1
|
Braga AV, Morais MÍ, Delfino DGS, Costa SOAM, Barbosa BCM, Rodrigues FF, Melo ISF, Matos RC, Castro BFM, Cunha Júnior AS, Braga TC, de Fátima Â, Coelho MM, Machado RR. Nicorandil antiallodynic activity in a model of neuropathic pain is associated with the activation of ATP-dependent potassium channels and opioidergic pathways, and reduced production of cytokines and neutrophils recruitment in paw, sciatic nerve, and dorsal root ganglia. Pharmacol Rep 2024; 76:1067-1078. [PMID: 39179890 DOI: 10.1007/s43440-024-00640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Recently, we demonstrated that nicorandil inhibits mechanical allodynia induced by paclitaxel. In the present study, we evaluated the effect induced by nicorandil in a model of neuropathic pain induced by chronic constriction injury (CCI) in mice. We also investigated putative mechanisms underlying such an effect. METHODS CCI was induced by three ligatures of the left sciatic nerve. Mechanical allodynia was evaluated by measuring the paw withdrawal threshold with an electronic von Frey apparatus. Concentrations of cytokines and myeloperoxidase activity were determined in the paw tissue, sciatic nerve, and dorsal root ganglia (DRG). RESULTS Oral administration of two doses of nicorandil (150 mg/kg po), but not equimolar doses of nicotinamide or nicotinic acid, attenuated mechanical allodynia induced by CCI. Nicorandil activity was reduced by previous administration of glibenclamide (40 mg/kg) or naltrexone (5 mg/kg or 10 mg/kg). Two doses of nicorandil (150 mg/kg, po) reduced tumor necrosis factor-α, interleukin-1β and interleukin-6, but not CXCL-1, concentrations in the paw tissue of CCI mice. Two doses of nicorandil (150 mg/kg, po) reduced concentrations of all these mediators in the sciatic nerve and DRG. Two doses of nicorandil (150 mg/kg, po) also reduced the myeloperoxidase activity in the paw tissue, sciatic nerve, and DRG. CONCLUSIONS Nicorandil exhibits antiallodynic activity in a model of neuropathic pain induced by CCI. Inhibition of cytokines production and reduction of neutrophils recruitment in paw tissue, sciatic nerve, and DRG as well as activation of ATP-dependent potassium channels and opioidergic pathways, underlie nicorandil antiallodynic activity.
Collapse
Affiliation(s)
- Alysson V Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Marcela Í Morais
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Darly G S Delfino
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Sarah O A M Costa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Bárbara C M Barbosa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Rafael C Matos
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Brenda F M Castro
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Armando S Cunha Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Taniris C Braga
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
2
|
Kouznetsov VV. Exploring acetaminophen prodrugs and hybrids: a review. RSC Adv 2024; 14:9691-9715. [PMID: 38525062 PMCID: PMC10958773 DOI: 10.1039/d4ra00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
This critical review highlights the advances in developing new molecules for treating pain syndrome, an important issue for human health. Acetaminophen (APAP, known as paracetamol) and nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used in clinical practice despite their adverse effects. Research is being conducted to develop innovative drugs with improved pharmaceutical properties to mitigate these effects. A more practical way to achieve that is to study well-known and time-tested drugs in their molecular combinations. Accordingly, the present work explores APAP and their combined chemical entities, i.e., prodrugs (soft drugs), codrugs (mutual prodrugs), and hybrids. Due to their molecular structure, APAP prodrugs or codrugs could be considered merged or conjugated hybrids; all these names are very fluid terms. This article proposed a structural classification of these entities to better analyze their advances. So, the following: carrier-linked O-modified APAP, -linked N-modified APAP derivatives (prodrugs), and direct- and spacer-N,O-linked APAP hybrids (codrugs) are the central parts of this review and are examined, especially ester and amide NSAID-APAP molecules. The C-linked APAP and nitric oxide (NO)-releasing APAP hybrids were also briefly discussed. Prime examples of APAP-based drugs such as propacetamol, benorylate, acetaminosalol, nitroparacetamol, and agent JNJ-10450232 weave well into this classification. The proposed classification is the first and original, giving a better understanding of the SAR studies for new pain relievers research and the design development for the analgesic APAP-(or NSAID)-based compounds.
