1
|
González-Arnay E, Pérez-Santos I, Jiménez-Sánchez L, Cid E, Gal B, de la Prida LM, Cavada C. Immunohistochemical field parcellation of the human hippocampus along its antero-posterior axis. Brain Struct Funct 2024; 229:359-385. [PMID: 38180568 PMCID: PMC10917878 DOI: 10.1007/s00429-023-02725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/15/2023] [Indexed: 01/06/2024]
Abstract
The primate hippocampus includes the dentate gyrus, cornu ammonis (CA), and subiculum. CA is subdivided into four fields (CA1-CA3, plus CA3h/hilus of the dentate gyrus) with specific pyramidal cell morphology and connections. Work in non-human mammals has shown that hippocampal connectivity is precisely patterned both in the laminar and longitudinal axes. One of the main handicaps in the study of neuropathological semiology in the human hippocampus is the lack of clear laminar and longitudinal borders. The aim of this study was to explore a histochemical segmentation of the adult human hippocampus, integrating field (medio-lateral), laminar, and anteroposterior longitudinal patterning. We provide criteria for head-body-tail field and subfield parcellation of the human hippocampus based on immunodetection of Rabphilin3a (Rph3a), Purkinje-cell protein 4 (PCP4), Chromogranin A and Regulation of G protein signaling-14 (RGS-14). Notably, Rph3a and PCP4 allow to identify the border between CA3 and CA2, while Chromogranin A and RGS-14 give specific staining of CA2. We also provide novel histological data about the composition of human-specific regions of the anterior and posterior hippocampus. The data are given with stereotaxic coordinates along the longitudinal axis. This study provides novel insights for a detailed region-specific parcellation of the human hippocampus useful for human brain imaging and neuropathology.
Collapse
Affiliation(s)
- Emilio González-Arnay
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Basic Medical Science-Division of Human Anatomy, Universidad de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lorena Jiménez-Sánchez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad CEU-San Pablo, Madrid, Spain
| | | | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Dörrbaum AR, Alvarez-Castelao B, Nassim-Assir B, Langer JD, Schuman EM. Proteome dynamics during homeostatic scaling in cultured neurons. eLife 2020; 9:e52939. [PMID: 32238265 PMCID: PMC7117909 DOI: 10.7554/elife.52939] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/22/2020] [Indexed: 12/11/2022] Open
Abstract
Protein turnover, the net result of protein synthesis and degradation, enables cells to remodel their proteomes in response to internal and external cues. Previously, we analyzed protein turnover rates in cultured brain cells under basal neuronal activity and found that protein turnover is influenced by subcellular localization, protein function, complex association, cell type of origin, and by the cellular environment (Dörrbaum et al., 2018). Here, we advanced our experimental approach to quantify changes in protein synthesis and degradation, as well as the resulting changes in protein turnover or abundance in rat primary hippocampal cultures during homeostatic scaling. Our data demonstrate that a large fraction of the neuronal proteome shows changes in protein synthesis and/or degradation during homeostatic up- and down-scaling. More than half of the quantified synaptic proteins were regulated, including pre- as well as postsynaptic proteins with diverse molecular functions.
