1
|
Xiong Z, Deng J, Xie P, Tang C, Wang J, Deng Q, Yang Y, Zhang J, Guo M, Wang X, Guan Y, Luan G, Zhou J, Li T. Deep Brain Stimulation Inhibits Epileptic Seizures via Increase of Adenosine Release and Inhibition of ENT1, CD39, and CD73 Expression. Mol Neurobiol 2025; 62:1800-1812. [PMID: 39042219 DOI: 10.1007/s12035-024-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus is an efficacious treatment option for patients with refractory epilepsy. Our previous study demonstrates that adenosine is a potential target of DBS for the treatment of epilepsy. Equilibrative nucleoside transporters-1 (ENT1) and ectonucleotidases (CD39, CD73) function as regulators of extracellular adenosine in the brain. It is unclear whether ENT1, CD39, and CD73 are involved in the mechanism of DBS for epilepsy. A total of 48 SD male rats were divided into four groups: control (naïve rats), Pilo (pilocarpine induced rats with epilepsy), DBS (rats with epilepsy treated with DBS for 8 weeks), and sham. In the present study, video electroencephalogram monitoring, Morris water maze assays, in vivo measurements of adenosine using fiber photometry, histochemistry, and western blot were performed on the hippocampus. DBS markedly attenuated spontaneous recurrent seizures (SRSs) and enhanced spatial learning in rats with epilepsy, assessed through video-EEG and water maze assays. Fibred photometry measurements of an adenosine sensor revealed dynamic increase in extracellular adenosine during DBS. The expressions of ENT1, CD39, and CD73 in Pilo group and sham group increased compared with the control group, while the expressions of ENT1, CD39, and CD73 in DBS group decreased compared to that of Pilo group and sham group. The findings indicate that DBS reduces the number of SRSs and improves spatial memory in rats with epilepsy with concomitant decrease of ENT1, CD39, and CD73 expressions. Adenosine-modulating enzymes might be the potential targets of DBS for the treatment of epilepsy.
Collapse
Affiliation(s)
- Zhonghua Xiong
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jiahui Deng
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Pandeng Xie
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Wang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Qinqin Deng
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yujiao Yang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Zhang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Mengyi Guo
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yuguang Guan
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Guoming Luan
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tianfu Li
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
2
|
Matin R, Zhang K, Ibrahim GM, Gouveia FV. Systematic Review of Experimental Deep Brain Stimulation in Rodent Models of Epilepsy. Neuromodulation 2024:S1094-7159(24)01220-0. [PMID: 39641703 DOI: 10.1016/j.neurom.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is an established neuromodulatory technique for treating drug-resistant epilepsy. Despite its widespread use in carefully selected patients, the mechanisms underlying the antiseizure effects of DBS remain unclear. Herein, we provide a detailed overview of the current literature pertaining to experimental DBS in rodent models of epilepsy and identify relevant trends in this field. MATERIALS AND METHODS A systematic review was conducted using the PubMed MEDLINE database, following PRISMA guidelines. Data extraction focused on study characteristics, including stimulation protocol, seizure and behavioral outcomes, and reported mechanisms of action. RESULTS Of the 1788 resultant articles, 164 were included. The number of published articles has grown exponentially in recent decades. Most studies used chemically or electrically induced models of epilepsy. DBS targeting the anterior nucleus of the thalamus, hippocampal formation, or amygdala was most extensively studied. Effective stimulation parameters were identified, and novel stimulation designs were explored, such as closed-loop and unstructured stimulation approaches. Common mechanisms included synaptic modulation through the depression of excitatory neurotransmission and inhibitory release of GABA. At the network level, antiseizure effects were associated with the desynchronization of neural networks, characterized by decreased low-frequency oscillations. CONCLUSIONS Rodent models have significantly advanced the understanding of disease pathophysiology and the development of novel therapies. However, fundamental questions remain regarding DBS mechanisms, optimal targets, and parameters. Further research is necessary to improve DBS therapy and tailor treatment to individual patient circumstances.
Collapse
Affiliation(s)
- Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristina Zhang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Pati S, Agashe S, Kheder A, Riley K, Gavvala J, McGovern R, Suresh S, Chaitanya G, Thompson S. Stereoelectroencephalography of the Deep Brain: Basal Ganglia and Thalami. J Clin Neurophysiol 2024; 41:423-429. [PMID: 38935656 DOI: 10.1097/wnp.0000000000001097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Stereoelectroencephalography (SEEG) has emerged as a transformative tool in epilepsy surgery, shedding light on the complex network dynamics involved in focal epilepsy. This review explores the role of SEEG in elucidating the role of deep brain structures, namely the basal ganglia and thalamus, in epilepsy. SEEG advances understanding of their contribution to seizure generation, propagation, and control by permitting precise and minimally invasive sampling of these brain regions. The basal ganglia, comprising the subthalamic nucleus, globus pallidus, substantia nigra, and striatum, have gained recognition for their involvement in both focal and generalized epilepsy. Electrophysiological recordings reveal hyperexcitability and increased synchrony within these structures, reinforcing their role as critical nodes within the epileptic network. Furthermore, low-frequency and high-frequency stimulation of the basal ganglia have demonstrated potential in modulating epileptogenic networks. Concurrently, the thalamus, a key relay center, has garnered prominence in epilepsy research. Disrupted thalamocortical connectivity in focal epilepsy underscores its significance in seizure maintenance. The thalamic subnuclei, including the anterior nucleus, centromedian, and medial pulvinar, present promising neuromodulatory targets, suggesting pathways for personalized epilepsy therapies. The prospect of multithalamic SEEG and thalamic SEEG stimulation trials has the potential to revolutionize epilepsy management, offering tailored solutions for challenging cases. SEEG's ability to unveil the dynamics of deep brain structures in epilepsy promises enhanced and personalized epilepsy care in our new era of precision medicine. Until deep brain SEEG is accepted as a standard of care, a rigorous informed consent process remains paramount for patients for whom such an exploration is proposed.
