1
|
Murphy P, Armit C, Hill B, Venkataraman S, Frankel P, Baldock RA, Davidson DR. Integrated analysis of Wnt signalling system component gene expression. Development 2022; 149:276001. [PMID: 35831952 PMCID: PMC9481969 DOI: 10.1242/dev.200312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Wnt signalling controls patterning and differentiation across many tissues and organs of the developing embryo through temporally and spatially restricted expression of multi-gene families encoding ligands, receptors, pathway modulators and intracellular components. Here, we report an integrated analysis of key genes in the 3D space of the mouse embryo across multiple stages of development. We applied a method for 3D/3D image transformation to map all gene expression patterns to a single reference embryo for each stage, providing both visual analysis and volumetric mapping allowing computational methods to interrogate the combined expression patterns. We identify territories where multiple Wnt and Fzd genes are co-expressed and cross-compare all patterns, including all seven Wnt paralogous gene pairs. The comprehensive analysis revealed regions in the embryo where no Wnt or Fzd gene expression is detected, and where single Wnt genes are uniquely expressed. This work provides insight into a previously unappreciated level of organisation of expression patterns, as well as presenting a resource that can be utilised further by the research community for whole-system analysis. Summary: A systematic analysis of integrated expression patterns of Wnt signalling pathway component-encoding genes and canonical pathway read-out, spatially mapped in 3D to mouse embryo models identifies co-expression territories.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, The University of Dublin 1 , Dublin 2 , Ireland
| | - Chris Armit
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Bill Hill
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Shanmugasundaram Venkataraman
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Patrick Frankel
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, The University of Dublin 1 , Dublin 2 , Ireland
| | - Richard A. Baldock
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Duncan R. Davidson
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| |
Collapse
|
2
|
Lovely AM, Duerr TJ, Qiu Q, Galvan S, Voss SR, Monaghan JR. Wnt Signaling Coordinates the Expression of Limb Patterning Genes During Axolotl Forelimb Development and Regeneration. Front Cell Dev Biol 2022; 10:814250. [PMID: 35531102 PMCID: PMC9068880 DOI: 10.3389/fcell.2022.814250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
After amputation, axolotl salamanders can regenerate their limbs, but the degree to which limb regeneration recapitulates limb development remains unclear. One limitation in answering this question is our lack of knowledge about salamander limb development. Here, we address this question by studying expression patterns of genes important for limb patterning during axolotl salamander limb development and regeneration. We focus on the Wnt signaling pathway because it regulates multiple functions during tetrapod limb development, including limb bud initiation, outgrowth, patterning, and skeletal differentiation. We use fluorescence in situ hybridization to show the expression of Wnt ligands, Wnt receptors, and limb patterning genes in developing and regenerating limbs. Inhibition of Wnt ligand secretion permanently blocks limb bud outgrowth when treated early in limb development. Inhibiting Wnt signaling during limb outgrowth decreases the expression of critical signaling genes, including Fgf10, Fgf8, and Shh, leading to the reduced outgrowth of the limb. Patterns of gene expression are similar between developing and regenerating limbs. Inhibition of Wnt signaling during regeneration impacted patterning gene expression similarly. Overall, our findings suggest that limb development and regeneration utilize Wnt signaling similarly. It also provides new insights into the interaction of Wnt signaling with other signaling pathways during salamander limb development and regeneration.
Collapse
Affiliation(s)
| | - Timothy J. Duerr
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Qingchao Qiu
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, United States
| | | | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, United States
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA, United States
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA, United States
| |
Collapse
|
3
|
Guy B, Zhang JS, Duncan LH, Johnston RJ. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021; 478:102-121. [PMID: 34181916 PMCID: PMC8364509 DOI: 10.1016/j.ydbio.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.
