1
|
Pradhan A, Mut F, Sosale M, Cebral J. Flow reduction due to arterial catheterization during stroke treatment - A computational study using a distributed compartment model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3853. [PMID: 39090842 DOI: 10.1002/cnm.3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
The effectiveness of various stroke treatments depends on the anatomical variability of the cerebral vasculature, particularly the collateral blood vessel network. Collaterals at the level of the Circle of Willis and distal collaterals, such as the leptomeningeal arteries, serve as alternative avenues of flow when the primary pathway is obstructed during an ischemic stroke. Stroke treatment typically involves catheterization of the primary pathway, and the potential risk of further flow reduction to the affected brain area during this treatment has not been previously investigated. To address this clinical question, we derived the lumped parameters for catheterized blood vessels and implemented a corresponding distributed compartment (0D) model. This 0D model was validated against an experimental model and benchmark test cases solved using a 1D model. Additionally, we compared various off-center catheter trajectories modeled using a 3D solver to this 0D model. The differences between them were minimal, validating the simplifying assumption of the central catheter placement in the 0D model. The 0D model was then used to simulate blood flows in realistic cerebral arterial networks with different collateralization characteristics. Ischemic strokes were modeled by occlusion of the M1 segment of the middle cerebral artery in these networks. Catheters of different diameters were inserted up to the obstructed segment and flow alterations in the network were calculated. Results showed up to 45% maximum blood flow reduction in the affected brain region. These findings suggest that catheterization during stroke treatment may have a further detrimental effect for some patients with poor collateralization.
Collapse
Affiliation(s)
- Aseem Pradhan
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| | - Fernando Mut
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| | - Medhini Sosale
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| | - Juan Cebral
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
2
|
Pradhan AM, Mut F, Cebral JR. A one-dimensional computational model for blood flow in an elastic blood vessel with a rigid catheter. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3834. [PMID: 38736046 DOI: 10.1002/cnm.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Strokes are one of the leading causes of death in the United States. Stroke treatment involves removal or dissolution of the obstruction (usually a clot) in the blocked artery by catheter insertion. A computer simulation to systematically plan such patient-specific treatments needs a network of about 105 blood vessels including collaterals. The existing computational fluid dynamic (CFD) solvers are not employed for stroke treatment planning as they are incapable of providing solutions for such big arterial trees in a reasonable amount of time. This work presents a novel one-dimensional mathematical formulation for blood flow modeling in an elastic blood vessel with a centrally placed rigid catheter. The governing equations are first-order hyperbolic partial differential equations, and the hypergeometric function needs to be computed to obtain the characteristic system of these hyperbolic equations. We employed the Discontinuous Galerkin method to solve the hyperbolic system and validated the implementation by comparing it against a well-established 3D CFD solver using idealized vessels and a realistic truncated arterial network. The results showed clinically insignificant differences in steady flow cases, with overall variations between 1D and 3D models remaining below 10%. Additionally, the solver accurately captured wave reflection phenomena at domain discontinuities in unsteady cases. A primary advantage of this model over 3D solvers is its ease in obtaining a discretized geometry of complex vasculatures with multiple arterial branches. Thus, the 1D computational model offers good accuracy and applicability in simulating complex vasculatures, demonstrating promising potential for investigating patient-specific endovascular interventions in strokes.
