1
|
Agrawal N, Bhardwaj A. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1,4-di-N-oxide scaffold. Chem Biol Drug Des 2022; 100:346-363. [PMID: 35610776 DOI: 10.1111/cbdd.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) exhibit multifaceted biological properties, wherein antimicrobial, anticancer, antitrypanosomal, and anti-inflammatory properties are included. Because of their various activities in clinical practice and research, they have a wide spectrum of uses and possibilities. QdNOs have received a significant amount of attention, and research into their medicinal chemistry is still a part of experimental investigation and analytical studies. In this review, QdNOs are classified depending on their actions, which include antibacterial and anti-mycobacterial, anticancer or antitumor, antimalarial, antifungal, and other activities. In a conclusion, it's important to base the development of novel synthetic techniques and the design of new QdNO derivatives on the most up-to-date knowledge gleaned from recent research. With the summarised structure-activity relationship of fascinating QdNOs, this review aims to provide insights into the developments in the chemistry and biological activity of QdNO derivatives.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Aditya Bhardwaj
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
2
|
Vilaplana-Lopera N, Besh M, Moon EJ. Targeting Hypoxia: Revival of Old Remedies. Biomolecules 2021; 11:1604. [PMID: 34827602 PMCID: PMC8615589 DOI: 10.3390/biom11111604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Tumour hypoxia is significantly correlated with patient survival and treatment outcomes. At the molecular level, hypoxia is a major driving factor for tumour progression and aggressiveness. Despite the accumulative scientific and clinical efforts to target hypoxia, there is still a need to find specific treatments for tumour hypoxia. In this review, we discuss a variety of approaches to alter the low oxygen tumour microenvironment or hypoxia pathways including carbogen breathing, hyperthermia, hypoxia-activated prodrugs, tumour metabolism and hypoxia-inducible factor (HIF) inhibitors. The recent advances in technology and biological understanding reveal the importance of revisiting old therapeutic regimens and repurposing their uses clinically.
Collapse
Affiliation(s)
| | | | - Eui Jung Moon
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington OX3 7DQ, UK; (N.V.-L.); (M.B.)
| |
Collapse
|
3
|
Li Y, Zhao L, Li XF. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front Oncol 2021; 11:700407. [PMID: 34395270 PMCID: PMC8358929 DOI: 10.3389/fonc.2021.700407] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important characteristic of most solid malignancies, and is closely related to tumor prognosis and therapeutic resistance. Hypoxia is one of the most important factors associated with resistance to conventional radiotherapy and chemotherapy. Therapies targeting tumor hypoxia have attracted considerable attention. Hypoxia-activated prodrugs (HAPs) are bioreductive drugs that are selectively activated under hypoxic conditions and that can accurately target the hypoxic regions of solid tumors. Both single-agent and combined use with other drugs have shown promising antitumor effects. In this review, we discuss the mechanism of action and the current preclinical and clinical progress of several of the most widely used HAPs, summarize their existing problems and shortcomings, and discuss future research prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Quinoxaline 1,4-di-N-oxides: a review of the importance of their structure in the development of drugs against infectious diseases and cancer. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02731-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Chu G, Liu X, Yu W, Chen M, Dong L. Cisplatin plus paclitaxel chemotherapy with or without bevacizumab in postmenopausal women with previously untreated advanced cervical cancer: a retrospective study. BMC Cancer 2021; 21:133. [PMID: 33549065 PMCID: PMC7866467 DOI: 10.1186/s12885-021-07869-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/02/2021] [Indexed: 01/03/2023] Open
Abstract
Background The aim of this study was to assess the survival outcomes of cisplatin-paclitaxel chemotherapy plus bevacizumab (CPB) versus cisplatin-paclitaxel chemotherapy alone (CPA) in postmenopausal women with previously untreated advanced cervical cancer (CC). Methods Consecutive postmenopausal women who experienced CPB or CPA were identified retrospectively from our medical centre during 2015–2019. Follow-up visits occurred 1 and 3 months after starting CPB or CPA. Afterwards, this assessment was conducted every 3 months for 1 year and then yearly thereafter. The primary endpoints were overall survival (OS) and progression-free survival (PFS); secondary endpoints were the frequency and severity of adverse events (AEs). Results Two hundred forty-six postmenopausal women were included (CPB, n = 124; CPA, n = 122). The median follow-up for the entire cohort was 24 months (range, 2–32). At the final follow-up, a significant difference was detected in terms of median OS (16.4 months [95% CI, 15.3–17.1] for CPB vs. 12.3 months [95% CI, 10.2–13.5] for CPA; hazard ratio (HR) 0.69, 95% CI, 0.49–0.99; p = 0.001), and the median PFS was longer in the CPB group than in the CPA group (9.2 months [95% CI, 8.3–10.7] vs. 7.9 months (95% CI, 6.1–8.6) (HR 0.62, 95% CI, 0.47–0.82; p < 0.001). There were significant differences in the number of AEs between the groups (hypertension grade ≥ 2 [p < 0.001], neutropenia grade ≥ 4 [p < 0.001], and thrombosis/embolism grade ≥ 3 [p = 0.030]). Conclusions Among postmenopausal women with previously untreated advanced CC, those who received CPB experienced superior survival benefits compared to those who received CPA. The safety profile for CPB was controllable despite the long duration of CPB use.