Collapse
Affiliation(s)
- Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Shruti Agashe
- Department of Neurology, Duke Comprehensive Epilepsy Center, Duke University, Durham, North Carolina, U.S.A
| | - Ammar Kheder
- Department of Neurology, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, U.S.A
| | - Kristen Riley
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Alabama, U.S.A
| | - Jay Gavvala
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Robert McGovern
- Department of Neurosurgery, University of Minnesota, Minnesota, U.S.A.; and
| | - Surya Suresh
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Ganne Chaitanya
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Stephen Thompson
- Neurology Division of the Department of Medicine, Hamilton Health Sciences and McMaster University, Canada
| |
Collapse
|
5
|
Yang JC, Yang AI, Gross RE. Sensing-Enabled Deep Brain Stimulation in Epilepsy. Neurosurg Clin N Am 2024; 35:119-123. [PMID: 38000835 DOI: 10.1016/j.nec.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Deep brain stimulation has demonstrated efficacy in reducing seizure frequency in patients with drug-resistant epilepsy who may otherwise not be candidates for other surgical procedures. Recently, a clinical device that can monitor neural activity in the form of local field potentials around the deep brain stimulator lead implant site has been introduced. While this technology has been clinically adopted in other disorders treated with deep brain stimulation, such as Parkinson's disease, its application in epilepsy remains unclear. Previous research using investigational devices has suggested that specific frequency bands may correlate with clinical response to deep brain stimulation in epilepsy, but features of the clinical device may prevent its use. The authors present their experience with using this technology in epilepsy patients and describe some of its limitations. Ultimately, novel biomarkers will need to be identified to elucidate how neural activity at deep brain stimulation sites may change with clinical response.
Collapse
Affiliation(s)
- Jimmy C Yang
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Neurosurgery, Emory University, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA.
| | - Andrew I Yang
- Department of Neurosurgery, Emory University, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322
| |
Collapse
|
6
|
Aiello G, Ledergerber D, Dubcek T, Stieglitz L, Baumann C, Polanìa R, Imbach L. Functional network dynamics between the anterior thalamus and the cortex in deep brain stimulation for epilepsy. Brain 2023; 146:4717-4735. [PMID: 37343140 DOI: 10.1093/brain/awad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Owing to its unique connectivity profile with cortical brain regions, and its suggested role in the subcortical propagation of seizures, the anterior nucleus of the thalamus (ANT) has been proposed as a key deep brain stimulation (DBS) target in drug-resistant epilepsy. However, the spatio-temporal interaction dynamics of this brain structure, and the functional mechanisms underlying ANT DBS in epilepsy remain unknown. Here, we study how the ANT interacts with the neocortex in vivo in humans and provide a detailed neurofunctional characterization of mechanisms underlying the effectiveness of ANT DBS, aiming at defining intraoperative neural biomarkers of responsiveness to therapy, assessed at 6 months post-implantation as the reduction in seizure frequency. A cohort of 15 patients with drug-resistant epilepsy (n = 6 males, age = 41.6 ± 13.79 years) underwent bilateral ANT DBS implantation. Using intraoperative cortical and ANT simultaneous electrophysiological recordings, we found that the ANT is characterized by high amplitude θ (4-8 Hz) oscillations, mostly in its superior part. The strongest functional connectivity between the ANT and the scalp EEG was also found in the θ band in ipsilateral centro-frontal regions. Upon intraoperative stimulation in the ANT, we found a decrease in higher EEG frequencies (20-70 Hz) and a generalized increase in scalp-to-scalp connectivity. Crucially, we observed that responders to ANT DBS treatment were characterized by higher EEG θ oscillations, higher θ power in the ANT, and stronger ANT-to-scalp θ connectivity, highlighting the crucial role of θ oscillations in the dynamical network characterization of these structures. Our study provides a comprehensive characterization of the interaction dynamic between the ANT and the cortex, delivering crucial information to optimize and predict clinical DBS response in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Giovanna Aiello
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Debora Ledergerber
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Tena Dubcek
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Rafael Polanìa
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Kravchenko JA, Goldberg EM, Mattis J. Optogenetic and chemogenetic manipulation of seizure threshold in mice. STAR Protoc 2023; 4:102019. [PMID: 36640370 PMCID: PMC9846020 DOI: 10.1016/j.xpro.2022.102019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Here, we present a protocol using optogenetics or chemogenetics to assess the neuronal circuits contributing to seizure initiation. Both approaches allow for targeted control of neuronal populations in vivo and can be combined with experimental manipulations to acutely induce seizures in rodent models. We describe how to (1) introduce and (2) activate optogenetic or chemogenetic actuators while (3) inducing seizures via hyperthermia in a mouse model of epilepsy. This protocol can be adapted for use in other induced seizure models. For complete details on the use and execution of this protocol, please refer to Mattis et al. (2022).1.
Collapse
Affiliation(s)
- Julia A Kravchenko
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joanna Mattis
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Goldenberg AM, Schmidt S, Mitelman R, Levy DR, Prigge M, Katz Y, Yizhar O, Beck H, Lampl I. Localized chemogenetic silencing of inhibitory neurons: a novel mouse model of focal cortical epileptic activity. Cereb Cortex 2023; 33:2838-2856. [PMID: 35788286 DOI: 10.1093/cercor/bhac245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Focal cortical epilepsies are frequently refractory to available anticonvulsant drug therapies. One key factor contributing to this state is the limited availability of animal models that allow to reliably study focal cortical seizures and how they recruit surrounding brain areas in vivo. In this study, we selectively expressed the inhibitory chemogenetic receptor, hM4D, in GABAergic neurons in focal cortical areas using viral gene transfer. GABAergic silencing using Clozapine-N-Oxide (CNO) demonstrated reliable induction of local epileptiform events in the electroencephalogram signal of awake freely moving mice. Anesthetized mice experiments showed consistent induction of focal epileptiform-events in both the barrel cortex (BC) and the medial prefrontal cortex (mPFC), accompanied by high-frequency oscillations, a known characteristic of human seizures. Epileptiform-events showed propagation indication with favored propagation pathways: from the BC on 1 hemisphere to its counterpart and from the BC to the mPFC, but not vice-versa. Lastly, sensory whisker-pad stimulation evoked BC epileptiform events post-CNO, highlighting the potential use of this model in studying sensory-evoked seizures. Combined, our results show that targeted chemogenetic inhibition of GABAergic neurons using hM4D can serve as a novel, versatile, and reliable model of focal cortical epileptic activity suitable for systematically studying cortical ictogenesis in different cortical areas.
