1
|
Fang X, Ni N, Wang X, Tian Y, Ivanov I, Rijnkels M, Bayless KJ, Lydon JP, Li Q. EZH2 and Endometrial Cancer Development: Insights from a Mouse Model. Cells 2022; 11:cells11050909. [PMID: 35269532 PMCID: PMC8909840 DOI: 10.3390/cells11050909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/26/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a core component of polycomb repressive complex 2, plays an important role in cancer development. As both oncogenic and tumor suppressive functions of EZH2 have been documented in the literature, the objective of this study is to determine the impact of Ezh2 deletion on the development and progression of endometrial cancer induced by inactivation of phosphatase and tensin homolog (PTEN), a tumor suppressor gene frequently dysregulated in endometrial cancer patients. To this end, we created mice harboring uterine deletion of both Ezh2 and Pten using Cre recombinase driven by the progesterone receptor (Pgr) promoter. Our results showed reduced tumor burden in Ptend/d; Ezh2d/d mice compared with that of Ptend/d mice during early carcinogenesis. The decreased Ki67 index in EZH2 and PTEN-depleted uteri versus that in PTEN-depleted uteri indicated an oncogenic role of EZH2 during early tumor development. However, mice harboring uterine deletion of both Ezh2 and Pten developed unfavorable disease outcome, accompanied by exacerbated epithelial stratification and heightened inflammatory response. The observed effect was non-cell autonomous and mediated by altered immune response evidenced by massive accumulation of intraluminal neutrophils, a hallmark of endometrial carcinoma in Ptend/d; Ezh2d/d mice during disease progression. Hence, these results reveal dual roles of EZH2 in endometrial cancer development.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA;
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (Y.T.); (I.I.)
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (Y.T.); (I.I.)
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
- Correspondence: ; Tel.: +1-979-862-2009; Fax: +1-979-847-8981
| |
Collapse
|
2
|
Sorolla MA, Parisi E, Sorolla A. Determinants of Sensitivity to Radiotherapy in Endometrial Cancer. Cancers (Basel) 2020; 12:E1906. [PMID: 32679719 PMCID: PMC7409033 DOI: 10.3390/cancers12071906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is one of the cornerstone treatments for endometrial cancer and has successfully diminished the risk of local recurrences after surgery. However, a considerable percentage of patients suffers tumor relapse due to radioresistance mechanisms. Knowledge about the molecular determinants that confer radioresistance or radiosensitivity in endometrial cancer is still partial, as opposed to other cancers. In this review, we have highlighted different central cellular signaling pathways and processes that are known to modulate response to radiotherapy in endometrial cancer such as PI3K/AKT, MAPK and NF-κB pathways, growth factor receptor signaling, DNA damage repair mechanisms and the immune system. Moreover, we have listed different clinical trials employing targeted therapies against some of the aforementioned signaling pathways and members with radiotherapy. Finally, we have identified the latest advances in radiotherapy that have started being utilized in endometrial cancer, which include modern radiotherapy and radiogenomics. New molecular and genetic studies in association with the analysis of radiation responses in endometrial cancer will assist clinicians in taking suitable decisions for each individual patient and pave the path for personalized radiotherapy.
Collapse
Affiliation(s)
- Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRB Lleida), 25198 Lleida, Spain; (M.A.S.); (E.P.)