Collapse
Affiliation(s)
- Brian Guy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Jingliang Simon Zhang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
4
|
Martí-Solans J, Godoy-Marín H, Diaz-Gracia M, Onuma TA, Nishida H, Albalat R, Cañestro C. Massive Gene Loss and Function Shuffling in Appendicularians Stretch the Boundaries of Chordate Wnt Family Evolution. Front Cell Dev Biol 2021; 9:700827. [PMID: 34179025 PMCID: PMC8220140 DOI: 10.3389/fcell.2021.700827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 01/17/2023] Open
Abstract
Gene loss is a pervasive source of genetic variation that influences species evolvability, biodiversity and the innovation of evolutionary adaptations. To better understand the evolutionary patterns and impact of gene loss, here we investigate as a case study the evolution of the wingless (Wnt) family in the appendicularian tunicate Oikopleura dioica, an emergent EvoDevo model characterized by its proneness to lose genes among chordates. Genome survey and phylogenetic analyses reveal that only four of the thirteen Wnt subfamilies have survived in O. dioica—Wnt5, Wnt10, Wnt11, and Wnt16,—representing the minimal Wnt repertoire described in chordates. While the loss of Wnt4 and Wnt8 likely occurred in the last common ancestor of tunicates, representing therefore a synapomorphy of this subphylum, the rest of losses occurred during the evolution of appendicularians. This work provides the first complete Wnt developmental expression atlas in a tunicate and the first insights into the evolution of Wnt developmental functions in appendicularians. Our work highlights three main evolutionary patterns of gene loss: (1) conservation of ancestral Wnt expression domains not affected by gene losses; (2) function shuffling among Wnt paralogs accompanied by gene losses; and (3) extinction of Wnt expression in certain embryonic directly correlated with gene losses. Overall our work reveals that in contrast to “conservative” pattern of evolution of cephalochordates and vertebrates, O. dioica shows an even more radical “liberal” evolutionary pattern than that described ascidian tunicates, stretching the boundaries of the malleability of Wnt family evolution in chordates.
Collapse
Affiliation(s)
- Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hector Godoy-Marín
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Lozano-Velasco E, Garcia-Padilla C, Aránega AE, Franco D. Genetics of Atrial Fibrilation: In Search of Novel Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2019; 19:183-194. [PMID: 30727926 DOI: 10.2174/1871529x19666190206150349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic disease in humans, ranging from 2% in the general population and rising up to 10-12% in 80+ years. Genetic analyses of AF familiar cases have identified a series of point mutations in distinct ion channels, supporting a causative link. However, these genetic defects only explain a minority of AF patients. Genomewide association studies identified single nucleotide polymorphisms (SNPs), close to PITX2 on 4q25 chromosome, that are highly associated to AF. Subsequent GWAS studies have identified several new loci, involving additional transcription and growth factors. Furthermore, these risk 4q25 SNPs serve as surrogate biomarkers to identify AF recurrence in distinct surgical and pharmacological interventions. Experimental studies have demonstrated an intricate signalling pathway supporting a key role of the homeobox transcription factor PITX2 as a transcriptional regulator. Furthermore, cardiovascular risk factors such as hyperthyroidism, hypertension and redox homeostasis have been identified to modulate PITX2 driven gene regulatory networks. We provide herein a state-of-the-art review of the genetic bases of atrial fibrillation, our current understanding of the genetic regulatory networks involved in AF and its plausible usage for searching novel therapeutic targets.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
6
|
Rolfe RA, Shea CA, Singh PNP, Bandyopadhyay A, Murphy P. Investigating the mechanistic basis of biomechanical input controlling skeletal development: exploring the interplay with Wnt signalling at the joint. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0329. [PMID: 30249778 DOI: 10.1098/rstb.2017.0329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 02/01/2023] Open
Abstract
Embryo movement is essential to the formation of a functional skeleton. Using mouse and chick models, we previously showed that mechanical forces influence gene regulation and tissue patterning, particularly at developing limb joints. However, the molecular mechanisms that underpin the influence of mechanical signals are poorly understood. Wnt signalling is required during skeletal development and is altered under reduced mechanical stimulation. Here, to explore Wnt signalling as a mediator of mechanical input, the expression of Wnt ligand and Fzd receptor genes in the developing skeletal rudiments was profiled. Canonical Wnt activity restricted to the developing joint was shown to be reduced under immobilization, while overexpression of activated β-catenin following electroporation of chick embryo limbs led to joint expansion, supporting the proposed role for Wnt signalling in mechanoresponsive joint patterning. Two key findings advance our understanding of the interplay between Wnt signalling and mechanical stimuli: first, loss of canonical Wnt activity at the joint shows reciprocal, coordinated misregulation of BMP signalling under altered mechanical influence. Second, this occurs simultaneously with increased expression of several Wnt pathway component genes in a territory peripheral to the joint, indicating the importance of mechanical stimulation for a population of potential joint progenitor cells.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.
