoronids. The observed Hox gene expression can also be a consequence of the actinotrocha representing a “head larva”, which is composed of the most anterior body region that is devoid of Hox gene expression. Such interpretation is further supported by the expression of head-specific transcription factors. This implies that the Hox patterning system is used for the positional information of the trunk rudiments and is, therefore, delayed to the later larval stages. We propose that a new body form was intercalated to the phoronid life cycle by precocious development of the anterior structures or by delayed development of the trunk rudiment in the ancestral phoronid larva.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway.,2Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Andreas Hejnol
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway.,2Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
4
|
Feiner N, Wood NJ. Lizards possess the most complete tetrapod Hox gene repertoire despite pervasive structural changes in Hox clusters. Evol Dev 2019; 21:218-228. [PMID: 31298799 DOI: 10.1111/ede.12300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 06/08/2019] [Indexed: 01/21/2023]
Abstract
Hox genes are a remarkable example of conservation in animal development and their nested expression along the head-to-tail axis orchestrates embryonic patterning. Early in vertebrate history, two duplications led to the emergence of four Hox clusters (A-D) and redundancy within paralog groups has been partially accommodated with gene losses. Here we conduct an inventory of squamate Hox genes using the genomes of 10 lizard and 7 snake species. Although the HoxC1 gene has been hypothesized to be lost in the amniote ancestor, we reveal that it is retained in lizards. In contrast, all snakes lack functional HoxC1 and -D12 genes. Varying levels of degradation suggest differences in the process of gene loss between the two genes. The vertebrate HoxC1 gene is prone to gene loss and its functional domains are more variable than those of other Hox1 genes. We describe for the first time the HoxC1 expression patterns in tetrapods. HoxC1 is broadly expressed during development in the diencephalon, the neural tube, dorsal root ganglia, and limb buds in two lizard species. Our study emphasizes the value of revisiting Hox gene repertoires by densely sampling taxonomic groups and its feasibility owing to growing sequence resources in evaluating gene repertoires across taxa.
Collapse
Affiliation(s)
- Nathalie Feiner
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Biology, Lund University, Lund, Sweden
| | - Natalie J Wood
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
5
|
The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Res 2019; 1705:95-103. [DOI: 10.1016/j.brainres.2018.02.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
|
6
|
Redmond AK, Macqueen DJ, Dooley H. Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets. BMC Evol Biol 2018; 18:169. [PMID: 30442091 PMCID: PMC6238376 DOI: 10.1186/s12862-018-1290-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cartilaginous fishes diverged from other jawed vertebrates ~ 450 million years ago (mya). Despite this key evolutionary position, the only high-quality cartilaginous fish genome available is for the elephant shark (Callorhinchus milii), a chimaera whose ancestors split from the elasmobranch lineage ~ 420 mya. Initial analysis of this resource led to proposals that key components of the cartilaginous fish adaptive immune system, most notably their array of T cell subsets, was primitive compared to mammals. This proposal is at odds with the robust, antigen-specific antibody responses reported in elasmobranchs following immunization. To explore this discrepancy, we generated a multi-tissue transcriptome for small-spotted catshark (Scyliorhinus canicula), a tractable elasmobranch model for functional studies. We searched this, and other newly available sequence datasets, for CD4+ T cell subset-defining genes, aiming to confirm the presence or absence of each subset in cartilaginous fishes. RESULTS We generated a new transcriptome based on a normalised, multi-tissue RNA pool, aiming to maximise representation of tissue-specific and lowly expressed genes. We utilized multiple transcriptomic datasets and assembly variants in phylogenetic reconstructions to unambiguously identify several T cell subset-specific molecules in cartilaginous fishes for the first time, including interleukins, interleukin receptors, and key transcription factors. Our results reveal the inability of standard phylogenetic reconstruction approaches to capture the site-specific evolutionary processes of fast-evolving immune genes but show that site-heterogeneous mixture models can adequately do so. CONCLUSIONS Our analyses reveal that cartilaginous fishes are capable of producing a range of CD4+ T cell subsets comparable to that of mammals. Further, that the key molecules required for the differentiation and functioning of these subsets existed in the jawed vertebrate ancestor. Additionally, we highlight the importance of considering phylogenetic diversity and, where possible, utilizing multiple datasets for individual species, to accurately infer gene presence or absence at higher taxonomic levels.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Present address: Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, 701 E Pratt St, Baltimore, MD21202, USA.