Collapse
Affiliation(s)
| | - Fernando Mut
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| | - Juan Raul Cebral
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
3
|
Patki P, Simon S, Costanzo F, Manning KB. Current Approaches and Methods to Understand Acute Ischemic Stroke Treatment Using Aspiration Thrombectomy. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00735-0. [PMID: 38886306 DOI: 10.1007/s13239-024-00735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Acute ischemic stroke occurs when a blood clot occludes a cerebral artery. Mechanical interventions, primarily stent retrievers and aspiration thrombectomy, are used currently for removing the occluding clot and restoring blood flow. Aspiration involves using a long catheter to traverse the cerebral vasculature to reach the blood clot, followed by application of suction through the catheter bore. Aspiration is also used in conjunction with other techniques such as stent retrievers and balloon guide catheters. Despite the wide use of aspiration, our physical understanding of the process and the causes of the failure of aspiration to retrieve cerebral clots in certain scenarios is not well understood. Experimental and computational studies can help develop the capability to provide deeper insights into the procedure and enable development of new devices and more effective treatment methods. We recapitulate the aspiration-based thrombectomy techniques in clinical practice and provide a perspective of existing engineering methods for aspiration. We articulate the current knowledge gap in the understanding of aspiration and highlight possible directions for future engineering studies to bridge this gap, help clinical translation of engineering studies, and develop new patient-specific stroke therapy.
Collapse
Affiliation(s)
- Priyanka Patki
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Scott Simon
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Francesco Costanzo
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
4
|
Patki P, Simon S, Manning KB, Costanzo F. Computational analysis of effects of clot length on Acute ischemic stroke recanalization under different cyclic aspiration loading conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3667. [PMID: 36511815 PMCID: PMC9960186 DOI: 10.1002/cnm.3667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Acute ischemic stroke, the second leading cause of death worldwide, results from occlusion of a cerebral artery by a blood clot. Application of cyclic aspiration using an aspiration catheter is a current therapy for the removal of lodged clots. In this study, we perform finite element simulations to analyze deformation of long clots, having length to radius ratio of 2-10, which corresponds to clot-length of 2.85-14.25 mm, under peak-to-peak cyclic aspiration pressures of 10-50 mmHg, and frequencies of 0.5, 1, and 2 Hz. Our computational system comprises of a nonlinear viscoelastic solid clot, a hyperelastic artery, and a nonlinear viscoelastic cohesive zone, the latter modeling the clot-artery interface. We observe that clots having length-to-radius ratio approximately greater than two separate from the inner arterial surface somewhere between the axial and distal ends, irrespective of the cyclic aspiration loading conditions. The stress distribution within the clot shows large tensile stresses in the clot interior, indicating the possibility of simultaneous fragmentation of the clot. Thus, this study shows us the various failure mechanisms simultaneously present in the clot during cyclic aspiration. Similarly, the stress distribution within the artery implies a possibility of endothelial damage to the arterial wall near the end where the aspiration pressure is applied. This framework provides a foundation for further investigation to clot fracture and adhesion characterization.
Collapse
Affiliation(s)
- Priyanka Patki
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott Simon
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Surgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Surgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Francesco Costanzo
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
5
|
Luraghi G, Cahalane RME, van de Ven E, Overschie SCM, Gijsen FJH, Akyildiz AC. In vitro and in silico modeling of endovascular stroke treatments for acute ischemic stroke. J Biomech 2021; 127:110693. [PMID: 34450517 DOI: 10.1016/j.jbiomech.2021.110693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Acute ischemic stroke occurs when a thrombus obstructs a cerebral artery, leading to sub-optimal blood perfusion to brain tissue. A recently developed, preventive treatment is the endovascular stroke treatment (EVT), which is a minimally invasive procedure, involving the use of stent-retrievers and/or aspiration catheters. Despite its increasing use, many critical factors of EVT are not well understood. In this respect, in vitro, and in silico studies have the great potential to help us deepen our understanding of the procedure, perform further device and procedural optimization, and help in clinical training. This review paper provides an overview of the previous in vitro and in silico evaluations of EVT treatments, with a special emphasis on the four main aspects of the adopted experimental and numerical set-ups: vessel, thrombus, device, and procedural settings.