Collapse
Affiliation(s)
- Guanghua Chu
- Department of Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Qujiang New District, Xi'an, 710061, Shaanxi, China
| | - Xiangzhen Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Weiguang Yu
- Department of Orthopedics, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Meiji Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Lingyun Dong
- Department of Gynecology and obstetrics, Shanghai Public Health Clinical Center, No. 2901 Caolang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
6
|
A rat toxicological study of intra-arterial injection of Tirapazamine, a hypoxia-activating Cancer therapeutic agent, followed by hepatic artery ligation. Invest New Drugs 2021; 39:747-755. [PMID: 33428079 DOI: 10.1007/s10637-020-01057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/20/2020] [Indexed: 11/27/2022]
Abstract
Background Tirapazamine's (TPZ) tolerability after an intra-arterial (IA) injection remains unclear. We investigated TPZ's safety and tolerability in rats by first injecting into the left hepatic artery and then performing a hepatic artery ligation, which recapitulates the transarterial embolization used clinically. Research design and methods: Forty-six rats in five groups were respectively injected with 0, 0.25, 0.50, 1.0, or more than 1.5 mL IA of TPZ (0.7 mg/mL) into the left hepatic artery and then subjected to hepatic artery ligation under laparotomy. Blood samples were collected four times daily up to day 15 after which the rats were euthanized and necropsied. The toxicity profile of IA injection of TPZ followed by hepatic artery ligation was then assessed. Results No significant changes to the rats' body weight and serum total bilirubin were observed. Serum alanine aminotransferase (ALT) levels increased slightly but remained below 100 U/L one day after treatment for most rats. Three rats in Groups 3 and 4 exhibited an over two-fold transient elevation of ALT. All ALT recovered to the baseline at day 14. Liver tissues were collected on day 15 using H&E staining. One rat in Group 3 showed ischemic coagulative necrosis in its liver tissue. Other sporadic pathological changes not related to TPZ doses were observed in Groups 2, 3, 4, and 5. Conclusion TPZ by IA injection followed by embolization is tolerated up to 7 mg/kg. This finding supports the strategy of administering an IA injection of TPZ followed by trans-arterial embolization to the liver.
Collapse
|
7
|
Scriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells. Oncotarget 2018; 7:71841-71855. [PMID: 27708247 PMCID: PMC5342127 DOI: 10.18632/oncotarget.12378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/25/2016] [Indexed: 11/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), comprising 85% of lung cancer cases, has been associated with resistance to chemo/radiotherapy. The hypoxic tumor micro-environment, where insufficient vasculature results in poor drug penetrance and sub-optimal chemotherapy in the tumor interiors contributes heavily to this resistance. Additionally, epigenetic changes in tumorigenic cells also change their response to different forms of therapy. In our study, we have investigated the effectiveness of a combination of cisplatin with scriptaid [a pan-Histone Deacetylase inhibitor (HDACi)] in a model that mimics the tumor microenvironment of hypoxia and sub-lethal chemotherapy. Scriptaid synergistically increases the efficacy of cisplatin in normoxia as well as hypoxia, accompanied with reduced metastasis and enhanced DNA damage. Addition of scriptaid also overcomes the cisplatin resistance exhibited in lung cancer cells with stabilized hypoxia inducible factor 1 (HIF1)-α (mutant) and mutant p53. Molecular studies showed that the combination treatment increased apoptotic cell death in both normoxia and hypoxia with a dual role of p38MAPK. Together, our results suggest that the combination of low dose cisplatin and scriptaid is cytotoxic to NSCLC lines, can overcome hypoxia induced resistance and mutant p53- induced instability often associated with this cancer, and has the potential to be an effective therapeutic modality.