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
3
|
Sivalingam VN, Latif A, Kitson S, McVey R, Finegan KG, Marshall K, Lisanti MP, Sotgia F, Stratford IJ, Crosbie EJ. Hypoxia and hyperglycaemia determine why some endometrial tumours fail to respond to metformin. Br J Cancer 2020; 122:62-71. [PMID: 31819173 PMCID: PMC6964676 DOI: 10.1038/s41416-019-0627-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/30/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND High expression of Ki67, a proliferation marker, is associated with reduced endometrial cancer-specific survival. Pre-surgical metformin reduces tumour Ki-67 expression in some women with endometrial cancer. Metformin's anti-cancer activity may relate to effects on cellular energy metabolism. Since tumour hypoxia and glucose availability are major cellular redox determinants, we evaluated their role in endometrial cancer response to metformin. METHODS Endometrial cancer biopsies from women treated with pre-surgical metformin were tested for the hypoxia markers, HIF-1α and CA-9. Endometrial cancer cell lines were treated with metformin in variable glucose concentrations in normoxia or hypoxia and cell viability, mitochondrial biogenesis, function and energy metabolism were assessed. RESULTS In women treated with metformin (n = 28), Ki-67 response was lower in hypoxic tumours. Metformin showed minimal cytostatic effects towards Ishikawa and HEC1A cells in conventional medium (25 mM glucose). In low glucose (5.5 mM), a dose-dependent cytostatic effect was observed in normoxia but attenuated in hypoxia. Tumours treated with metformin showed increased mitochondrial mass (n = 25), while in cultured cells metformin decreased mitochondrial function. Metformin targets mitochondrial respiration, however, in hypoxic, high glucose conditions, there was a switch to glycolytic metabolism and decreased metformin response. CONCLUSIONS Understanding the metabolic adaptations of endometrial tumours may identify patients likely to derive clinical benefit from metformin.
Collapse
Affiliation(s)
- Vanitha N Sivalingam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
- Department of Obstetrics and Gynaecology, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ayşe Latif
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah Kitson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
- Department of Obstetrics and Gynaecology, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rhona McVey
- Department of Histopathology, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kay Marshall
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michael P Lisanti
- School of Environmental & Life Sciences, University of Salford, Salford, UK
| | - Federica Sotgia
- School of Environmental & Life Sciences, University of Salford, Salford, UK
| | - Ian J Stratford
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.
- Department of Obstetrics and Gynaecology, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
4
|
Poor outcome in hypoxic endometrial carcinoma is related to vascular density. Br J Cancer 2019; 120:1037-1044. [PMID: 31011231 PMCID: PMC6738053 DOI: 10.1038/s41416-019-0461-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 01/05/2023] Open
Abstract
Background Identification of endometrial carcinoma (EC) patients at high risk of recurrence is lacking. In this study, the prognostic role of hypoxia and angiogenesis was investigated in EC patients. Methods Tumour slides from EC patients were stained by immunofluorescence for carbonic anhydrase IX (CAIX) as hypoxic marker and CD34 for assessment of microvessel density (MVD). CAIX expression was determined in epithelial tumour cells, with a cut-off of 1%. MVD was assessed according to the Weidner method. Correlations with disease-specific survival (DSS), disease-free survival (DFS) and distant disease-free survival (DDFS) were calculated using Kaplan–Meier curves and Cox regression analysis. Results Sixty-three (16.4%) of 385 ECs showed positive CAIX expression with high vascular density. These ECs had a reduced DSS compared to tumours with either hypoxia or high vascular density (log-rank p = 0.002). Multivariable analysis showed that hypoxic tumours with high vascular density had a reduced DSS (hazard ratio [HR] 3.71, p = 0.002), DDFS (HR 2.68, p = 0.009) and a trend for reduced DFS (HR 1.87, p = 0.054). Conclusions This study has shown that adverse outcome in hypoxic ECs is seen in the presence of high vascular density, suggesting an important role of angiogenesis in the metastatic process of hypoxic EC. Differential adjuvant treatment might be indicated for these patients.
Collapse
|
5
|
Kapur A, Felder M, Fass L, Kaur J, Czarnecki A, Rathi K, Zeng S, Osowski KK, Howell C, Xiong MP, Whelan RJ, Patankar MS. Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation. Sci Rep 2016; 6:27530. [PMID: 27270209 PMCID: PMC4897611 DOI: 10.1038/srep27530] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, EDEM, ATF4, Hsp90, ATG5, and phospho-eIF2α. The molecular chaperone 4-phenylbutyric acid attenuates citral activity in SKOV-3 but not in ECC-1 and OVCAR-3 cells. In p53-expressing cells, citral increases phosphorylation of serine-15 of p53. Activation of p53 increases Bax, PUMA, and NOXA expression. Inhibition of p53 by pifithrin-α, attenuates citral-mediated apoptosis. Citral increases intracellular oxygen radicals and this leads to activation of p53. Inhibition of glutathione synthesis by L-buthionine sulfoxamine increases potency of citral. Pretreatment with N-acetylcysteine decreases phosphorylation of p53 in citral-treated ECC-1 and OVCAR-3. These results define a p53-dependent, and in the absence of p53, ER stress-dependent mode of action of citral. This study indicates that citral in PEG-b-PCL nanoparticle formulation should be considered for treatment of breast and other tumors.