Collapse
Affiliation(s)
- Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Cl. 9 # Cra 27 A.A. 680006 Bucaramanga Colombia
| |
Collapse
|
3
|
Hamurtekin Y, Nouilati A, Demirbatir C, Hamurtekin E. The Contribution of Serotonergic Receptors and Nitric Oxide Systems in the Analgesic Effect of Acetaminophen: An Overview of the Last Decade. Turk J Pharm Sci 2020; 17:119-126. [PMID: 32454770 DOI: 10.4274/tjps.galenos.2018.35403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/18/2018] [Indexed: 10/25/2022]
Abstract
Acetaminophen is a widely used analgesic and antipyretic agent. It is also available in over the counter formulations, which has increased its wide use. There have been many studies to date that have aimed to evaluate the mechanism of the analgesic action of acetaminophen. Additional to the inhibition of the cyclooxygenase pathway in the central nervous system, the involvement of opioidergic, cannabinoidergic, dopaminergic, cholinergic, and nitrergic systems as well as the contribution of descending pain inhibitory systems like the bulbospinal serotonergic pathway has been proposed as possible mechanisms of the analgesic action of acetaminophen. In this review, we aimed to collect the data from studies revealing the contribution of the central serotonergic system and the role of central nervous system-located serotonergic receptor subtypes in the analgesic effect of acetaminophen. While doing this, we mainly focused on the research that has been performed in the last ten years and tried to link the previous data with the lately added results. In addition to serotonergic system involvement, we also reviewed the role of nitric oxide in the analgesic action of acetaminophen, especially with the new findings reported over the last decade.
Collapse
Affiliation(s)
- Yeşim Hamurtekin
- Eastern Mediterranean University, Faculty of Pharmacy, Department of Pharmacology, Famagusta, North Cyprus Via Mersin 10, Turkey
| | - Ammar Nouilati
- Eastern Mediterranean University, Faculty of Pharmacy, Department of Pharmacology, Famagusta, North Cyprus Via Mersin 10, Turkey
| | - Cansu Demirbatir
- Eastern Mediterranean University, Faculty of Pharmacy, Department of Pharmacology, Famagusta, North Cyprus Via Mersin 10, Turkey
| | - Emre Hamurtekin
- Eastern Mediterranean University, Faculty of Pharmacy, Department of Pharmacology, Famagusta, North Cyprus Via Mersin 10, Turkey
| |
Collapse
|
4
|
Godin AM, Araújo DP, Menezes RR, de Brito AMS, Melo ISF, Coura GME, Bastos LFS, Amaral FA, Teixeira MM, de Fátima Â, Coelho MM, Machado RR. 2-Phthalimidethanol and 2-phthalimidethyl nitrate inhibit mechanical allodynia, neutrophil recruitment and cytokine and chemokine production in a murine model of articular inflammation. Pharmacol Rep 2017; 69:691-695. [PMID: 28550800 DOI: 10.1016/j.pharep.2017.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Phthalimide analogs have been shown to exhibit anti-inflammatory, analgesic and immunomodulatory activities in different preclinical assays. This study aimed to investigate the potential role of 2-phthalimidethanol (PTD-OH) and 2-phthalimidethyl nitrate (PTD-NO) in a murine model of antigen-induced articular inflammation. METHODS Articular inflammation was induced by intra-articular injection of methylated bovine serum albumin (mBSA) in the knee joint of immunized male C57BL/6J mice. The animals were pre-treated with PTD-OH or PTD-NO (500mg/kg, per os, - 1h). Nociceptive threshold was measured using an electronic von Frey apparatus. The total number of leukocytes in the synovial cavity was determined. Concentrations of tumor necrosis factor (TNF)-α and CXCL-1 and myeloperoxidase (MPO) activity were determined in periarticular tissue. RESULTS Both PTD-OH and PTD-NO inhibited at similar extent the mechanical allodynia, neutrophil recruitment to the synovial cavity and periarticular tissue and TNF-α and CXCL-1 production induced by intra-articular challenge with mBSA in immunized mice. CONCLUSIONS PTD-OH and PTD-NO exhibit a marked activity in a murine model of antigen-induced articular inflammation in immunized animals. These results reinforce the interest in the investigation of phthalimide analogs devoid of the glutarimide ring as candidates to analgesic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Adriana M Godin
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Débora P Araújo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raquel R Menezes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana M S de Brito
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna M E Coura
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leandro F S Bastos
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To provide an overview on drug targets and emerging pharmacological treatment options for chronic pain. RECENT FINDINGS Chronic pain poses an enormous socioeconomic burden for the more than 30% of people who suffer from it, costing over $600 billion per year in the USA. In recent years, there has been a surge in preclinical and clinical research endeavors to try to stem this epidemic. Preclinical studies have identified a wide array of potential targets, with some of the most promising translational research being performed on novel opioid receptors, cannabinoid receptors, selective ion channel blockers, cytokine inhibitors, nerve growth factor inhibitors, N-methyl-D-aspartate receptor antagonists, glial cell inhibitors, and bisphosphonates. SUMMARY There are many obstacles for the development of effective medications to treat chronic pain, including the inherent challenges in identifying pathophysiological mechanisms, the overlap and multiplicity of pain pathways, and off-target adverse effects stemming from the ubiquity of drug target receptor sites and the lack of highly selective receptor ligands. Despite these barriers, the number and diversity of potential therapies have continued to grow, to include disease-modifying and individualized drug treatments.