| |
Collapse
|
7
|
Holland PWH, Marlétaz F, Maeso I, Dunwell TL, Paps J. New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0480. [PMID: 27994121 DOI: 10.1098/rstb.2015.0480] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/10/2023] Open
Abstract
Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such 'asymmetric evolution' seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Peter W H Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ferdinand Marlétaz
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.,Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Ignacio Maeso
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.,Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Thomas L Dunwell
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Jordi Paps
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.,School of Biological Sciences, University of Essex, Colchester, Essex, UK
| |
Collapse
|
8
|
Friedrich M. Ancient genetic redundancy of eyeless and twin of eyeless in the arthropod ocular segment. Dev Biol 2017; 432:192-200. [PMID: 28993201 DOI: 10.1016/j.ydbio.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/28/2023]
Abstract
Pax6 transcription factors are essential upstream regulators in the developing anterior brain and peripheral visual system of most bilaterian animals. While a single homolog is in charge of these functions in vertebrates, two Pax6 genes are in Drosophila: eyeless (ey) and twin of eyeless (toy). At first glance, their co-existence seems sufficiently explained by their differential involvement in the specification of two types of insect visual organs: the lateral compound eyes (ey) and the dorsal ocelli (toy). Less straightforward to understand, however, is their genetic redundancy in promoting defined early and late growth phases of the precursor tissue to these organs: the eye-antennal imaginal disc. Drawing on comparative sequence, expression, and gene function evidence, I here conclude that this gene regulatory network module dates back to the dawn of arthropod evolution, securing the embryonic development of the ocular head segment. Thus, ey and toy constitute a paradigm to explore the organization and functional significance of longterm conserved genetic redundancy of duplicated genes. Indeed, as first steps in this direction, recent studies uncovered the shared use of binding sites in shared enhancers of target genes that are under redundant (string) and, strikingly, even subfunctionalized control by ey and toy (atonal). Equally significant, the evolutionarily recent and paralog-specific function of ey to repress the transcription of the antenna fate regulator Distal-less offers a functionally and phylogenetically well-defined opportunity to study the reconciliation of shared, partitioned, and newly acquired functions in a duplicated developmental gene pair.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201,USA.
| |
Collapse
|
9
|
Martin-Montalvo A, Lorenzo PI, López-Noriega L, Gauthier BR. Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors. Expert Opin Ther Targets 2016; 21:77-89. [PMID: 27841034 DOI: 10.1080/14728222.2017.1257000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Four members of the PAX family, PAX2, PAX4, PAX6 and PAX8 are known to be expressed in the pancreas. Accumulated evidences indicate that several pancreatic expressed PAX genes play a significant role in pancreatic development/functionality and alterations in these genes are involved in the pathogenesis of pancreatic diseases. Areas covered: In this review, we summarize the ongoing research related to pancreatic PAX genes in diabetes mellitus and pancreatic neuroendocrine tumors. We dissect the current knowledge at different levels; from mechanistic studies in cell lines performed to understand the molecular processes controlled by pancreatic PAX genes, to in vivo studies using rodent models that over-express or lack specific PAX genes. Finally, we describe human studies associating variants on pancreatic-expressed PAX genes with pancreatic diseases. Expert opinion: Based on the current literature, we propose that future interventions to treat pancreatic neuroendocrine tumors and diabetes mellitus could be developed via the modulation of PAX4 and/or PAX6 regulated pathways.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Petra I Lorenzo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Livia López-Noriega
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Benoit R Gauthier
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| |
Collapse
|
10
|
Kuraku S, Feiner N, Keeley SD, Hara Y. Incorporating tree-thinking and evolutionary time scale into developmental biology. Dev Growth Differ 2016; 58:131-42. [PMID: 26818824 DOI: 10.1111/dgd.12258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023]
Abstract
Phylogenetic approaches are indispensable in any comparative molecular study involving multiple species. These approaches are in increasing demand as the amount and availability of DNA sequence information continues to increase exponentially, even for organisms that were previously not extensively studied. Without the sound application of phylogenetic concepts and knowledge, one can be misled when attempting to infer ancestral character states as well as the timing and order of evolutionary events, both of which are frequently exerted in evolutionary developmental biology. The ignorance of phylogenetic approaches can also impact non-evolutionary studies and cause misidentification of the target gene or protein to be examined in functional characterization. This review aims to promote tree-thinking in evolutionary conjecture and stress the importance of a sense of time scale in cross-species comparisons, in order to enhance the understanding of phylogenetics in all biological fields including developmental biology. To this end, molecular phylogenies of several developmental regulatory genes, including those denoted as "cryptic pan-vertebrate genes", are introduced as examples.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | | | - Sean D Keeley
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Yuichiro Hara
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
11
|
Feiner N, Meyer A, Kuraku S. Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene. Genome Biol Evol 2014; 6:1635-51. [PMID: 24951566 PMCID: PMC4122933 DOI: 10.1093/gbe/evu135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The members of the paired box (Pax) family regulate key developmental pathways in many metazoans as tissue-specific transcription factors. Vertebrate genomes typically possess nine Pax genes (Pax1-9), which are derived from four proto-Pax genes in the vertebrate ancestor that were later expanded through the so-called two-round (2R) whole-genome duplication. A recent study proposed that pax6a genes of a subset of teleost fishes (namely, acanthopterygians) are remnants of a paralog generated in the 2R genome duplication, to be renamed pax6.3, and reported one more group of vertebrate Pax genes (Pax6.2), most closely related to the Pax4/6 class. We propose to designate this new member Pax10 instead and reconstruct the evolutionary history of the Pax4/6/10 class with solid phylogenetic evidence. Our synteny analysis showed that Pax4, -6, and -10 originated in the 2R genome duplications early in vertebrate evolution. The phylogenetic analyses of relationships between teleost pax6a and other Pax4, -6, and -10 genes, however, do not support the proposed hypothesis of an ancient origin of the acanthopterygian pax6a genes in the 2R genome duplication. Instead, we confirmed the traditional scenario that the acanthopterygian pax6a is derived from the more recent teleost-specific genome duplication. Notably, Pax6 is present in all vertebrates surveyed to date, whereas Pax4 and -10 were lost multiple times in independent vertebrate lineages, likely because of their restricted expression patterns: Among Pax6-positive domains, Pax10 has retained expression in the adult retina alone, which we documented through in situ hybridization and quantitative reverse transcription polymerase chain reaction experiments on zebrafish, Xenopus, and anole lizard.