Collapse
Affiliation(s)
- Adi Miriam Goldenberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarah Schmidt
- Institute for Experimental Epileptology and Cognition Research, Life and Brain Center, University of Bonn, Bonn 53105, Germany
| | - Rea Mitelman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Rubi Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthias Prigge
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonatan Katz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Heinz Beck
- Institute for Experimental Epileptology and Cognition Research, Life and Brain Center, University of Bonn, Bonn 53105, Germany
| | - Ilan Lampl
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
10
|
Suppression of seizure in childhood absence epilepsy using robust control of deep brain stimulation: a simulation study. Sci Rep 2023; 13:461. [PMID: 36627375 PMCID: PMC9832016 DOI: 10.1038/s41598-023-27527-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) is a promising technique to relieve the symptoms in patients with intractable seizures. Although the DBS therapy for seizure suppression dates back more than 40 years, determining stimulation parameters is a significant challenge to the success of this technique. One solution to this challenge with application in a real DBS system is to design a closed-loop control system to regulate the stimulation intensity using computational models of epilepsy automatically. The main goal of the current study is to develop a robust control technique based on adaptive fuzzy terminal sliding mode control (AFTSMC) for eliminating the oscillatory spiking behavior in childhood absence epilepsy (CAE) dynamical model consisting of cortical, thalamic relay, and reticular nuclei neurons. To this end, the membrane voltage dynamics of the three coupled neurons are considered as a three-input three-output nonlinear state delay system. A fuzzy logic system is developed to estimate the unknown nonlinear dynamics of the current and delayed states of the model embedded in the control input. Chattering-free control input (continuous DBS pulses) without any singularity problem is the superiority of the proposed control method. To guarantee the bounded stability of the closed-loop system in a finite time, the upper bounds of the external disturbance and minimum estimation errors are updated online with adaptive laws without any offline tuning phase. Simulation results are provided to show the robustness of AFTSMC in the presence of uncertainty and external disturbances.
Collapse
|
11
|
Xue T, Chen S, Bai Y, Han C, Yang A, Zhang J. Neuromodulation in drug-resistant epilepsy: A review of current knowledge. Acta Neurol Scand 2022; 146:786-797. [PMID: 36063433 DOI: 10.1111/ane.13696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Nearly 1% of the global population suffers from epilepsy. Drug-resistant epilepsy (DRE) affects one-third of epileptic patients who are unable to treat their condition with existing drugs. For the treatment of DRE, neuromodulation offers a lot of potential. The background, mechanism, indication, application, efficacy, and safety of each technique are briefly described in this narrative review, with an emphasis on three approved neuromodulation therapies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation (RNS). Neuromodulatory approaches involving direct or induced electrical currents have been developed to lessen seizure frequency and duration in patients with DRE since the notion of electrical stimulation as a therapy for neurologic diseases originated in the early nineteenth century. Although few people have attained total seizure independence for more than 12 months using these treatments, more than half have benefitted from a 50% drop in seizure frequency over time. Although promising outcomes in adults and children with DRE have been achieved, challenges such as heterogeneity among epilepsy types and etiologies, optimization of stimulation parameters, a lack of biomarkers to predict response to neuromodulation therapies, high-level evidence to aid decision-making, and direct comparisons between neuromodulatory approaches remain. To solve these existing gaps, authorize new kinds of neuromodulation, and develop personalized closed-loop treatments, further research is needed. Finally, both invasive and non-invasive neuromodulation seems to be safe. Implantation-related adverse events for invasive stimulation primarily include infection and pain at the implant site. Intracranial hemorrhage is a frequent adverse event for DBS and RNS. Other stimulation-specific side-effects are mild with non-invasive stimulation.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shujun Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Yang H, Shan W, Fan J, Deng J, Luan G, Wang Q, Zhang Y, You H. Mapping the Neural Circuits Responding to Deep Brain Stimulation of the Anterior Nucleus of the Thalamus in the Rat Brain. Epilepsy Res 2022; 187:107027. [DOI: 10.1016/j.eplepsyres.2022.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/15/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
|
13
|
Feigen CM, Eskandar EN. Responsive Thalamic Neurostimulation: A Systematic Review of a Promising Approach for Refractory Epilepsy. Front Hum Neurosci 2022; 16:910345. [PMID: 35865353 PMCID: PMC9294465 DOI: 10.3389/fnhum.2022.910345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Responsive neurostimulation is an evolving therapeutic option for patients with treatment-refractory epilepsy. Open-loop, continuous stimulation of the anterior thalamic nuclei is the only approved modality, yet chronic stimulation rarely induces complete seizure remission and is associated with neuropsychiatric adverse effects. Accounts of off-label responsive stimulation in thalamic nuclei describe significant improvements in patients who have failed multiple drug regimens, vagal nerve stimulation, and other invasive measures. This systematic review surveys the currently available data supporting the use of responsive thalamic neurostimulation in primary and secondary generalized, treatment-refractory epilepsy. Materials and Methods A systematic review was performed using the following combination of keywords and controlled vocabulary: (“Seizures”[Mesh] AND “Thalamus”[Mesh] AND “Deep Brain Stimulation”[Mesh]) OR (responsive neurostim* AND (thalamus[MeSH])) OR [responsive neurostimulation AND thalamus AND (epilepsy OR seizures)]. In addition, a search of the publications listed under the PubMed “cited by” tab was performed for all publications that passed title/abstract screening in addition to manually searching their reference lists. Results Ten publications were identified describing a total of 29 subjects with a broad range of epilepsy disorders treated with closed-loop thalamic neurostimulation. The median age of subjects was 31 years old (range 10–65 years). Of the 29 subjects, 15 were stimulated in the anterior, 11 in the centromedian, and 3 in the pulvinar nuclei. Excluding 5 subjects who were treated for 1 month or less, median time on stimulation was 19 months (range 2.4–54 months). Of these subjects, 17/24 experienced greater than or equal to 50%, 11/24 least 75%, and 9/24 at least 90% reduction in seizures. Although a minority of patients did not exhibit significant clinical improvement by follow-up, there was a general trend of increasing treatment efficacy with longer periods on closed-loop thalamic stimulation. Conclusion The data supporting off-label closed-loop thalamic stimulation for refractory epilepsy is limited to 29 adult and pediatric patients, many of whom experienced significant improvement in seizure duration and frequency. This encouraging progress must be verified in larger studies.