Collapse
Affiliation(s)
- Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI-53792-6188, USA
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI-53792-6188, USA
| | - Lucas Fass
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI-53792-6188, USA
| | - Justanjot Kaur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI-53792-6188, USA
| | - Austin Czarnecki
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI-53792-6188, USA
| | - Kavya Rathi
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI-53792-6188, USA
| | - San Zeng
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
| | | | - Colin Howell
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44704, USA
| | - May P Xiong
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
| | - Rebecca J Whelan
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44704, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI-53792-6188, USA
| |
Collapse
|
6
|
Jin Y, Wang H, Ma X, Liang X, Liu X, Wang Y. Clinicopathological characteristics of gynecological cancer associated with hypoxia-inducible factor 1α expression: a meta-analysis including 6,612 subjects. PLoS One 2015; 10:e0127229. [PMID: 25993275 PMCID: PMC4438056 DOI: 10.1371/journal.pone.0127229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/12/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Gynecological cancer is characterized by tumor hypoxia. However, the role of hypoxia-inducible factor 1α (HIF-1α) in gynecological cancer remains unclear. METHOD Electronic databases including Cochrane Library, PUBMED, Web of Knowledge and clinical trial registries were searched from inception through October 2014 for published, case-control studies assessing the association between HIF-1α and the clinicopathological characteristics of gynecological cancer. We pooled results from 59 studies using fixed or random-effects models and present results as odds ratios (ORs) following the PRISMA guidelines. RESULTS Our meta-analysis, which included 6,612 women, demonstrated that the expression of HIF-1α was associated with the clinicopathological characteristics of gynecological cancer. The expression of HIF-1α in cancer or borderline tissue was significantly higher than that in normal tissue (cancer vs. normal: odds ratio (OR) =9.59, 95% confidence interval (CI): 5.97, 15.39, p<0.00001; borderline vs. normal: OR=4.13, 95% (CI): 2.43, 7.02, p<0.00001; cancer vs. borderline: OR=2.70, 95% (CI): 1.69, 4.31, p<0.0001). The expression of HIF-1α in III-IV stage or lymph node metastasis was significantly higher than that in I-II stage or that without lymph node metastasis, respectively (OR=2.66, 95% (CI): 1.87,3.79, p<0.00001; OR= 3.98, 95% (CI): 2.10,12.89, p<0.0001). HIF-1α was associated with histological grade of cancer (Grade 3 vs. Grade 1: OR=3.77, 95% (CI): 2.76,5.16, p<0.00001; Grade 3 vs. Grade 2: OR=1.62, 95% (CI): 1.20,2.19, p=0.002; Grade 2 vs. Grade 1: OR=2.34, 95% (CI): 1.82,3.00, p<0.00001),5-years disease free survival (DFS) rates (OR=2.93, 95% (CI):1.43,6.01, p=0.001) and 5-years overall survival (OS) rates (OR=5.53, 95% (CI): 2.48,12.31, p<0.0001). CONCLUSION HIF-1α is associated with the malignant degree, FIGO stage, histological grade, lymph node metastasis, 5-years survival rate and recurrence rate of gynecological cancer. It may play an important role in clinical treatment and prognostic evaluation.