Collapse
|
8
|
A two-year dietary carcinogenicity study of cyadox in Sprague-Dawley rats. Regul Toxicol Pharmacol 2017; 87:9-22. [DOI: 10.1016/j.yrtph.2017.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 02/02/2023]
|
9
|
Hypoxia-activated cytotoxic agent tirapazamine enhances hepatic artery ligation-induced killing of liver tumor in HBx transgenic mice. Proc Natl Acad Sci U S A 2016; 113:11937-11942. [PMID: 27702890 DOI: 10.1073/pnas.1613466113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transarterial chemoembolization (TACE) is the main treatment for intermediate stage hepatocellular carcinoma (HCC) with Barcelona Clinic Liver Cancer classification because of its exclusive arterial blood supply. Although TACE achieves substantial necrosis of the tumor, complete tumor necrosis is uncommon, and the residual tumor generally rapidly recurs. We combined tirapazamine (TPZ), a hypoxia-activated cytotoxic agent, with hepatic artery ligation (HAL), which recapitulates transarterial embolization in mouse models, to enhance the efficacy of TACE. The effectiveness of this combination treatment was examined in HCC that spontaneously developed in hepatitis B virus X protein (HBx) transgenic mice. We proved that the tumor blood flow in this model was exclusively supplied by the hepatic artery, in contrast to conventional orthotopic HCC xenografts that receive both arterial and venous blood supplies. At levels below the threshold oxygen levels created by HAL, TPZ was activated and killed the hypoxic cells, but spared the normoxic cells. This combination treatment clearly limited the toxicity of TPZ to HCC, which caused the rapid and near-complete necrosis of HCC. In conclusion, the combination of TPZ and HAL showed a synergistic tumor killing activity that was specific for HCC in HBx transgenic mice. This preclinical study forms the basis for the ongoing clinical program for the TPZ-TACE regimen in HCC treatment.
Collapse
|
10
|
Cheng G, Sa W, Cao C, Guo L, Hao H, Liu Z, Wang X, Yuan Z. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions. Front Pharmacol 2016; 7:64. [PMID: 27047380 PMCID: PMC4800186 DOI: 10.3389/fphar.2016.00064] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas, and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Wei Sa
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Chen Cao
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Liangliang Guo
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
11
|
DiSilvestro PA, Ali S, Craighead PS, Lucci JA, Lee YC, Cohn DE, Spirtos NM, Tewari KS, Muller C, Gajewski WH, Steinhoff MM, Monk BJ. Phase III randomized trial of weekly cisplatin and irradiation versus cisplatin and tirapazamine and irradiation in stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to the pelvis: a Gynecologic Oncology Group study. J Clin Oncol 2014; 32:458-64. [PMID: 24395863 DOI: 10.1200/jco.2013.51.4265] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE This prospective, randomized phase III intergroup trial of the Gynecologic Oncology Group and National Cancer Institute of Canada Clinical Trials Group was designed to test the effectiveness and safety of adding the hypoxic cell sensitizer tirapazamine (TPZ) to standard cisplatin (CIS) chemoradiotherapy in locally advanced cervix cancer. PATIENTS AND METHODS Patients with locally advanced cervix cancer were randomly assigned to CIS chemoradiotherapy versus CIS/TPZ chemoradiotherapy. Primary end point was progression-free survival (PFS). Secondary end points included overall survival (OS) and tolerability. RESULTS PFS was evaluable in 387 of 402 patients randomly assigned over 36 months, with enrollment ending in September 2009. Because of the lack of TPZ supply, the study did not reach its original target accrual goal. At median follow-up of 28.3 months, PFS and OS were similar in both arms. Three-year PFS for the TPZ/CIS/RT and CIS/RT arms were 63.0% and 64.4%, respectively (log-rank P = .7869). Three-year OS for the TPZ/CIS/RT and CIS/RT arms were 70.5% and 70.6%, respectively (log-rank P = .8333). A scheduled interim safety analysis led to a reduction in the starting dose for the TPZ/CIS arm, with resulting tolerance in both treatment arms. CONCLUSION TPZ/CIS chemoradiotherapy was not superior to CIS chemoradiotherapy in either PFS or OS, although definitive commentary was limited by an inadequate number of events (progression or death). TPZ/CIS chemoradiotherapy was tolerable at a modified starting dose.