Collapse
|
14
|
Warsi NM, Yan H, Suresh H, Wong SM, Arski ON, Gorodetsky C, Zhang K, Gouveia FV, Ibrahim GM. The anterior and centromedian thalamus: anatomy, function, and dysfunction in epilepsy. Epilepsy Res 2022; 182:106913. [DOI: 10.1016/j.eplepsyres.2022.106913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 01/21/2023]
|
15
|
The role of thalamic nuclei in genetic generalized epilepsies. Epilepsy Res 2022; 182:106918. [DOI: 10.1016/j.eplepsyres.2022.106918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023]
|
16
|
de Oliveira TVHF, Cukiert A. Deep Brain Stimulation for Treatment of Refractory Epilepsy. Neurol India 2021; 68:S268-S277. [PMID: 33318361 DOI: 10.4103/0028-3886.302454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Deep brain stimulation (DBS) has been used in the treatment of motor diseases with remarkable safety and efficacy, which abet the interest of its application in the management of other neurologic and psychiatric disorders such as epilepsy. Experimental data demonstrated that electric current could modulate distinct brain circuits and decrease the neuronal hypersynchronization seen in epileptic activity. The ability to carefully choose the most suitable anatomical target as well as to define the most reasonable stimulation parameters is highly dependable on the comprehension of the underlying mechanisms of action, which remain unclear. This review aimed to explore the relevant clinical data regarding the use of DBS in the treatment of refractory epilepsy.
Collapse
Affiliation(s)
| | - Arthur Cukiert
- Department of Neurosurgery, Epilepsy Surgery Program, Clínica Cukiert, São Paulo, Brazil
| |
Collapse
|
17
|
Kamalova A, Futai K, Delpire E, Nakagawa T. AMPA Receptor Auxiliary Subunit GSG1L Suppresses Short-Term Facilitation in Corticothalamic Synapses and Determines Seizure Susceptibility. Cell Rep 2021; 32:107921. [PMID: 32697982 PMCID: PMC7425083 DOI: 10.1016/j.celrep.2020.107921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023] Open
Abstract
The anterior thalamus (AT) is critical for memory formation, processing navigational information, and seizure initiation. However, the molecular mechanisms that regulate synaptic function of AT neurons remain largely unexplored. We report that AMPA receptor auxiliary subunit GSG1L controls short-term plasticity in AT synapses that receive inputs from the cortex, but not in those receiving inputs from other pathways. A canonical auxiliary subunit stargazin co-exists in these neurons but is functionally absent from corticothalamic synapses. In GSG1L knockout mice, AT neurons exhibit hyperexcitability and the animals have increased susceptibility to seizures, consistent with a negative regulatory role of GSG1L. We hypothesize that negative regulation of synaptic function by GSG1L plays a critical role in maintaining optimal excitation in the AT. Kamalova et al. report the phenotypes of GSG1L KO mice. The synaptic function of AMPAR auxiliary subunit GSG1L in the anterior thalamus is input specific. GSG1L suppresses short-term facilitation and decreases AMPAR activity specifically in corticothalamic synapses, where stargazin is functionally absent. GSG1L KO mice exhibit hyperexcitability and seizure susceptibility.
Collapse
Affiliation(s)
- Aichurok Kamalova
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric Delpire
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
The Kainic Acid Models of Temporal Lobe Epilepsy. eNeuro 2021; 8:ENEURO.0337-20.2021. [PMID: 33658312 PMCID: PMC8174050 DOI: 10.1523/eneuro.0337-20.2021] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Experimental models of epilepsy are useful to identify potential mechanisms of epileptogenesis, seizure genesis, comorbidities, and treatment efficacy. The kainic acid (KA) model is one of the most commonly used. Several modes of administration of KA exist, each producing different effects in a strain-, species-, gender-, and age-dependent manner. In this review, we discuss the advantages and limitations of the various forms of KA administration (systemic, intrahippocampal, and intranasal), as well as the histologic, electrophysiological, and behavioral outcomes in different strains and species. We attempt a personal perspective and discuss areas where work is needed. The diversity of KA models and their outcomes offers researchers a rich palette of phenotypes, which may be relevant to specific traits found in patients with temporal lobe epilepsy.
Collapse
|
19
|
Li R, Zhang L, Guo D, Zou T, Wang X, Wang H, Li J, Wang C, Liu D, Yang Z, Xiao B, Chen H, Feng L. Temporal Lobe Epilepsy Shows Distinct Functional Connectivity Patterns in Different Thalamic Nuclei. Brain Connect 2021; 11:119-131. [PMID: 33317410 DOI: 10.1089/brain.2020.0826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: The thalamus, as a key relay of neuronal information flow between subcortical structures and cortical networks, has been implicated in focal limbic seizures propagation, awareness maintenance, and seizure-related cognitive deficits. However, the specific functional alterations between different thalamic nuclei and subcortical-cortical systems in temporal lobe epilepsy (TLE) remain largely unknown. Methods: We examined thalamic functional connectivity (FC) in 26 TLE patients and 30 healthy controls matched for sex, age, and education. The anterior (ANT), ventral posterior medial, and central lateral nuclei of thalamus were employed to establish whole-brain seed-to-voxel thalamic FC maps. Secondary Pearson's correlation analysis was conducted to assess associations between the abnormal thalamic FC and the memory performance in TLE. Results: Seed-based FC analyses revealed typical distinct FC patterns within each thalamic nuclei in both controls and TLE patients. The TLE showed significantly decreased FC between different thalamic nuclei and subcortical-cortical networks, including the limbic structures, midbrain, sensorimotor network, medial prefrontal cortex, temporal-occipital fusiform gyrus, and cerebellum. Verification analyses yielded similar patterns of thalamic FC changes in TLE. Importantly, the decreased FC between the ANT and hippocampal pathway was correlated with the poorer memory performance of TLE. Conclusion: These findings suggest that the distinct thalamocortical FC patterns are damaged to some extent in TLE patients. Importantly, the specific pathology of the ANT-hippocampal pathway in TLE may be a potential factor that contributes to memory deficits. Our study may pave the way for improved treatments and cognitive function by directly targeting different thalamocortical circuits for TLE.