Collapse
Affiliation(s)
- Yue Jin
- Department of Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Haolu Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Therapeutics Research Centre, Princess Alexandra Hospital, School of Medicine, The University of Queensland, Brisbane, Australia
| | - Xiaowei Ma
- Department of Clinical Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Liang
- Therapeutics Research Centre, Princess Alexandra Hospital, School of Medicine, The University of Queensland, Brisbane, Australia
| | - Xin Liu
- Therapeutics Research Centre, Princess Alexandra Hospital, School of Medicine, The University of Queensland, Brisbane, Australia
| | - Yu Wang
- Department of Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
- * E-mail:
| |
Collapse
|
7
|
Pastorek M, Simko V, Takacova M, Barathova M, Bartosova M, Hunakova L, Sedlakova O, Hudecova S, Krizanova O, Dequiedt F, Pastorekova S, Sedlak J. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy. Int J Oncol 2015; 47:51-60. [PMID: 25955133 PMCID: PMC4485648 DOI: 10.3892/ijo.2015.2987] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.
Collapse
Affiliation(s)
- Michal Pastorek
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Simko
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Martina Takacova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Monika Barathova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Maria Bartosova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Luba Hunakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Olga Sedlakova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Sona Hudecova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Olga Krizanova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Sart-Tilman, Belgium
| | - Silvia Pastorekova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jan Sedlak
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
8
|
Santacana M, Yeramian A, Velasco A, Bergada L, Gatius S, García V, Azueta A, Palacios J, Dolcet X, Oliva E, Matias-Guiu X. Immunohistochemical features of post-radiation vaginal recurrences of endometrioid carcinomas of the endometrium: role for proteins involved in resistance to apoptosis and hypoxia. Histopathology 2012; 60:460-71. [DOI: 10.1111/j.1365-2559.2011.04106.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Seeber LM, Horrée N, Vooijs MA, Heintz APM, van der Wall E, Verheijen RH, van Diest PJ. The role of hypoxia inducible factor-1alpha in gynecological cancer. Crit Rev Oncol Hematol 2011; 78:173-84. [DOI: 10.1016/j.critrevonc.2010.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/07/2010] [Accepted: 05/05/2010] [Indexed: 12/27/2022] Open
|
10
|
Catalano RD, Wilson MR, Boddy SC, McKinlay ATM, Sales KJ, Jabbour HN. Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth. PLoS One 2011; 6:e19209. [PMID: 21589857 PMCID: PMC3093383 DOI: 10.1371/journal.pone.0019209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/22/2011] [Indexed: 12/21/2022] Open
Abstract
The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E(2). PTGS2 expression and PGE(2) biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE(2) regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1-4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE(2) and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE(2) and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells.
Collapse
Affiliation(s)
- Rob D. Catalano
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin R. Wilson
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheila C. Boddy
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew T. M. McKinlay
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kurt J. Sales
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry N. Jabbour
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Pacheco-Torres J, López-Larrubia P, Ballesteros P, Cerdán S. Imaging tumor hypoxia by magnetic resonance methods. NMR IN BIOMEDICINE 2011; 24:1-16. [PMID: 21259366 DOI: 10.1002/nbm.1558] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 03/21/2010] [Accepted: 04/01/2010] [Indexed: 05/10/2023]
Abstract
Tumor hypoxia results from the negative balance between the oxygen demands of the tissue and the capacity of the neovasculature to deliver sufficient oxygen. The resulting oxygen deficit has important consequences with regard to the aggressiveness and malignancy of tumors, as well as their resistance to therapy, endowing the imaging of hypoxia with vital repercussions in tumor prognosis and therapy design. The molecular and cellular events underlying hypoxia are mediated mainly through hypoxia-inducible factor, a transcription factor with pleiotropic effects over a variety of cellular processes, including oncologic transformation, invasion and metastasis. However, few methodologies have been able to monitor noninvasively the oxygen tensions in vivo. MRI and MRS are often used for this purpose. Most MRI approaches are based on the effects of the local oxygen tension on: (i) the relaxation times of (19)F or (1)H indicators, such as perfluorocarbons or their (1)H analogs; (ii) the hemodynamics and magnetic susceptibility effects of oxy- and deoxyhemoglobin; and (iii) the effects of paramagnetic oxygen on the relaxation times of tissue water. (19)F MRS approaches monitor tumor hypoxia through the selective accumulation of reduced nitroimidazole derivatives in hypoxic zones, whereas electron spin resonance methods determine the oxygen level through its influence on the linewidths of appropriate paramagnetic probes in vivo. Finally, Overhauser-enhanced MRI combines the sensitivity of EPR methodology with the resolution of MRI, providing a window into the future use of hyperpolarized oxygen probes.