Collapse
Affiliation(s)
- Paul A DiSilvestro
- Paul A. DiSilvestro and Margaret M. Steinhoff, Women and Infants Hospital, Providence, RI; Shamshad Ali, Roswell Park Cancer Institute, Buffalo; Yi-Chun Lee, State University of New York Health Science Center, Brooklyn, NY; Peter S. Craighead, Tom Baker Cancer Center, Calgary, Alberta, Canada; Joseph A. Lucci, University of Miami School of Medicine, Miami, FL; David E. Cohn, Ohio State University, Columbus, OH; Nicola M. Spirtos, Women's Cancer Center of Nevada, Las Vegas, NV; Krishnasu S. Tewari, University of California Medical Center, Irvine, Orange, CA; Carolyn Muller, University of New Mexico Memorial Medical Center, Albuquerque, NM; Walter H. Gajewski, Zimmer Cancer Center, Wilmington, NC; and Bradley J. Monk, Creighton University School of Medicine, Phoenix, AZ
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hypoxia-Directed Drug Strategies to Target the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:111-45. [DOI: 10.1007/978-1-4614-5915-6_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Developments in the systemic treatment of metastatic cervical cancer. Cancer Treat Rev 2013; 39:430-43. [DOI: 10.1016/j.ctrv.2012.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/22/2012] [Accepted: 05/27/2012] [Indexed: 11/21/2022]
|
14
|
Ghatage P, Sabagh H. Is there a role for tirapazamine in the treatment of cervical cancer? Expert Opin Drug Metab Toxicol 2012; 8:1589-97. [PMID: 23033890 DOI: 10.1517/17425255.2012.730518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cervical cancer is the second-most common malignancy in women worldwide. Cisplatin was introduced as a radiosensitizer in 1999 to improve chances of survival. Tumor cell hypoxia, however, remains a major limiting factor in the treatment of solid tumors with chemotherapy and radiation. There has since been significant interest in the use of bioreductive agents to overcome the hypoxia and improve survival. The addition of tirapazamine (TPZ) to conventional chemoradiation protocols in the management of cervical cancer held promise in the initial Phase I and II clinical trials in delaying recurrence and improving survival. However, GOG recently announced early closure of the Phase III trial of tirapazamine in cervical cancer due to a lack of increased survival. AREAS COVERED This article covers the definition of hypoxic tumor cells, the markers of tumor hypoxia, methods for measuring hypoxia as well as the pharmacologic action of tirapazamine in hypoxic media. Furthermore, it critically evaluates TPZ's role in cervical cancer treatment and the drawbacks to the GOG study. The authors review all clinical trials published to date with special emphasis on cervical cancer. A systematic review of the literature was also undertaken with PubMed and Ovid. EXPERT OPINION Despite the promising results from early clinical trials, it has been shown that the addition of tirapazamine appears to confer no benefits on progression-free or overall survival in patients with cervical cancer. Success in the future will require smaller randomized trials with biologic targets that have acceptable toxicity and efficacy.
Collapse
Affiliation(s)
- Prafull Ghatage
- Tom Baker Cancer Centre, Department of Gynecologic Oncology, Calgary, Alberta, Canada.