Collapse
|
6
|
César IC, Godin AM, Araujo DP, Oliveira FC, Menezes RR, Santos JR, Almeida MO, Dutra MM, Santos DA, Machado RR, Pianetti GA, Coelho MM, de Fátima Â. Synthesis, antinociceptive activity and pharmacokinetic profiles of nicorandil and its isomers. Bioorg Med Chem 2014; 22:2783-90. [DOI: 10.1016/j.bmc.2014.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/24/2014] [Accepted: 03/08/2014] [Indexed: 11/29/2022]
|
7
|
Godin AM, Araújo DP, Menezes RR, Brito AMS, Melo ISF, Coura GME, Soares DG, Bastos LFS, Amaral FA, Ribeiro LS, Boff D, Santos JRA, Santos DA, Teixeira MM, de Fátima Â, Machado RR, Coelho MM. Activities of 2-phthalimidethanol and 2-phthalimidethyl nitrate, phthalimide analogs devoid of the glutarimide moiety, in experimental models of inflammatory pain and edema. Pharmacol Biochem Behav 2014; 122:291-8. [PMID: 24780502 DOI: 10.1016/j.pbb.2014.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/08/2014] [Accepted: 04/18/2014] [Indexed: 12/17/2022]
Abstract
The reintroduction of thalidomide in the pharmacotherapy greatly stimulated the interest in the synthesis and pharmacological evaluation of phthalimide analogs with new and improved activities and also greater safety. In the present study, we evaluated the activities of two phthalimide analogs devoid of the glutarimide ring, namely 2-phthalimidethanol (PTD-OH) and 2-phthalimidethyl nitrate (PTD-NO), in experimental models of inflammatory pain and edema in male C57BL/6J mice. Intraplantar (i.pl.) injection of carrageenan (300 μg) induced mechanical allodynia and this response was inhibited by previous per os (p.o.) administration of PTD-OH and PTD-NO (750 mg/kg) and also by thalidomide (500 or 750 mg/kg). The edema induced by carrageenan was also inhibited by previous p.o. administration of PTD-OH (500 and 750 mg/kg) and PTD-NO (125, 250, 500 or 750 mg/kg), but not by thalidomide. Carrageenan increased tumor necrosis factor (TNF)-α and CXCL1 concentrations and also the number of neutrophils in the paw tissue. Previous p.o. administration of PTD-NO (500 mg/kg) reduced all the parameters, while PTD-OH (500 mg/kg) reduced only the accumulation of neutrophils. Thalidomide, on the other hand, was devoid of effect on these biochemical parameters. Plasma concentrations of nitrite were increased after p.o. administration of the phthalimide analog coupled to a NO donor, PTD-NO (500 mg/kg), but not after administration of PTD-OH or thalidomide. In conclusion, our results show that small molecules, structurally much simpler than thalidomide or many of its analogs under investigation, exhibit similar activities in experimental models of pain and inflammation. Finally, as there is evidence that the glutarimide moiety contributes to the teratogenic effect of many thalidomide analogs, our results indicate that phthalimide analogs devoid of this functional group could represent a new class of analgesic and anti-inflammatory candidates with potential greater safety.