Collapse
Affiliation(s)
- Jesús Pacheco-Torres
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Institute of Biomedical Research Alberto Sols, CSIC/UAM, c/Arturo Duperier 4, Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Shieh TM, Chang KW, Tu HF, Shih YH, Ko SY, Chen YC, Liu CJ. Association between the polymorphisms in exon 12 of hypoxia-inducible factor-1alpha and the clinicopathological features of oral squamous cell carcinoma. Oral Oncol 2010; 46:e47-53. [PMID: 20656543 DOI: 10.1016/j.oraloncology.2010.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 04/06/2010] [Accepted: 04/19/2010] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy. The incidence of OSCC is particularly high in some Asian countries because of the popularity of the habit of chewing areca. Hypoxia-inducible factor-1alpha (HIF-1alpha) is up-regulated in the hypoxic microenvironment to enhance tumor survival. Five polymorphisms have been identified in exon 12 of HIF-1alpha including the C1772T polymorphism causing P582S, and the G1790A polymorphism causing A588T of the HIF-1alpha protein. This study investigated the relationship between these functional polymorphisms and the risk of progression of OSCC. PCR and direct sequencing were utilized to compare the genotypic polymorphism and allelic frequency of HIF-1alpha in 96 normal controls and 305 OSCC patients. No statistically significant difference in C1772T and G1790A genotypes and allelic frequency between control and OSCC patients was found. However, multivariate analysis indicated that the A carrier of HIF-1alpha G1790A in OSCC patients was significantly higher in larger tumors than in the contrasting group with an adjusted odds ratio of 2.92. The T carrier of HIF-1alpha C1772T in buccal cancer patients was significantly higher in the non-areca-chewing group with an adjusted odds ratio of 0.111. The buccal cancer patients with C1772T or G1790A had lower recurrence frequency with an odds ratio of 0.266. These findings may suggest a correlation between the HIF-1alpha C1772T and G1790A polymorphisms and the growth of OSCC, and the decrease of OSCC recurrence frequency.
Collapse
Affiliation(s)
- Tzong-Ming Shieh
- Department of Dental Hygiene, School of Health Care, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Kuiper C, Molenaar IGM, Dachs GU, Currie MJ, Sykes PH, Vissers MCM. Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer. Cancer Res 2010; 70:5749-58. [PMID: 20570889 DOI: 10.1158/0008-5472.can-10-0263] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the transcription factor hypoxia-inducible factor (HIF)-1 allows solid tumors to thrive under conditions of metabolic stress. Because HIF-1 is switched off by hydroxylation reactions that require ascorbate, inadequate intracellular ascorbate levels could contribute to HIF-1 overactivation. In this study, we investigated whether the ascorbate content of human endometrial tumors [known to be driven by HIF-1 and vascular endothelial growth factor (VEGF)] influenced HIF-1 activity and tumor pathology. We measured protein levels of HIF-1alpha and three downstream gene products [glucose transporter 1 (GLUT-1), Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), and VEGF], as well as the ascorbate content of tumor and patient-matched normal endometrial tissue samples. HIF-1alpha and its downstream gene products were upregulated in tumor tissue, with the highest levels being present in high-grade tumors. High-grade tumors also had reduced capacity to accumulate ascorbate compared with normal tissue; however, all grades contained tumors with low ascorbate content. Tumors with the highest HIF-1alpha protein content were ascorbate deficient. Low ascorbate levels were also associated with elevated VEGF, GLUT-1, and BNIP3 protein levels and with increased tumor size, and there was a significant association between low tissue ascorbate levels and increased activation of the HIF-1 pathway (P = 0.007). In contrast, tumors with high ascorbate levels had lesser levels of HIF-1 activation. This study shows for the first time a likely in vivo relationship between ascorbate and HIF-1, with low tumor tissue ascorbate levels being associated with high HIF-1 activation and tumor growth.