| | | |
Collapse
|
15
|
Sonoda A, Nitta N, Ohta S, Nitta-Seko A, Nagatani Y, Takahashi M, Murata K. Enhanced antitumor effect of tirapazamine delivered intraperitoneally to VX2 liver tumor-bearing rabbits subjected to transarterial hepatic embolization. Cardiovasc Intervent Radiol 2011; 34:1272-7. [PMID: 21479745 DOI: 10.1007/s00270-011-0156-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/14/2011] [Indexed: 01/30/2023]
Abstract
PURPOSE We evaluated the effects of the combination of Tirapazamine (TPZ), activated preferentially under hypoxic conditions, and gelatin microspheres (GMS) on the tumor growth ratio in rabbits. METHODS We assigned 20 liver tumor-bearing Japanese white rabbits to 4 equal groups. Group 1 received 1 ml of saline intra-arterially (i.a.) and 20 ml of saline intraperitoneally (i.p.; saline group). Group 2 was injected with GMS i.a. and 20 ml saline i.p. (GMS group). Group 3 received 1 ml of saline i.a. and 300 mg/m(2) of TPZ i.p. (TPZ group), and group 4 was treated with GMS i.a. and 300 mg/m(2) of TPZ i.p. (GMS + TPZ group). The infusion of GMS was stopped when the blood flow stagnated. Before and 7 days after treatment, the liver tumor volumes were measured as the total number of pixels on 0.3Tesla (T) magnetic resonance imaging (MRI) scans. RESULTS The tumor growth ratio (mean ± standard deviation) of the saline, GMS, TPZ, and GMS + TPZ groups was 519.15 ± 93.78, 279.24 ± 91.83, 369.78 ± 95.73, and 119.87 ± 17.62, respectively. The difference between the GMS + TPZ group and the other groups was statistically significant (P < 0.05). CONCLUSIONS Our results show that the combination of TPZ i.p. and GMS i.a. enhanced the antitumor effect of TPZ. This procedure may represent a new alternative treatment for patients with hepatic cell carcinoma.
Collapse
Affiliation(s)
- Akinaga Sonoda
- Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang J, Cao J, Weng Q, Wu R, Yan Y, Jing H, Zhu H, He Q, Yang B. Suppression of hypoxia-inducible factor 1α (HIF-1α) by tirapazamine is dependent on eIF2α phosphorylation rather than the mTORC1/4E-BP1 pathway. PLoS One 2010; 5:e13910. [PMID: 21085474 PMCID: PMC2976688 DOI: 10.1371/journal.pone.0013910] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/19/2010] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Tirapazamine (TPZ), a well-characterized bioreductive anticancer agent, is currently in Phase II and III clinical trials. A major aspect of the anticancer activity of TPZ is its identity as a tumor-specific topoisomerase IIα inhibitor. In the study, for the first time, we found that TPZ acts in a novel manner to inhibit HIF-1α accumulation driven by hypoxia or growth factors in human cancer cells and in HepG2 cell-derived tumors in athymic nude mice. We investigated the mechanism of TPZ on HIF-1α in HeLa human cervical cancer cells by western blot analysis, reverse transcription-PCR assay, luciferase reporter assay and small interfering RNA (siRNA) assay. Mechanistic studies demonstrated that neither HIF-1α mRNA levels nor HIF-1α protein degradation are affected by TPZ. However, TPZ was found to be involved in HIF-1α translational regulation. Further studies revealed that the inhibitory effect of TPZ on HIF-1α protein synthesis is dependent on the phosphorylation of translation initiation factor 2α (eIF2α) rather than the mTOR complex 1/eukaryotic initiation factor 4E-binding protein-1 (mTORC1/4E-BP1) pathway. Immunofluorescence analysis of tumor sections provide the in vivo evidences to support our hypothesis. Additionally, siRNA specifically targeting topoisomerase IIα did not reverse the ability of TPZ to inhibit HIF-1α expression, suggesting that the HIF-1α inhibitory activity of TPZ is independent of its topoisomerase IIα inhibition. In conclusion, our findings suggest that TPZ is a potent regulator of HIF-1α and provide new insight into the potential molecular mechanism whereby TPZ serves to reduce HIF-1α expression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Cycle Proteins
- Cell Hypoxia
- Cell Line, Tumor
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Hep G2 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Multiprotein Complexes
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation/drug effects
- Proteins/genetics
- Proteins/metabolism
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases
- Tirapazamine
- Transplantation, Heterologous
- Triazines/pharmacology
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Rui Wu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Yan Yan
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Hui Jing
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- * E-mail: (BY); (QH)
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- * E-mail: (BY); (QH)
| |
Collapse
|
17
|
Reddy SB, Williamson SK. Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert Opin Investig Drugs 2009; 18:77-87. [PMID: 19053884 DOI: 10.1517/13543780802567250] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tumor hypoxia remains one of the greatest challenges in the treatment of solid tumors, as cancer cells in these regions are resistant to killing by radiation therapy and most anticancer drugs. Tirapazamine (TPZ) is a newer class of cytotoxic drugs with selective toxicity towards hypoxic mammalian cells. OBJECTIVE This article reviews the mechanism of action, toxicity and antitumor activity of the drug and provides insights into factors that may have contributed to the disappointing results in some of the Phase III trials. It also identifies the need to explore dependable markers of tumor hypoxia and limit future trials of this agent to patients who have significant populations of hypoxic tumor cells. METHODS We reviewed all clinical trials published to date and present a summary of the results. There are also several ongoing studies, the results of which are pending and may yet impact the clinical use of the drug. RESULTS/CONCLUSION Despite the very promising results obtained in various preclinical studies and early-Phase clinical trials, several Phase III trials have failed to demonstrate any survival benefit of adding TPZ to chemotherapy or radiation therapy in non-small cell lung cancer or head and neck cancer. Several clinical trials have yet to be completed and reported.