Collapse
Affiliation(s)
- Rong Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Leiyao Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Danni Guo
- Department of Neurology and Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ting Zou
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Xuyang Wang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hongyu Wang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jiyi Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Chong Wang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Bo Xiao
- Department of Neurology and Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Huafu Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Li Feng
- Department of Neurology and Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
20
|
Toth E, Kumar S, Ganne C, Riley KO, Balasubramanian K, Pati S. Machine learning approach to detect focal-onset seizures in the human anterior nucleus of the thalamus. J Neural Eng 2020; 17. [PMID: 33059336 DOI: 10.1088/1741-2552/abc1b7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/15/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE There is an unmet need to develop seizure detection algorithms from brain regions outside the epileptogenic cortex. The study aimed to demonstrate the feasibility of classifying seizures and interictal states from local field potentials (LFPs) recorded from the human thalamus- a subcortical region remote to the epileptogenic cortex. We tested the hypothesis that spectral and entropy-based features extracted from LFPs recorded from the anterior nucleus of the thalamus (ANT) can distinguish its state of ictal recruitment from other interictal states (including awake, sleep). APPROACH Two supervised machine learning tools (random forest and the random kitchen sink) were used to evaluate the performance of spectral (discrete wavelet transform-DWT), and time-domain (multiscale entropy-MSE) features in classifying seizures from interictal states in patients undergoing stereo EEG evaluation for epilepsy surgery. Under the supervision of IRB, field potentials were recorded from the ANT in consenting adults with drug-resistant temporal lobe epilepsy. Seizures were confirmed in the ANT using line-length and visual inspection. Wilcoxon rank-sum (WRS) method was used to test the differences in spectral patterns between seizure and interictal (awake and sleep) states. MAIN RESULTS 79 seizures (10 patients) and 158 segments (approx. 4 hours) of interictal stereo EEG data were analyzed. The mean seizure detection latencies with line length in the ANT varied between seizure types (range 5-34 seconds). However, the DWT and MSE in the ANT showed significant changes for all seizure types within the first 20 seconds after seizure onset. The random forest (accuracy 93.9 % and false-positive 4.6%) and the random kitchen sink (accuracy 97.3% and false-positive 1.8%) classified seizures and interictal states. SIGNIFICANCE These results suggest that features extracted from the thalamic LFPs can be trained to detect seizures that can be used for monitoring seizure counts and for closed-loop seizure abortive interventions.
Collapse
Affiliation(s)
- Emilia Toth
- University of Alabama School of Medicine, Birmingham, Alabama, UNITED STATES
| | - Sachin Kumar
- Centre for Computational Engineering and Networking , Amrita Vishwa Vidyapeetham Amrita School of Engineering, Coimbatore, Tamil Nadu, INDIA
| | - Chaitanya Ganne
- Neurology, University of Alabama at Birmingham, 1720 7th Ave S, Suite 405F, SPARKS building, Birmingham, UNITED STATES
| | - Kristen O Riley
- Neurosurgery, University of Alabama School of Medicine, Birmingham, Alabama, UNITED STATES
| | - Karthi Balasubramanian
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham Amrita School of Engineering, Coimbatore, Tamil Nadu, INDIA
| | - Sandipan Pati
- University of Alabama School of Medicine, Birmingham, Alabama, 35294-3412, UNITED STATES
| |
Collapse
|
21
|
Sherdil A, Chabardès S, David O, Piallat B. Coherence between the hippocampus and anterior thalamic nucleus as a tool to improve the effect of neurostimulation in temporal lobe epilepsy: An experimental study. Brain Stimul 2020; 13:1678-1686. [PMID: 33035722 DOI: 10.1016/j.brs.2020.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Although the mechanisms by which deep brain stimulation (DBS) modifies the activity of the ictal network are mostly undefined, recent studies have suggested that DBS of the anterior nucleus of the thalamus (ANT) can be an effective treatment for mesial temporal lobe epilepsy (MTLE) when resective surgery cannot be performed. In a nonhuman primate (NHP) model of MTL seizures, we showed that the ANT was actively involved during interictal and ictal periods through different patterns and that the hippocampus (HPC) and ANT synchronously oscillate in the high beta-band during seizures. OBJECTIVE Based on those findings, we evaluated whether the frequency of stimulation is an important parameter that interferes with seizures and how to adapt stimulation protocols to it. METHODS We investigated the effects of low-frequency (40 Hz - determined as the ictal frequency of correlation between structures) and high-frequency (130 Hz - as commonly used in clinic) ANT stimulation in three monkeys in which MTLE seizures were initiated. RESULTS Low-frequency stimulation had a strong effect on the number of seizures and the total time spent in seizure, whereas high-frequency stimulation had no effect. The coherence of oscillations between the HPC and the ANT was significantly correlated with the success of low-frequency stimulation: the greater the coherence was, the greater the antiepileptic effect of ANT-DBS. CONCLUSION Our results suggest that low-frequency stimulation is efficient in treating seizures in a nonhuman primate model. More importantly, the study of the coherence between the ANT and HPC during seizures can help to predict the anti-epileptic effects of ANT stimulation. Furthermore, the DBS paradigm could be customized in frequency for each patient on the basis of the coherence spectral pattern.