Collapse
Affiliation(s)
- Aline Ricarda Dörrbaum
- Max Planck Institute for Brain Research, Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biological Sciences, Frankfurt, Germany
| | | | | | - Julian D Langer
- Max Planck Institute for Brain Research, Frankfurt, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
3
|
Tse K, Hammond D, Simpson D, Beynon RJ, Beamer E, Tymianski M, Salter MW, Sills GJ, Thippeswamy T. The impact of postsynaptic density 95 blocking peptide (Tat-NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainate-induced epileptogenesis. J Neurosci Res 2019; 97:1378-1392. [PMID: 31090233 DOI: 10.1002/jnr.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Antiepileptogenic agents that prevent the development of epilepsy following a brain insult remain the holy grail of epilepsy therapeutics. We have employed a label-free proteomic approach that allows quantification of large numbers of brain-expressed proteins in a single analysis in the mouse (male C57BL/6J) kainate (KA) model of epileptogenesis. In addition, we have incorporated two putative antiepileptogenic drugs, postsynaptic density protein-95 blocking peptide (PSD95BP or Tat-NR2B9c) and a highly selective inducible nitric oxide synthase inhibitor, 1400W, to give an insight into how such agents might ameliorate epileptogenesis. The test drugs were administered after the induction of status epilepticus (SE) and the animals were euthanized at 7 days, their hippocampi removed, and subjected to LC-MS/MS analysis. A total of 2,579 proteins were identified; their normalized abundance was compared between treatment groups using ANOVA, with correction for multiple testing by false discovery rate. Significantly altered proteins were subjected to gene ontology and KEGG pathway enrichment analyses. KA-induced SE was most robustly associated with an alteration in the abundance of proteins involved in neuroinflammation, including heat shock protein beta-1 (HSP27), glial fibrillary acidic protein, and CD44 antigen. Treatment with PSD95BP or 1400W moderated the abundance of several of these proteins plus that of secretogranin and Src substrate cortactin. Pathway analysis identified the glutamatergic synapse as a key target for both drugs. Our observations require validation in a larger-scale investigation, with candidate proteins explored in more detail. Nevertheless, this study has identified several mechanisms by which epilepsy might develop and several targets for novel drug development. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible as supporting information. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Dean Hammond
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edward Beamer
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Michael Tymianski
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michael W Salter
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Monocular enucleation profoundly reduces secretogranin II expression in adult mouse visual cortex. Neurochem Int 2011; 59:1082-94. [DOI: 10.1016/j.neuint.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/12/2011] [Indexed: 11/21/2022]
|
5
|
Dag E, Aydin S, Ozkan Y, Erman F, Dagli AF, Gurger M. Alteration in chromogranin A, obestatin and total ghrelin levels of saliva and serum in epilepsy cases. Peptides 2010; 31:932-7. [PMID: 20172008 DOI: 10.1016/j.peptides.2010.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/11/2010] [Accepted: 02/11/2010] [Indexed: 11/23/2022]
Abstract
This study was designed to measure the levels of chromogranin A (CgA), ghrelin and obestatin in serum and saliva (including CgA expression in healthy tissue) in epileptic patients to determine any significant differences between these patients and healthy controls. Samples were obtained from a total of 91 subjects: 10 newly-diagnosed primary generalized epilepsy (PGE) patients who had started treatment with valproic acid and phenytoin for seizure control; 18 PGE patients who were previously and currently receiving treatment with valproic acid and phenytoin for seizure control; 37 patients with partial epilepsy (PE) (simple, n=17 or complex, n=20) who had been and were still being treated with carbazebime for seizures; and 26 healthy controls. CgA immunoreactivity in healthy salivary gland was analyzed by immunohistochemistry and ELISA. The levels of CgA, total ghrelin and obestatin in serum and saliva were measured by ELISA. The results revealed that normal salivary gland produces its own CgA. Before treatment, CgA levels in saliva and serum were significantly greater in patients newly-diagnosed with PGE than controls. Ghrelin and CgA concentrations were also greater in PGE patients previously or currently treated with drugs, and in patients with simple or complex partial epilepsy (PE) previously or currently treated with drugs, than in healthy normal controls. In conclusion, salivary concentrations of CgA, ghrelin and obestatin were similar to their serum levels, so saliva might be a desirable alternative to serum for measuring these hormones because it is easy and painless to collect.