Collapse
Affiliation(s)
- Nathalie Feiner
- Department of Biology, University of Konstanz, GermanyInternational Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, GermanyPresent address: Department of Zoology, University of Oxford, United Kingdom
| | - Axel Meyer
- Department of Biology, University of Konstanz, GermanyInternational Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
| | - Shigehiro Kuraku
- Department of Biology, University of Konstanz, GermanyInternational Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, GermanyPresent address: Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
12
|
Paixão-Côrtes VR, Salzano FM, Bortolini MC. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family. PLoS One 2013; 8:e73560. [PMID: 24023886 PMCID: PMC3759438 DOI: 10.1371/journal.pone.0073560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 07/23/2013] [Indexed: 12/22/2022] Open
Abstract
Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.
Collapse
Affiliation(s)
- Vanessa Rodrigues Paixão-Côrtes
- Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
13
|
Kuraku S. Impact of asymmetric gene repertoire between cyclostomes and gnathostomes. Semin Cell Dev Biol 2013; 24:119-27. [DOI: 10.1016/j.semcdb.2012.12.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/25/2012] [Indexed: 12/12/2022]
|
14
|
Feiner N, Murakami Y, Breithut L, Mazan S, Meyer A, Kuraku S. Saltatory evolution of the ectodermal neural cortex gene family at the vertebrate origin. Genome Biol Evol 2013; 5:1485-502. [PMID: 23843192 PMCID: PMC3762194 DOI: 10.1093/gbe/evt104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates.
Collapse
Affiliation(s)
- Nathalie Feiner
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
| | - Yasunori Murakami
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Lisa Breithut
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
| | - Sylvie Mazan
- Développement et Evolution des Vertébrés, UMR7150 CNRS and Université Paris 6, Station Biologique, Roscoff, France
| | - Axel Meyer
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
| | - Shigehiro Kuraku
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
- Present address: Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| |
Collapse
|
15
|
Djiotsa J, Verbruggen V, Giacomotto J, Ishibashi M, Manning E, Rinkwitz S, Manfroid I, Voz ML, Peers B. Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression. BMC DEVELOPMENTAL BIOLOGY 2012; 12:37. [PMID: 23244389 PMCID: PMC3563606 DOI: 10.1186/1471-213x-12-37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/14/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies β- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into β-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. RESULTS pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating β-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on β- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of β- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. CONCLUSIONS In zebrafish, pax4 is not required for the generation of the first β- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the differentiation of these cell types in mouse. On the other hand, the mutual repression between Arx and Pax4 is observed in both mouse and zebrafish. These data suggests that the main original function of Pax4 during vertebrate evolution was to modulate the number of pancreatic α-cells and its role in β-cells differentiation appeared later in vertebrate evolution.
Collapse
Affiliation(s)
- Joachim Djiotsa
- Molecular Biology and Genetic Engineering, Giga-Research, University of Liège, 1 avenue de l'Hôpital B34, Sart-Tilman B-4000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kuraku S, Meyer A. Detection and phylogenetic assessment of conserved synteny derived from whole genome duplications. Methods Mol Biol 2012; 855:385-95. [PMID: 22407717 DOI: 10.1007/978-1-61779-582-4_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identification of intragenomic conservation of gene compositions in multiple chromosomal segments led to evidence of whole genome (WGDs) duplications. The process by which WGDs have been maintained and decayed provides us with clues for understanding how the genome evolves. In this chapter, we summarize current understanding of phylogenetic distribution and evolutionary impact of WGDs, introduce basic procedures to detect conserved synteny, and discuss typical pitfalls, as well as biological insights.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan.
| | | |
Collapse
|