Collapse
Affiliation(s)
- Ariana Sherdil
- Inserm, U1216, Grenoble, F-38000, France; Univ Grenoble Alpes, Grenoble, F-38000, France
| | - Stephan Chabardès
- Inserm, U1216, Grenoble, F-38000, France; Univ Grenoble Alpes, Grenoble, F-38000, France; CHU Grenoble Alpes, Department of Neurosurgery, Grenoble, F-38000, France; Clinatec, Research Centre Edmond Safra, CEA-LETI, Grenoble, F-38000, France
| | - Olivier David
- Inserm, U1216, Grenoble, F-38000, France; Univ Grenoble Alpes, Grenoble, F-38000, France
| | - Brigitte Piallat
- Inserm, U1216, Grenoble, F-38000, France; Univ Grenoble Alpes, Grenoble, F-38000, France.
| |
Collapse
|
22
|
Srivastava A, Liachenko S, Sarkar S, Paule M, Negi G, Pandey JP, Hanig JP. Quantitative Neurotoxicology: An Assessment of the Neurotoxic Profile of Kainic Acid in Sprague Dawley Rats. Int J Toxicol 2020; 39:294-306. [PMID: 32468881 DOI: 10.1177/1091581820928497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study consisted of a qualitative and quantitative assessment of neuropathological changes in kainic acid (KA)-treated adult male rats. Rats were administered a single 10 mg/kg intraperitoneal injection of KA or the same volume of saline and sacrificed 24 or 48 hours posttreatment. Brains were collected, sectioned coronally (∼ 81 slices), and stained with amino cupric silver to reveal degenerative changes. For qualitative assessment of neural degeneration, sectioned material was evaluated by a board-certified pathologist, and the level of degeneration was graded based upon a 4-point scale. For measurement of quantitative neural degeneration in response to KA treatment, the HALO digital image analysis software tool was used. Quantitative measurements of specific regions within the brain were obtained from silver-stained tissue sections with quantitation based on stain color and optical density. This quantitative evaluation method identified degeneration primarily in the cerebral cortex, septal nuclei, amygdala, olfactory bulb, hippocampus, thalamus, and hypothalamus. The KA-produced neuronal degeneration in the cortex was primarily in the piriform, insular, rhinal, and cingulate areas. In the hippocampus, the dentate gyrus was found to be the most affected area. Our findings indicate global neurotoxicity due to KA treatment. Certain brain structures exhibited more degeneration than others, reflecting differential sensitivity or vulnerability of neurons to KA.
Collapse
Affiliation(s)
| | - Serguei Liachenko
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Sumit Sarkar
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Merle Paule
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Geeta Negi
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| | - Jai P Pandey
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| | - Joseph P Hanig
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| |
Collapse
|
23
|
Scherer M, Milosevic L, Guggenberger R, Maus V, Naros G, Grimm F, Bucurenciu I, Steinhoff BJ, Weber YG, Lerche H, Weiss D, Rona S, Gharabaghi A. Desynchronization of temporal lobe theta-band activity during effective anterior thalamus deep brain stimulation in epilepsy. Neuroimage 2020; 218:116967. [PMID: 32445879 DOI: 10.1016/j.neuroimage.2020.116967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Bilateral cyclic high frequency deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) reduces the seizure count in a subset of patients with epilepsy. Detecting stimulation-induced alterations of pathological brain networks may help to unravel the underlying physiological mechanisms related to effective stimulation delivery and optimize target engagement. METHODS We acquired 64-channel electroencephalography during ten ANT-DBS cycles (145 Hz, 90 μs, 3-5 V) of 1-min ON followed by 5-min OFF stimulation to detect changes in cortical activity related to seizure reduction. The study included 14 subjects (three responders, four non-responders, and seven healthy controls). Mixed-model ANOVA tests were used to compare differences in cortical activity between subgroups both ON and OFF stimulation, while investigating frequency-specific effects for the seizure onset zones. RESULTS ANT-DBS had a widespread desynchronization effect on cortical theta and alpha band activity in responders, but not in non-responders. Time domain analysis showed that the stimulation induced reduction in theta-band activity was temporally linked to the stimulation period. Moreover, stimulation induced theta-band desynchronization in the temporal lobe channels correlated significantly with the therapeutic response. Responders to ANT-DBS and healthy-controls had an overall lower level of theta-band activity compared to non-responders. CONCLUSION This study demonstrated that temporal lobe channel theta-band desynchronization may be a predictive physiological hallmark of therapeutic response to ANT-DBS and may be used to improve the functional precision of this intervention by verifying implantation sites, calibrating stimulation contacts, and possibly identifying treatment responders prior to implantation.
Collapse
Affiliation(s)
- Maximillian Scherer
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Luka Milosevic
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Volker Maus
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Florian Grimm
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | | | | | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Epilepsy Unit, Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, And German Centre of Neurodegenerative Diseases (DZNE), University Tübingen, Tübingen, Germany
| | - Sabine Rona
- Epilepsy Unit, Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
24
|
Bucurenciu I, Staack AM, Gharabaghi A, Steinhoff BJ. High-frequency electrical stimulation of the anterior thalamic nuclei increases vigilance in epilepsy patients during relaxed and drowsy wakefulness. Epilepsia 2020; 61:1174-1182. [PMID: 32385944 DOI: 10.1111/epi.16514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE High-frequency deep brain stimulation (DBS) of anterior thalamic nuclei (ANT) reduces the frequency and intensity of focal and focal to bilateral tonic-clonic epileptic seizures. We investigated the impact of high-frequency ANT-DBS on vigilance in epilepsy patients during relaxed and drowsy wakefulness, to better understand the effects and the mechanisms of action of this intervention in humans. METHODS Four patients with different structural epileptic pathologies were included in this retrospective case-cohort study. Short- and long-term electroencephalography (EEG) was used to determine states of relaxed or drowsy wakefulness and the vigilance changes during stimulation-on and stimulation-off intervals. RESULTS In relaxed, wakeful patients with eyes closed, the eyelid artifact rate increased acutely and reproducibly during stimulation-on intervals, suggesting an enhanced vigilance. This effect was accompanied by a slight acceleration of the alpha rhythm. In drowsy patients with eyes closed, stimulation generated acutely and reproducibly alpha rhythms, similar to the paradoxical alpha activation during eyes opening. The occurrence of the alpha rhythms reflected an increase in the vigilance of the drowsy subjects during ANT-DBS. SIGNIFICANCE This is the first demonstration that ANT-DBS increases the vigilance of wakeful epilepsy patients. Our results deliver circumstantial evidence that high-frequency ANT-DBS activates thalamocortical connections that promote wakefulness.