Collapse
Affiliation(s)
- Srini B Reddy
- University of Kansas Medical Center, Division of Hematology/Oncology, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS 66205, USA
| | | |
Collapse
|
18
|
Movva S, Rodriguez L, Arias-Pulido H, Verschraegen C. Novel chemotherapy approaches for cervical cancer. Cancer 2009; 115:3166-80. [DOI: 10.1002/cncr.24364] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Nagle DG, Zhou YD. Marine Natural Products as Inhibitors of Hypoxic Signaling in Tumors. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2009; 8:415-429. [PMID: 20622986 PMCID: PMC2901131 DOI: 10.1007/s11101-009-9120-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Marine natural products have become a major source of new chemical entities in the discovery of potential anticancer agents that potently suppress various antitumor molecular targets. As a consequence of insufficient vascularization, hypoxic regions form within rapidly growing solid tumor masses. Specific alterations of gene expression in these hypoxic tumor cells help facilitate the survival and metastatic spread of solid tumors. The transcriptional response to cellular hypoxia is primarily mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1) that regulates the expression of more than 100 genes involved in cellular adaptation and survival under hypoxic stress. Clinical studies in cancer patients indicate that HIF-1 activation is directly correlated with advanced disease stages and treatment resistance. HIF-1 has emerged as an important tumor-selective molecular target for anticancer drug discovery. As a result, natural product-based inhibitors of HIF-1 activation have been identified from plants and microorganisms. Recently, structurally unique natural products from marine sponges, crinoids, and algae have been identified as HIF-1 activation inhibitors. The US National Cancer Institute's Open Repository of marine invertebrate and algae extracts has proven to be a valuable source of natural product HIF-1 inhibitors. Among the active compounds identified, certain marine natural products have also been shown to suppress the hypoxic induction of HIF-1 target genes such as vascular endothelial growth factor (VEGF). Some of these marine HIF-1 inhibitors act by interfering with the generation of mitochondrial signaling molecules in hypoxic cells. However, the precise mechanisms of action for many newly identified marine natural product HIF-1 inhibitors remain unresolved.
Collapse
Affiliation(s)
- Dale G. Nagle
- Author for correspondence: Tel.: +1-602-915-7026; Fax +1-602-915-6975;
| | | |
Collapse
|
20
|
Robati M, Holtz D, Dunton CJ. A review of topotecan in combination chemotherapy for advanced cervical cancer. Ther Clin Risk Manag 2008; 4:213-8. [PMID: 18728710 PMCID: PMC2503656 DOI: 10.2147/tcrm.s1771] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Treatment of advanced, recurrent or persistent cervical cancer includes radiotherapy and chemotherapy. Radiation has been the primary treatment modality for locoregionally advanced cervical cancer. Concomitant systemic cisplatin chemotherapy and radiation have shown high response rates with improvements in durable remissions and overall survival. Cisplatin has been the standard medication for the treatment of advanced cervical cancer. Combinations with other chemotherapeutic agents have been the subject of clinical trials with varying results. The toxicity of combination chemotherapy and tolerability of patients are other factors that should be considered in the management of patients with advanced disease. Recently topotecan, in combination with cisplatin, achieved increased response and overall survival rates without further compromising the patients' quality of life. This review focuses on the mechanism of action and toxicities of topotecan, as well as its role as a radio-sensitizer and chemotherapeutic agent in the management of advanced, recurrent, or persistent cervical cancer. Other combination modalities and dosages are also discussed.