Collapse
Affiliation(s)
- Adriana M Godin
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Débora P Araújo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Raquel R Menezes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ana Mercy S Brito
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Giovanna M E Coura
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Darly G Soares
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Leandro F S Bastos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Lucas S Ribeiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Daiane Boff
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Julliana R A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Subeffective doses of nitroparacetamol (NCX-701) enhance the antinociceptive activity of the α2-adrenoceptor agonist medetomidine. Pharmacol Biochem Behav 2011; 99:385-90. [DOI: 10.1016/j.pbb.2011.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/13/2011] [Accepted: 05/19/2011] [Indexed: 11/20/2022]
|
9
|
Abstract
Challenges have emerged following the revival of nitric oxide (NO) from 'something old', a simple gas derived from nitrogen and oxygen with a role in the early stages of evolution, into 'something new', an endogenously formed biological mediator regulating a wide variety of physiological functions. Although pain is a common sensation, it encompasses multiple neurobiologic components, of which NO is only one. In pain research, the study of NO is complicated by convoluted problems related mostly to the effects of NO, which are pro- or anti-nociceptive depending on the circumstances. This dual function reflects the multi-faceted roles of the NO molecule described in physiology. This review covers current information about NO and its implications in pain mechanisms. In addition, it follows the pain pathways, demonstrating the role of NO in peripheral nociceptive transmission as well in central sensitization. This knowledge may provide the scientific basis for developing new drugs that are indicated for different types of pain, drugs that may be related to the chemical links of NO. A comprehensive approach to understanding the effects of NO will help clinicians identify novel agents that combine the pharmacological profile of native drugs with a controllable manner of NO release. Inhibitors of NO synthesis may have analgesic effects and would be of interest for treating inflammatory and neuropathic pain. Unfortunately, only a few of these compounds have reached the stage of clinical pain trials.
Collapse
Affiliation(s)
- A Miclescu
- Department of Surgical Sciences/Anesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
10
|
Hervera A, Leánez S, Negrete R, Pol O. The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:345-52. [PMID: 19636536 DOI: 10.1007/s00210-009-0436-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/07/2009] [Indexed: 12/01/2022]
Abstract
Several works reveal that nitric oxide could enhance the peripheral antinociception induced by opioids during acute inflammation. Nonetheless, the role of nitric oxide in the local antinociceptive effects of delta-opioid receptor (DOR) agonists during chronic peripheral inflammation is not known. The aim of this study is to evaluate whether nitric oxide would enhance the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Chronic inflammatory pain was induced by the subplantar administration of complete Freund's adjuvant (CFA; 30 microl) and thermal hyperalgesia assessed by plantar test. In C57BL/6J mice, we evaluated the local antinociceptive effects of a DOR agonist, [D-Pen2,5]-enkephalin (DPDPE) and a nitric oxide donor, DETA NONOate DETA/NO 2,2'-(hydroxynitrosohydrazino) Bis-Ethanamine (NOC-18) alone or combined (DPDPE plus NOC-18) at 1, 4, 7, and 10 days after CFA injection. The reversibility of the peripheral antinociceptive effects of DPDPE, alone or combined with NOC-18, was assessed with the local administration of selective (naltrindole) and non-selective (naloxone methiodide) DOR antagonists. The local administration of DPDPE or NOC-18 alone dose-dependently inhibited the thermal hyperalgesia induced by peripheral inflammation. Moreover, the co-administration of NOC-18 with DPDPE significantly increased the antinociceptive effects produced by DPDPE from 1 to 10 days of CFA-induced inflammatory pain (P < 0.05). These effects were completely blocked by naltrindole and naloxone methiodide. Our results demonstrate that nitric oxide might enhance the local antinociceptive effects of a DOR agonist during chronic inflammatory pain by interaction with peripheral DOR, representing a useful strategy for an efficient antinociceptive treatment of peripheral inflammatory pain.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Animals
- Chronic Disease
- Disease Models, Animal
- Drug Therapy, Combination
- Enkephalin, D-Penicillamine (2,5)-/administration & dosage
- Freund's Adjuvant
- Hot Temperature
- Hyperalgesia/drug therapy
- Hyperalgesia/etiology
- Hyperalgesia/metabolism