Collapse
Affiliation(s)
- Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Pratik Narendra Pratap Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol 2018; 19:98. [PMID: 30045756 PMCID: PMC6060547 DOI: 10.1186/s13059-018-1468-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, KY16 8LB, Scotland, UK.
| | - Josep Martí-Solans
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hector Escrivà
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Cristian Cañestro
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Ricard Albalat
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Yamaguchi S, Aoki N, Matsushima T, Homma KJ. Wnt-2b in the intermediate hyperpallium apicale of the telencephalon is critical for the thyroid hormone-mediated opening of the sensitive period for filial imprinting in domestic chicks (Gallus gallus domesticus). Horm Behav 2018; 102:120-128. [PMID: 29778460 DOI: 10.1016/j.yhbeh.2018.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Filial imprinting is the behavior observed in chicks during the sensitive or critical period of the first 2-3 days after hatching; however, after this period they cannot be imprinted when raised in darkness. Our previous study showed that temporal augmentation of the endogenous thyroid hormone 3,5,3'-triiodothyronine (T3) in the telencephalon, by imprinting training, starts the sensitive period just after hatching. Intravenous injection of T3 enables imprinting of chicks on days 4 or 6 post-hatching, even when the sensitive period has ended. However, the molecular mechanism of how T3 acts as a determinant of the sensitive period is unknown. Here, we show that Wnt-2b mRNA level is increased in the T3-injected telencephalon of 4-day old chicks. Pharmacological inhibition of Wnt signaling in the intermediate hyperpallium apicale (IMHA), which is the caudal area of the telencephalon, blocked the recovery of the sensitive period following T3 injection. In addition, injection of recombinant Wnt-2b protein into the IMHA helped chicks recover the sensitive period without the injection of T3. Lastly, we showed Wnt signaling to be involved in imprinting via the IMHA region on day 1 during the sensitive period. These results indicate that Wnt signaling plays a critical role in the opening of the sensitive period downstream of T3.
Collapse
Affiliation(s)
- Shinji Yamaguchi
- Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Naoya Aoki
- Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Hokkaido 060-0810, Japan
| | - Koichi J Homma
- Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
9
|
Blanchoud S, Rutherford K, Zondag L, Gemmell NJ, Wilson MJ. De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution. Sci Rep 2018; 8:5518. [PMID: 29615780 PMCID: PMC5882950 DOI: 10.1038/s41598-018-23749-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Tunicates are marine invertebrates that compose the closest phylogenetic group to the vertebrates. These chordates present a particularly diverse range of regenerative abilities and life-history strategies. Consequently, tunicates provide an extraordinary perspective into the emergence and diversity of these traits. Here we describe the genome sequencing, annotation and analysis of the Stolidobranchian Botrylloides leachii. We have produced a high-quality 159 Mb assembly, 82% of the predicted 194 Mb genome. Analysing genome size, gene number, repetitive elements, orthologs clustering and gene ontology terms show that B. leachii has a genomic architecture similar to that of most solitary tunicates, while other recently sequenced colonial ascidians have undergone genome expansion. In addition, ortholog clustering has identified groups of candidate genes for the study of colonialism and whole-body regeneration. By analysing the structure and composition of conserved gene linkages, we observed examples of cluster breaks and gene dispersions, suggesting that several lineage-specific genome rearrangements occurred during tunicate evolution. We also found lineage-specific gene gain and loss within conserved cell-signalling pathways. Such examples of genetic changes within conserved cell-signalling pathways commonly associated with regeneration and development that may underlie some of the diverse regenerative abilities observed in tunicates. Overall, these results provide a novel resource for the study of tunicates and of colonial ascidians.