Collapse
Affiliation(s)
| | | | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard-Karls University Hospital, Tübingen, Germany
| | | |
Collapse
|
25
|
Kurada L, Bayat A, Joshi S, Chahine A, Koubeissi MZ. Antiepileptic effects of electrical stimulation of the piriform cortex. Exp Neurol 2020; 325:113070. [DOI: 10.1016/j.expneurol.2019.113070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
|
26
|
Couturier NH, Durand DM. Comparison of fiber tract low frequency stimulation to focal and ANT stimulation in an acute rat model of focal cortical seizures. Brain Stimul 2019; 13:499-506. [PMID: 31902689 DOI: 10.1016/j.brs.2019.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Current implementations of direct brain stimulation for epilepsy in patients involve high-frequency (HFS) electrical current and targeting of grey matter. Studies have shown that low-frequency (LFS) fiber-tract stimulation may also prove effective. To compare the efficacy of high-frequency grey matter stimulation to the low-frequency fiber tract stimulation technique a well-controlled set of experiments using a single animal model of epilepsy is needed. OBJECTIVE The goal of this study was to determine the relative efficacy of different direct brain stimulation techniques for suppressing seizures using an acute rat model of focal cortical seizures. METHODS 4-AP was injected into the S1 region of cortex in rodents over 3 h. LFPs were recorded from the seizure focus and mirror focus to monitor seizure frequency during the experiments. CC-LFS, HFS-ANT, Focal-HFS, or a transection of the CC was applied. RESULTS Stimulation of the CC yielded a 65% ±14% (p = 0.0014) reduction of seizures in the focus and a 97% ±15% (p = 0.0026) reduction in the mirror focus (n = 7). By comparison transection of the CC produced a 65% ±18% reduction in the focus and a non-statistically significant reduction of 57% ±18% (p = 0.1381) in the mirror focus (n = 5). All other methods of stimulation failed to have a statistically significant effect on seizure suppression. CONCLUSIONS LFS of the CC is the only method of stimulation to significantly reduce seizure frequency in this model of focal cortical seizures. These results support the hypothesis that LFSof fiber tracts has significant potential for seizure control.
Collapse
Affiliation(s)
- Nicholas H Couturier
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Dominique M Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
27
|
|
28
|
Pizarro D, Ilyas A, Chaitanya G, Toth E, Irannejad A, Romeo A, Riley KO, Iasemidis L, Pati S. Spectral organization of focal seizures within the thalamotemporal network. Ann Clin Transl Neurol 2019; 6:1836-1848. [PMID: 31468745 PMCID: PMC6764631 DOI: 10.1002/acn3.50880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
Objective To investigate dynamic changes in neural activity between the anterior nucleus of the thalamus (ANT) and the seizure onset zone (SOZ) in patients with drug‐resistant temporal lobe epilepsy (TLE) based on anatomic location, seizure subtype, and state of vigilance (SOV). Methods Eleven patients undergoing stereoelectroencephalography for seizure localization were recruited prospectively for local field potential (LFP) recording directly from the ANT. The SOZ was identified using line length and epileptogenicity index. Changes in power spectral density (PSD) were compared between the two anatomic sites as seizures (N = 53) transitioned from interictal baseline to the posttermination stage. Results At baseline, the thalamic LFPs were significantly lower and distinct from the SOZ with the presence of higher power in the fast ripple band (P < 0.001). Temporal changes in ictal power of neural activity within ANT mimic those of the SOZ, are increased significantly at seizure onset (P < 0.05), and are distinct for seizures that impaired awareness or that secondarily generalized (P < 0.05). The onset of seizure was preceded by a decrease in the mean power spectral density (PSD) in ANT and SOZ (P < 0.05). Neural activity correlated with different states of vigilance at seizure onset within the ANT but not in the SOZ (P = 0.005). Interpretation The ANT can be recruited at the onset of mesial temporal lobe seizures, and the recruitment pattern differs with seizure subtypes. Furthermore, changes in neural dynamics precede seizure onset and are widespread to involve temporo‐thalamic regions, thereby providing an opportunity to intervene early with closed‐loop DBS.