Collapse
Affiliation(s)
- Giulia Luraghi
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| | - Rachel M E Cahalane
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emma van de Ven
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Serena C M Overschie
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Frank J H Gijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ali C Akyildiz
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
史 宇. Progress in the Computer Simulation Study of the Hemodynamics in Direct Aspiration Thrombectomy for the Treatment of Acute Ischemic Stroke. Biophysics (Nagoya-shi) 2020. [DOI: 10.12677/biphy.2020.84005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
7
|
Good BC, Simon S, Manning K, Costanzo F. Development of a computational model for acute ischemic stroke recanalization through cyclic aspiration. Biomech Model Mechanobiol 2019; 19:761-778. [PMID: 31686306 DOI: 10.1007/s10237-019-01247-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Acute ischemic stroke (AIS), the result of embolic occlusion of a cerebral artery, is responsible for 87% of the 6.5 million stroke-related deaths each year. Despite improvements from first-generation thrombectomy devices for treating AIS, 80% of eligible stroke patients will either die or suffer a major disability. In order to maximize the number of patients with good outcomes, new AIS therapies need to be developed to achieve complete reperfusion on the first pass. One such therapy that has shown promise experimentally is the application of cyclic aspiration pressure, which led to higher recanalization rates at lower pressure magnitudes. In order to investigate AIS and cyclic aspiration recanalization, an improved computational modeling framework was developed, combining a viscoelastic thromboembolus model with a cohesive zone (CZ) model for the thromboembolus-artery interface. The model was first validated against experimental displacement data of a cyclically aspirated thromboembolus analog. The CZ model parameters, including the addition of a damage accumulation model, were then investigated computationally to determine their individual effects on the thromboembolus and CZ behavior. The relaxation time and the damage model critical opening length were shown to have the greatest effect on the CZ opening and led to increased displacement that accumulated with repeated loading. Additional simulations were performed with parameters relevant to AIS including internal carotid artery dimensions and thromboemboli mechanical properties. In these AIS cases, more upstream CZ opening was observed compared to the thromboembolus analog cases and greater displacement was achieved with the lower-frequency aspiration (0.5 vs 1 Hz).
Collapse
Affiliation(s)
- Bryan C Good
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.
| | - Scott Simon
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Keefe Manning
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.,Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Francesco Costanzo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.,Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Chitsaz A, Nejat A, Nouri R. Three-Dimensional Numerical Simulations of Aspiration Process: Evaluation of Two Penumbra Aspiration Catheters Performance. Artif Organs 2018; 42:E406-E419. [PMID: 30444047 DOI: 10.1111/aor.13300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022]
Abstract
Acute ischemic stroke (AIS) is the leading cause of mortality and disability worldwide. AIS occur while cerebral arteries become blocked by embolism or thrombosis. Aspiration thrombectomy is a promising interventional device to extract massive clots from occluded cerebral arteries. The aim of this article is to develop a computer-aided method to clarify the performance of aspiration catheter and identify the risks of aspiration for each specific AIS patient. In order to simulate the aspiration process, a three-dimensional fluid-structure interaction (FSI) method was developed. The blood clot was modeled as a porous media which composed of viscoelastic fibrin networks. The finite element method (FEM) was implemented to compute the blood flow dynamics in the simplified cerebral vessel. The introduced clot model was validated by comparing the numerical results with experimental data. Furthermore, the analytical solution of the flow through the partially porous pipe was considered to validate FEM. In this research, the performance of two model of the Penumbra aspiration catheter-4MAX and 5MAX-were were compared at three distinct suction pressures. The aspiration ratio of the clot, aspiration time, amount of free fragments, wall shear stress (WSS), and extracted volume of the blood were calculated to evaluate catheters performance. At suction pressure -50 kPa, the aspiration ratio of 5MAX catheter reached 86.58% within 1.36 s. However, in 4MAX case, aspiration ratio of 76.41% was achieved within 1.39. Also, 5MAX catheter created 6.11% fewer free fragments in comparison to 4MAX. Hence, the possibility of distal embolization of 4MAX model was greater. However, the risk of vessel wall rupture was higher in 5MAX by considering mean WSS.