Collapse
Affiliation(s)
- Simon Blanchoud
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kim Rutherford
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Lisa Zondag
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
10
|
Arendt D, Tosches MA, Marlow H. From nerve net to nerve ring, nerve cord and brain--evolution of the nervous system. Nat Rev Neurosci 2016; 17:61-72. [PMID: 26675821 DOI: 10.1038/nrn.2015.15] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The puzzle of how complex nervous systems emerged remains unsolved. Comparative studies of neurodevelopment in cnidarians and bilaterians suggest that this process began with distinct integration centres that evolved on opposite ends of an initial nerve net. The 'apical nervous system' controlled general body physiology, and the 'blastoporal nervous system' coordinated feeding movements and locomotion. We propose that expansion, integration and fusion of these centres gave rise to the bilaterian nerve cord and brain.
Collapse
Affiliation(s)
- Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 699117 Heidelberg, Germany
| | - Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| | - Heather Marlow
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
11
|
Franco D, Lozano-Velasco E, Aranega A. Gene regulatory networks in atrial fibrillation. World J Med Genet 2016; 6:1-16. [DOI: 10.5496/wjmg.v6.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic syndrome in humans. With an estimate incidence of 1%-2% in the general population, AF raises up to almost 10%-12% in 80+ years. Thus, AF represents nowadays a highly prevalent medical problem generating a large economic burden. At the electrophysiological level, distinct mechanisms have been elucidated. Yet, despite its prevalence, the genetic and molecular culprits of this pandemic cardiac electrophysiological abnormality have remained largely obscure. Molecular genetics of AF familiar cases have demonstrated that single nucleotide mutations in distinct genes encoding for ion channels underlie the onset of AF, albeit such alterations only explain a minor subset of patients with AF. In recent years, analyses by means of genome-wide association studies have unraveled a more complex picture of the etiology of AF, pointing out to distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Furthermore a new layer of regulatory mechanisms have emerged, i.e., post-transcriptional regulation mediated by non-coding RNA, which have been demonstrated to exert pivotal roles in cardiac electrophysiology. In this manuscript, we aim to provide a comprehensive review of the genetic regulatory networks that if impaired exert electrophysiological abnormalities that contribute to the onset, and subsequently, on self-perpetuation of AF.
Collapse
|
12
|
Mwafi N, Beretta CA, Paolini A, Carl M. Divergent Wnt8a gene expression in teleosts. PLoS One 2014; 9:e85303. [PMID: 24465531 PMCID: PMC3896364 DOI: 10.1371/journal.pone.0085303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/26/2013] [Indexed: 12/02/2022] Open
Abstract
The analysis of genes in evolutionarily distant but morphologically similar species is of major importance to unravel the changes in genomes over millions of years, which led to gene silencing and functional diversification. We report the analysis of Wnt8a gene expression in the medakafish and provide a detailed comparison to other vertebrates. In all teleosts analyzed there are two paralogous Wnt8a copies. These show largely overlapping expression in the early developing zebrafish embryo, an evolutionarily distant relative of medaka. In contrast to zebrafish, we find that both maternal and zygotic expression of particularly one Wnt8a paralog has diverged in medaka. While Wnt8a1 expression is mostly conserved at early embryonic stages, the expression of Wnt8a2 differs markedly. In addition, both genes are distinctly expressed during organogenesis unlike the zebrafish homologs, which may hint at the emergence of functional diversification of Wnt8a ligands during evolution.
Collapse
Affiliation(s)
- Nesrin Mwafi
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
| | - Carlo A. Beretta
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
| | - Alessio Paolini
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
| | - Matthias Carl
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
- * E-mail:
| |
Collapse
|