Collapse
Affiliation(s)
- Ersel Dag
- Department of Neurology, Elazig Research and Education Hospital, Elazig 23119, Turkey
| | | | | | | | | | | |
Collapse
|
6
|
Zhao E, Zhang D, Basak A, Trudeau VL. New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocrinol 2009; 164:161-74. [PMID: 19523383 DOI: 10.1016/j.ygcen.2009.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
Abstract
The granin protein family is composed of two chromogranin and five secretogranin members that are acidic, heat-stable proteins in secretory granules in cells of the nervous and endocrine systems. We report that there is little evidence for evolutionary relationships among the granins except for the chromogranin group. The main granin members, including chromogranin A and B, and secretogranin II are moderately conserved in the vertebrates. Several small bioactive peptides can be generated by proteolysis from those homologous domains existing within the granin precursors, reflecting the conservation of biological activities in different vertebrates. In this context, we focus on reviewing the distribution and function of the major granin-derived peptides, including vasostatin, bovine CgB(1-41) and secretoneurin in vertebrate endocrine systems, especially those associated with growth, glucose metabolism and reproduction.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
7
|
Iwazaki T, Shibata I, Niwa SI, Matsumoto I. Selective reduction of chromogranin A-like immunoreactivities in the prefrontal cortex of schizophrenic subjects: a postmortem study. Neurosci Lett 2004; 367:293-7. [PMID: 15337252 DOI: 10.1016/j.neulet.2004.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/04/2004] [Accepted: 06/07/2004] [Indexed: 11/26/2022]
Abstract
It is suggested that secretogranins/chromogranins play a role in regulating secretion of various proteins and amines, including neurotransmitters from secretory granules. Several studies have implicated the importance of altered synaptic connectivity in schizophrenia. We employed immunohistochemical techniques to determine if the level of chromogranin A (CgA)-immunoreactivity (IR) was altered in the subjects with schizophrenia. Nine subjects with schizophrenia and nine age- and sex-matched control subjects were selected for this study. Immunohistochemistry using specific antibody against CgA was performed on sections of prefrontal cortex and hippocampus. Images of CgA-IR were analyzed by computer-based image analyzing software. CgA-IR was significantly decreased in layers III-V of the prefrontal cortex in schizophrenic subjects compared with control subjects. In the hippocampus, no significant difference was observed between two groups. The results indicate that there may be a decrease in the number of CgA positive large dense-core vesicles per terminal, and/or in the number of CgA positive terminals, suggesting possible functional impairment of prefrontal synaptic contact in schizophrenia.
Collapse
Affiliation(s)
- Takeshi Iwazaki
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Hikarigaoka 1 960-1295, Japan
| | | | | | | |
Collapse
|
8
|
Abstract
During the Past decade, nine new antiepileptic drugs (AEDs) namely, Felbamate, Gabapentin, Levetiracetam, Lamotrigine, Oxcarbazepine, Tiagabine, Topiramate, Vigabatrin and Zonisamide have been marketed worldwide. The introduction of these drugs increased appreciably the number of therapeutic combinations used in the treatment of epilepsy and with it, the risk of drug interactions. In general, these newer antiepileptic drugs exhibit a lower potential for drug interactions than the classic AEDs, like phenytoin, carbamazepine and valproic acid, mostly because of their pharmacokinetic characteristics. For example, vigabatrin, levetiracetam and gabapentin, exhibit few or no interactions with other AEDs. Felbamate, tiagabine, topiramate and zonisamide are sensitive to induction by known anticonvulsants with inducing effects but are less vulnerable to inhibition by common drug inhibitors. Felbamate, topiramate and oxcarbazepine are mild inducers and may affect the disposition of oral contraceptives with a risk of failure of contraception. These drugs also inhibit CYP2C19 and may affect the disposition of phenytoin. Lamotrigine is eliminated mostly by glucuronidation and is susceptible to inhibition by valproic acid and induction by classic AEDs such as phenytoin, carbamazepine, phenobarbital and primidone.
Collapse
Affiliation(s)
- Houda Hachad
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
9
|
Abstract
Marked expression of neuropeptide Y (NPY) and its Y2 receptors in hippocampal mossy fibers has been reported in animal models of epilepsy. Because NPY can suppress glutamate release by activating presynaptic Y2 receptors, these changes have been proposed as an endogenous protective mechanism. Therefore, we investigated whether similar changes in the NPY system may also take place in human epilepsy. We investigated Y1 and Y2 receptor binding and NPY immunoreactivity in hippocampal specimens that were obtained at surgery from patients with temporal lobe epilepsy and in autopsy controls. Significant increases in Y2 receptor binding (by 43-48%) were observed in the dentate hilus, sectors CA1 to CA3, and subiculum of specimens with, but not in those without, hippocampal sclerosis. On the other hand, Y1 receptor binding was significantly reduced (by 62%) in the dentate molecular layer of sclerotic specimens. In the same patients, the total lengths of NPY immunoreactive (NPY-IR) fibers was markedly increased (by 115-958%) in the dentate molecular layer and hilus, in the stratum lucidum of CA3, and throughout sectors CA1 to CA3 and the subiculum, as compared with autopsies. In nonsclerotic specimens, increases in lengths of NPY-IR fibers were more moderate and statistically not significant. NPY mRNA was increased threefold in hilar interneurons of sclerotic and nonsclerotic specimens. It is suggested that abundant sprouting of NPY fibers, concomitant upregulation of Y2 receptors, and downregulation of Y1 receptors in the hippocampus of patients with Ammon's horn sclerosis may be endogenous anticonvulsant mechanisms.
Collapse
|