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Naltrexone/administration & dosage
- Naltrexone/analogs & derivatives
- Narcotic Antagonists/administration & dosage
- Nitric Oxide/metabolism
- Nitric Oxide Donors/administration & dosage
- Nitric Oxide Donors/metabolism
- Nitroso Compounds/administration & dosage
- Nitroso Compounds/metabolism
- Pain Measurement
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Time Factors
Collapse
Affiliation(s)
- Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut de Recerca, Hospital de la Sta Creu i Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
11
|
Curros-Criado MM, Herrero JF. Antinociceptive effects of NCX-701 (nitro-paracetamol) in neuropathic rats: enhancement of antinociception by co-administration with gabapentin. Br J Pharmacol 2009; 158:601-9. [PMID: 19645711 DOI: 10.1111/j.1476-5381.2009.00343.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain is characterized by a poor response to classic analgesics. In the present study, we have assessed the antinociceptive activity of NCX-701 (nitro-paracetamol) in neuropathic rats, after systemic and intrathecal (i.t.) administration. In addition, we analysed the possible benefit of the combination of NCX-701 and gabapentin, a well-known potent analgesic, in the treatment of neuropathic pain. EXPERIMENTAL APPROACH The antinociceptive effects of i.v. and i.t. NCX-701 and paracetamol were studied in spinal cord neuronal responses from neuropathic adult male Wistar rats, using the recording of single motor units technique. The effect of i.v. and i.t. NCX-701 in combination with i.v. gabapentin was studied by isobolographic analysis. KEY RESULTS The experiments showed that NCX-701, but not paracetamol, dose-dependently reduced the nociceptive responses evoked by noxious mechanical and electrical stimulation, after i.v. (ID(50) 542 +/- 5 micromol kg(-1) for noxious mechanical stimulation) or i.t. (ID(50) 932 +/- 16 nmol kg(-1)) administration. The combined administration of i.v. or i.t. NCX-701 and i.v. gabapentin induced a more intense antinociceptive effect than any of the two drugs given alone. The isobolographic analysis showed a synergistic effect. CONCLUSIONS AND IMPLICATIONS NCX-701 is an effective antinociceptive compound in situations of neuropathy-induced sensitization, with an action mainly located in the spinal cord. The combination of NCX-701 and gabapentin induces a synergistic enhancement of the depression of nociceptive responses evoked by natural noxious stimulation. The use of NCX-701 alone or in combination with gabapentin might open up new and promising perspectives in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- M Mar Curros-Criado
- Departamento de Fisiología, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
12
|
Curto-Reyes V, Juárez L, García-Pérez E, Fresno MF, Hidalgo A, Menéndez L, Baamonde A. Local loperamide inhibits thermal hyperalgesia but not mechanical allodynia induced by intratibial inoculation of melanoma cells in mice. Cell Mol Neurobiol 2008; 28:981-90. [PMID: 18360770 DOI: 10.1007/s10571-008-9272-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 03/04/2008] [Indexed: 12/27/2022]
Abstract
The stimulation of peripheral opioid receptors counteracts thermal hyperalgesia produced by the intratibial inoculation of NCTC 2472 cells in mice, through the activation of the nitric oxide/cGMP/ATP-sensitive K+-channels (NO/cGMP/K(+) (ATP)) cascade (Menéndez et al. 2007, Neuropharmacology 53:71-80). We aimed to elucidate whether this peripheral opioid antihyperalgesic effect is exclusive to this model or might also occur in other types of bone neoplastic processes. In C57BL/6 mice intratibially inoculated with B16-F10 melanoma cells, the progressive tumoral damage was accompanied by the establishment of thermal hyperalgesia (unilateral hot plate test) and mechanical allodynia (von Frey test). Intraplantar administration of loperamide (15 microg, 30 min before) inhibited thermal hyperalgesia, but did not modify the intense mechanical allodynia. The fact that the coadministration of naloxone-methiodide (5 microg) completely suppressed the thermal antihyperalgesic effect induced by loperamide indicates its production through the stimulation of peripheral opioid receptors. Furthermore, its prevention by the coadministration of the non-selective inhibitor of the NO synthase, N(G)-monomethyl-L-arginine (L-NMMA, 10 microg), the selective inhibitor of neural NOS, N-omega-propyl-L-arginine (1-10 microg), or the K+ (ATP) channel blocker, glibenclamide (10 microg) demonstrated the involvement of the NO/cGMP/K(+) (ATP) pathway in the antihyperalgesic effect induced by loperamide. Overall, the present results show that the intratibial inoculation of B16-F10 cells to C57BL/6 mice evokes thermal hyperalgesia and mechanical allodynia and that, as occurred in the osteosarcoma model, the stimulation of peripheral opioid receptors is not effective in modifying neoplastic allodynia but completely inhibits thermal hyperalgesia through the activation of the NO/cGMP/K+ (ATP) cascade.