Collapse
Affiliation(s)
- Minoo Robati
- Department of Obstetrics and Gynecology, Main Line Gynecologic Oncology, Lankenau Hospital Wynnewood, PA, USA
| | | | | |
Collapse
|
21
|
Cadron I, Van Gorp T, Amant F, Leunen K, Neven P, Vergote I. Chemotherapy for recurrent cervical cancer. Gynecol Oncol 2007; 107:S113-8. [PMID: 17804044 DOI: 10.1016/j.ygyno.2007.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To give an overview of chemotherapy schemes used in recurrent cervical cancer. METHODS A pubmed search was performed using chemotherapy and recurrent cervical cancer including articles until April 2007. RESULTS Most recent articles and articles of interest are discussed. CONCLUSION Single agent cisplatin (50 mg/m2) remains the current standard for recurrent cervical cancer. Numerous chemotherapeutic agents have been tested but did not show convincing evidence of improved survival rates, except for the GOG 179 study which showed an improved survival for the combination of cisplatin and topotecan compared with single agent cisplatin. However, nearly 60% of patients in both groups received prior cisplatinum therapy as a radiosensitizer, which could be responsible for the development of platinum resistance, causing lower response and survival rates in the single platinum group. Hence, the apparent benefit in the doublet group is maybe just a reflection from the change in primary therapy and patient population. It is hoped that current trials comparing standard therapy with other single or doublet chemotherapeutic regimens or that the use of molecular-targeted agents will give us promising therapeutic options in the future.
Collapse
Affiliation(s)
- Isabelle Cadron
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University Hospitals Leuven, Gasthuisberg, B-3000 Leuven, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
McKeown SR, Cowen RL, Williams KJ. Bioreductive drugs: from concept to clinic. Clin Oncol (R Coll Radiol) 2007; 19:427-42. [PMID: 17482438 DOI: 10.1016/j.clon.2007.03.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 02/20/2007] [Accepted: 03/09/2007] [Indexed: 11/19/2022]
Abstract
One of the key issues for radiobiologists is the importance of hypoxia to the radiotherapy response. This review addresses the reasons for this and primarily focuses on one aspect, the development of bioreductive drugs that are specifically designed to target hypoxic tumour cells. Four classes of compound have been developed since this concept was first proposed: quinones, nitroaromatics, aliphatic and heteroaromatic N-oxides. All share two characteristics: (1) they require hypoxia for activation and (2) this activation is dependent on the presence of specific reductases. The most effective compounds have shown the ability to enhance the anti-tumour efficacy of agents that kill better-oxygenated cells, i.e. radiation and standard cytotoxic chemotherapy agents such as cisplatin and cyclophosphamide. Tirapazamine (TPZ) is the most widely studied of the lead compounds. After successful pre-clinical in vivo combination studies it entered clinical trial; over 20 trials have now been reported. Although TPZ has enhanced some standard regimens, the results are variable and in some combinations toxicity was enhanced. Banoxantrone (AQ4N) is another agent that is showing promise in early phase I/II clinical trials; the drug is well tolerated, is known to locate in the tumour and can be given in high doses without major toxicities. Mitomycin C (MMC), which shows some bioreductive activation in vitro, has been tested in combination trials. However, it is difficult to assign the enhancement of its effects to targeting of the hypoxic cells because of the significant level of its hypoxia-independent toxicity. More specific analogues of MMC, e.g. porfiromycin and apaziquone (EO9), have had variable success in the clinic. Other new drugs that have good pre-clinical profiles are PR 104 and NLCQ-1; data on their clinical safety/efficacy are not yet available. This paper reviews the pre-clinical data and discusses the clinical studies that have been reported.
Collapse
Affiliation(s)
- S R McKeown
- Institute of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
23
|
Hall MD, Failes TW, Yamamoto N, Hambley TW. Bioreductive activation and drug chaperoning in cobalt pharmaceuticals. Dalton Trans 2007:3983-90. [PMID: 17828357 DOI: 10.1039/b707121c] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential for cobalt(III) complexes in medicine, as chaperones of bioactive ligands, and to target tumours through bioreductive activation, has been examined over the past 20 years. Despite this, chemical properties such as reduction potential and carrier ligands required for optimal tumour targeting and drug delivery have not been optimised. Here we review the chemistry of cobalt(III) drug design, and recent developments in the understanding of the cellular fate of these drugs.
Collapse
Affiliation(s)
- Matthew D Hall
- Centre for Heavy Metals Research, School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|