Collapse
Affiliation(s)
- Alireza Chitsaz
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Nejat
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Reza Nouri
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Karanasiou GS, Gatsios DA, Lykissas MG, Stefanou KA, Rigas GA, Lagaris IE, Kostas-Agnantis IP, Gkiatas I, Beris AE, Fotiadis DI. Modeling of blood flow through sutured micro-vascular anastomoses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:1877-80. [PMID: 26736648 DOI: 10.1109/embc.2015.7318748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microanastomosis is a surgical procedure used to reconnect two blood vessels using sutures. The optimal microanastomosis may be predicted by assessing the factors that influence this invasive procedure. Blood flow and hemodynamics following microanastomosis are important factors for the successful longevity of this operation. How is the blood flow affected by the presence of sutures? Computational Fluid Dynamics (CFD) is a powerful tool that permits the estimation of specific quantities, such as fluid stresses, that are hardly measurable in vivo. In this study, we propose a methodology which evaluates the alterations in the hemodynamic status due to microanastomosis. A CFD model of a reconstructed artery has been developed, based on anatomical information provided by intravascular ultrasound and angiography, and was used to simulate blood flow after microanastomosis. The 3D reconstructed arterial segments are modeled as non-compliant 1.24 - 1.47 mm diameter ducts, with approximately 0.1 mm arterial thickness. The blood flow is considered laminar and the no-slip condition is imposed on the boundary wall, which is assumed to be rigid. In analyzing the results, the distribution of the wall shear stress (WSS) is presented in the region of interest, near the sutures. The results indicate that high values of WSS appear in the vicinity of sutures. Such regions may promote thrombus formation and subsequently anastomotic failure, therefore their meticulous study is of high importance.
Collapse
|
10
|
Soleimani S, Dubini G, Pennati G. Performance of a thrombectomy device for aspiration of thrombus with various sizes based on a computational fluid dynamic modeling. ACTA ACUST UNITED AC 2016; 61:337-44. [DOI: 10.1515/bmt-2014-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/05/2015] [Indexed: 11/15/2022]
Abstract
Abstract
It is important to thoroughly remove the thrombus within the course of aspiration thrombectomy; otherwise, it may lead to further embolization. The performance of the aspiration thrombectomy device with a generic geometry is studied through the computational approach. In order to model the thrombus aspiration, a real left coronary artery is chosen while thrombi with various sizes are located at the bifurcation area of the coronary artery and, depending on the size of the thrombus, it is stretched toward the side branches. The thrombus occupies the artery resembling the blood current obstruction in the coronary vessel similar to the situation that leads to heart attack. It is concluded that the aspiration ability of the thrombectomy device is not linked to the thrombus size; it is rather linked to the aspiration pressure and thrombus age (organized versus fresh thrombus). However, the aspiration time period correlates to the thrombus size. The minimum applicable aspiration pressure is also investigated in this study.
Collapse
|
11
|
Neidlin M, Büsen M, Brockmann C, Wiesmann M, Sonntag SJ, Steinseifer U, Kaufmann TAS. A numerical framework to investigate hemodynamics during endovascular mechanical recanalization in acute stroke. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02748. [PMID: 26420012 DOI: 10.1002/cnm.2748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/11/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Ischemic stroke, caused by embolism of cerebral vessels, inflicts high morbidity and mortality. Endovascular aspiration of the blood clot is an interventional technique for the recanalization of the occluded arteries. However, the hemodynamics in the Circle of Willis (CoW) are not completely understood, which results in medical misjudgment and complications during surgeries. In this study we establish a multiscale description of cerebral hemodynamics during aspiration thrombectomy. First, the CoW is modeled as a 1D pipe network on the basis of computed tomography angiography (CTA) scans. Afterwards, a vascular occlusion is placed in the middle cerebral artery and the relevant section of the CoW is transferred to a 3D computational fluid dynamic (CFD) domain. A suction catheter in different positions is included in the CFD simulations. The boundary conditions of the 3D domain are taken from the 1D domain to ensure system coupling. A Eulerian-Eulerian multiphase simulation describes the process of thrombus aspiration. The physiological blood flow in the 1D and 3D domains is validated with literature data. Further on, it is proved that domain reduction and pressure coupling at the boundaries are an appropriate method to reduce computational costs. Future work will apply the developed framework to various clinical questions.