Collapse
Affiliation(s)
- Verdad Curto-Reyes
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006 Oviedo, Asturias, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Gutierrez VP, Konno K, Chacur M, Sampaio SC, Picolo G, Brigatte P, Zambelli VO, Cury Y. Crotalphine induces potent antinociception in neuropathic pain by acting at peripheral opioid receptors. Eur J Pharmacol 2008; 594:84-92. [PMID: 18703042 DOI: 10.1016/j.ejphar.2008.07.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/16/2008] [Accepted: 07/23/2008] [Indexed: 11/27/2022]
Abstract
Neuropathic pain is an important clinical problem and it is usually resistant to the current therapy. We have recently characterized a novel analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in an experimental model of neuropathic pain induced in rats by chronic constriction of sciatic nerve. The effect of the peptide was compared to that induced by the crude venom, which confirmed that crotalphine is responsible for the antinociceptive effect of the crotalid venom on neuropathic pain. For characterization of neuropathic pain, the presence of hyperalgesia, allodynia and spontaneous pain was assessed at different times after nerve constriction. These phenomena were detected 24 h after surgery and persisted at least for 14 days. The pharmacological treatments were performed on day 14 after surgery. Crotalphine (0.2-5 microg/kg) and the crude venom (400-1600 microg/kg) administered p.o. inhibited hyperalgesia, allodynia and spontaneous pain induced by nerve constriction. The antinociceptive effect of the peptide and crude venom was long lasting, since it was detected up to 3 days after treatment. Intraplantar injection of naloxone (1 microg/paw) blocked the antinociceptive effect, indicating the involvement of opioid receptors in this phenomenon. Gabapentin (200 mg/kg, p.o.), and morphine (5 mg/kg, s.c.), used as positive controls, blocked hyperalgesia and partially inhibited allodynia induced by nerve constriction. These data indicate that crotalphine induces a potent and long lasting opioid antinociceptive effect in neuropathic pain that surpasses that observed with standard analgesic drugs.
Collapse
Affiliation(s)
- Vanessa Pacciari Gutierrez
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900 Sao Paulo-SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Effects of pulsed electromagnetic fields on postoperative pain: a double-blind randomized pilot study in breast augmentation patients. Aesthetic Plast Surg 2008; 32:660-6. [PMID: 18506512 DOI: 10.1007/s00266-008-9169-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND Postoperative pain may be experienced after breast augmentation surgery despite advances in surgical techniques which minimize trauma. The use of pharmacologic analgesics and narcotics may have undesirable side effects that can add to patient morbidity. This study reports the use of a portable and disposable noninvasive pulsed electromagnetic field (PEMF) device in a double-blind, randomized, placebo-controlled pilot study. This study was undertaken to determine if PEMF could provide pain control after breast augmentation. METHODS Forty-two healthy females undergoing breast augmentation for aesthetic reasons entered the study. They were separated into three cohorts, one group (n = 14) received bilateral PEMF treatment, the second group (n = 14) received bilateral sham devices, and in the third group (n = 14) one of the breasts had an active device and the other a sham device. A total of 80 breasts were available for final analysis. Postoperative pain data were obtained using a visual analog scale (VAS) and pain recordings were obtained twice daily through postoperative day (POD) 7. Postoperative analgesic medication use was also followed. RESULTS VAS data showed that pain had decreased in the active cohort by nearly a factor of three times that for the sham cohort by POD 3 (p < 0.001), and persisted at this level to POD 7. Patient use of postoperative pain medication correspondingly also decreased nearly three times faster in the active versus the sham cohorts by POD 3 (p < 0.001). CONCLUSION Pulsed electromagnetic field therapy, adjunctive to standard of care, can provide pain control with a noninvasive modality and reduce morbidity due to pain medication after breast augmentation surgery.
Collapse
|