Collapse
Affiliation(s)
- Caroline Kuiper
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
14
|
Seeber LMS, Horrée N, van der Groep P, van der Wall E, Verheijen RHM, van Diest PJ. Necrosis related HIF-1alpha expression predicts prognosis in patients with endometrioid endometrial carcinoma. BMC Cancer 2010; 10:307. [PMID: 20565904 PMCID: PMC2909981 DOI: 10.1186/1471-2407-10-307] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 06/19/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypoxia inducible factor 1alpha (HIF-1alpha) plays an essential role in the adaptive response of cells to hypoxia and is associated with aggressive tumour behaviour. We have shown p27kip1, which is generally reduced in endometrial cancer, to be re-expressed in hypoxic regions. This possibly contributes to survival of cancer cells. The aim of this study was to evaluate the prognostic value of HIF-1alpha and p27kip expression in patients with endometrioid endometrial cancer. METHODS Expression levels of HIF-1alpha, CAIX, Glut-1, and p27kip1 were analyzed by immunohistochemistry. Percentage of positive cells, staining pattern (perinecrotic, diffuse, or mixed) and presence of necrosis were noted. RESULTS Necrosis was correlated with shortened disease free survival (DFS) (p = 0.008) and overall survival (OS) (p = 0.045). For DFS, perinecrotic HIF-1alpha expression was also prognostic (p = 0.044). Moreover, high p27kip1 expression was an additional prognostic factor for these patients with perinecrotic HIF-1alpha expression. In multivariate Cox regression, perinecrotic HIF-expression emerged as an independent prognostic factor. Perinecrotic HIF-1alpha expression was significantly associated with CAIX and Glut-1 expression, pointing towards functional HIF-1. CONCLUSIONS In patients with endometrioid endometrial cancer, necrosis and necrosis-related expression of HIF-1alpha are important prognostic factors. More aggressive adjuvant treatment might be necessary to improve the outcome of patients with these characteristics.
Collapse
Affiliation(s)
- Laura M S Seeber
- Department of Gynaecological Oncology, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Seeber LMS, Zweemer RP, Verheijen RHM, van Diest PJ. Hypoxia-inducible factor-1 as a therapeutic target in endometrial cancer management. Obstet Gynecol Int 2010; 2010:580971. [PMID: 20169098 PMCID: PMC2821774 DOI: 10.1155/2010/580971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 12/22/2009] [Indexed: 01/21/2023] Open
Abstract
In the Western world, endometrial cancer (EC) is the most common malignant tumor of the female genital tract. Solid tumors like EC outgrow their vasculature resulting in hypoxia. Tumor hypoxia is important because it renders an aggressive phenotype and leads to radio- and chemo-therapy resistance. Hypoxia-inducible factor-1alpha (HIF-1alpha) plays an essential role in the adaptive cellular response to hypoxia and is associated with poor clinical outcome in EC. Therefore, HIF-1 could be an attractive therapeutic target. Selective HIF-1 inhibitors have not been identified. A number of nonselective inhibitors which target signaling pathways upstream or downstream HIF-1 are known to decrease HIF-1alpha protein levels. In clinical trials for the treatment of advanced and/or recurrent EC are the topoisomerase I inhibitor Topotecan, mTOR-inhibitor Rapamycin, and angiogenesis inhibitor Bevacizumab. Preliminary data shows encouraging results for these agents. Further work is needed to identify selective HIF-1 inhibitors and to translate these into clinical trials.
Collapse
Affiliation(s)
- Laura M. S. Seeber
- Department of Gynaecological Oncology, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Ronald P. Zweemer
- Department of Gynaecological Oncology, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - René H. M. Verheijen
- Department of Gynaecological Oncology, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|