Collapse
Affiliation(s)
- Michael Neidlin
- Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Martin Büsen
- Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Carolin Brockmann
- Clinic for Diagnostic and Interventional Neuroradiology, RWTH Aachen University Clinic, Aachen, Germany
| | - Martin Wiesmann
- Clinic for Diagnostic and Interventional Neuroradiology, RWTH Aachen University Clinic, Aachen, Germany
| | - Simon J Sonntag
- Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Tim A S Kaufmann
- Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Soleimani S, Dubini G, Pennati G. Possible Benefits of Catheters With Lateral Holes in Coronary Thrombus Aspiration: A Computational Study for Different Clot Viscosities and Vacuum Pressures. Artif Organs 2014; 38:845-55. [DOI: 10.1111/aor.12274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sajjad Soleimani
- Laboratory of Biological Structure Mechanics; Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics; Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - Giancarlo Pennati
- Laboratory of Biological Structure Mechanics; Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| |
Collapse
|
13
|
Blood clot simulation model by using the Bond-Graph technique. ScientificWorldJournal 2014; 2013:519047. [PMID: 24453867 PMCID: PMC3885275 DOI: 10.1155/2013/519047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
The World Health Organization estimates that 17 million people die of cardiovascular disease, particularly heart attacks and strokes, every year. Most strokes are caused by a blood clot that occludes an artery in the cerebral circulation and the process concerning the removal of this obstruction involves catheterisation. The fundamental object of the presented study consists in determining and optimizing the necessary simulation model corresponding with the blood clot zone to be implemented jointly with other Mechanical Thrombectomy Device simulation models, which have become more widely used during the last decade. To do so, a multidomain technique is used to better explain the different aspects of the attachment to the artery wall and between the existing platelets, it being possible to obtain the mathematical equations that define the full model. For a better understanding, a consecutive approximation to the definitive model will be presented, analyzing the different problems found during the study. The final presented model considers an elastic characterization of the blood clot composition and the possibility of obtaining a consecutive detachment process from the artery wall. In conclusion, the presented model contains the necessary behaviour laws to be implemented in future blood clot simulation models.
Collapse
|
14
|
Removing vascular obstructions: a challenge, yet an opportunity for interventional microdevices. Biomed Microdevices 2012; 14:511-32. [PMID: 22331446 DOI: 10.1007/s10544-011-9627-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide; they are mainly due to vascular obstructions which, in turn, are mainly caused by thrombi and atherosclerotic plaques. Although a variety of removal strategies has been developed for the considered obstructions, none of them is free from limitations and conclusive. The present paper analyzes the physical mechanisms underlying state-of-art removal strategies and classifies them into chemical, mechanical, laser and hybrid (namely chemo-mechanical and mechano-chemical) approaches, while also reviewing corresponding commercial/research tools/devices and procedures. Furthermore, challenges and opportunities for interventional micro/nanodevices are highlighted. In this spirit, the present review should support engineers, researchers active in the micro/nanotechnology field, as well as medical doctors in the development of innovative biomedical solutions for treating vascular obstructions. Data were collected by using the ISI Web of Knowledge portal, buyer's guides and FDA databases; devices not reported on scientific publications, as well as commercial devices no more for sale were discarded. Nearly 70% of the references were published since 2006, 55% since 2008; these percentages respectively raise to 85% and 65% as regards the section specifically reviewing state-of-art removal tools/devices and procedures.
Collapse
|
15
|
Abstract
In this Editor's Review, articles published in 2010 are organized by category and briefly summarized. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level."Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide such meaningful suggestions to the author's work whether eventually accepted or rejected and especially to those whose native tongue is not English. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, Wiley-Blackwell, for their expert attention and support in the production and marketing of Artificial Organs. In this Editor's Review, that historically has been widely received by our readership, we aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. We look forward to recording further advances in the coming years.
Collapse
|