Collapse
Affiliation(s)
- Diana Pizarro
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adeel Ilyas
- Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ganne Chaitanya
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emilia Toth
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| | - Auriana Irannejad
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kristen O Riley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Leonidas Iasemidis
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, Louisiana
| | - Sandipan Pati
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Magdaleno‐Madrigal VM, Contreras‐Murillo G, Valdés‐Cruz A, Martínez‐Vargas D, Martínez A, Villasana‐Salazar B, Almazán‐Alvarado S. Effects of High‐ and Low‐Frequency Stimulation of the Thalamic Reticular Nucleus on Pentylentetrazole‐Induced Seizures in Rats. Neuromodulation 2019; 22:425-434. [DOI: 10.1111/ner.12926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Víctor Manuel Magdaleno‐Madrigal
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
- Carrera de Psicología Facultad de Estudios Superiores Zaragoza‐UNAM Ciudad de México Mexico
| | - Gerardo Contreras‐Murillo
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| | - Alejandro Valdés‐Cruz
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
- Carrera de Psicología Facultad de Estudios Superiores Zaragoza‐UNAM Ciudad de México Mexico
| | - David Martínez‐Vargas
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| | - Adrián Martínez
- Laboratorio de sueño y epilepsia. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| | - Benjamín Villasana‐Salazar
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| | - Salvador Almazán‐Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Ciudad de México Mexico
| |
Collapse
|
30
|
Izadi A, Ondek K, Schedlbauer A, Keselman I, Shahlaie K, Gurkoff G. Clinically indicated electrical stimulation strategies to treat patients with medically refractory epilepsy. Epilepsia Open 2018; 3:198-209. [PMID: 30564779 PMCID: PMC6293066 DOI: 10.1002/epi4.12276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Focal epilepsies represent approximately half of all diagnoses, and more than one-third of these patients are refractory to pharmacologic treatment. Although resection can result in seizure freedom, many patients do not meet surgical criteria, as seizures may be multifocal in origin or have a focus in an eloquent region of the brain. For these individuals, several U.S. Food and Drug Administration (FDA)-approved electrical stimulation paradigms serve as alternative options, including vagus nerve stimulation, responsive neurostimulation, and stimulation of the anterior nucleus of the thalamus. All of these are safe, flexible, and lead to progressive seizure control over time when used as an adjunctive therapy to antiepileptic drugs. Focal epilepsies frequently involve significant comorbidities such as cognitive decline. Similar to antiepilepsy medications and surgical resection, current stimulation targets and parameters have yet to address cognitive impairments directly, with patients reporting persistent comorbidities associated with focal epilepsy despite a significant reduction in the number of their seizures. Although low-frequency theta oscillations of the septohippocampal network are critical for modulating cellular activity and, in turn, cognitive processing, the coordination of neural excitability is also imperative for preventing seizures. In this review, we summarize current FDA-approved electrical stimulation paradigms and propose that theta oscillations of the medial septal nucleus represent a novel neuromodulation target for concurrent seizure reduction and cognitive improvement in epilepsy. Ultimately, further advancements in clinical neurostimulation strategies will allow for the efficient treatment of both seizures and comorbidities, thereby improving overall quality of life for patients with epilepsy.
Collapse
Affiliation(s)
- Ali Izadi
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.
| | - Katelynn Ondek
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.,Center for NeuroscienceUniversity of CaliforniaDavisCalifornia,U.S.A.
| | - Amber Schedlbauer
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.
| | - Inna Keselman
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.,Department of NeurologyUniversity of CaliforniaDavisCaliforniaU.S.A.
| | - Kiarash Shahlaie
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.,Center for NeuroscienceUniversity of CaliforniaDavisCalifornia,U.S.A.
| | - Gene Gurkoff
- Department of Neurological SurgeryUniversity of CaliforniaDavisCalifornia,U.S.A.,Center for NeuroscienceUniversity of CaliforniaDavisCalifornia,U.S.A.
| |
Collapse
|
31
|
Young JC, Vaughan DN, Paolini AG, Jackson GD. Electrical stimulation of the piriform cortex for the treatment of epilepsy: A review of the supporting evidence. Epilepsy Behav 2018; 88:152-161. [PMID: 30269034 DOI: 10.1016/j.yebeh.2018.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
In this review, we consider how the piriform cortex is engaged in both focal and generalized epilepsy networks and postulate the various neural pathways that can be effectively neuromodulated by stimulation at this site. This highlights the common involvement of the piriform cortex in epilepsy. We address both current and future preclinical studies of deep brain stimulation (DBS) of the piriform cortex, with attention to the critical features of these trials that will enable them to be of greatest utility in informing clinical translation. Although recent DBS trials have utilized thalamic targets, electrical stimulation of the piriform cortex may also be a useful intervention for people with epilepsy. However, more work is required to develop a solid foundation for this approach before considering human trials.
Collapse
Affiliation(s)
- James C Young
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| | - David N Vaughan
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia; Department of Neurology, Austin Health, Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Antonio G Paolini
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Level 6/10 Martin Street, Heidelberg, Victoria 3084, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Plenty Road and Kingsbury Drive, Bundoora, VIC 3068, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia; Department of Neurology, Austin Health, Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
32
|
Tung JK, Shiu FH, Ding K, Gross RE. Chemically activated luminopsins allow optogenetic inhibition of distributed nodes in an epileptic network for non-invasive and multi-site suppression of seizure activity. Neurobiol Dis 2018; 109:1-10. [PMID: 28923596 PMCID: PMC5696076 DOI: 10.1016/j.nbd.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/06/2023] Open
Abstract
Although optogenetic techniques have proven to be invaluable for manipulating and understanding complex neural dynamics over the past decade, they still face practical and translational challenges in targeting networks involving multiple, large, or difficult-to-illuminate areas of the brain. We utilized inhibitory luminopsins to simultaneously inhibit the dentate gyrus and anterior nucleus of the thalamus of the rat brain in a hardware-independent and cell-type specific manner. This approach was more effective at suppressing behavioral seizures than inhibition of the individual structures in a rat model of epilepsy. In addition to elucidating mechanisms of seizure suppression never directly demonstrated before, this work also illustrates how precise multi-focal control of pathological circuits can be advantageous for the treatment and understanding of disorders involving broad neural circuits such as epilepsy.
Collapse
Affiliation(s)
- Jack K Tung
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Fu Hung Shiu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin Ding
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
33
|
Feng L, Motelow JE, Ma C, Biche W, McCafferty C, Smith N, Liu M, Zhan Q, Jia R, Xiao B, Duque A, Blumenfeld H. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei. J Neurosci 2017; 37:11441-11454. [PMID: 29066556 PMCID: PMC5700426 DOI: 10.1523/jneurosci.1011-17.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 01/12/2023] Open
Abstract
The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function.SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition.
Collapse
Affiliation(s)
- Li Feng
- Departments of Neurology
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, and
| | | | | | | | | | | | | | - Qiong Zhan
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, and
| | | | - Hal Blumenfeld
- Departments of Neurology,
- Neuroscience, and
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
34
|
Li DH, Yang XF. Remote modulation of network excitability during deep brain stimulation for epilepsy. Seizure 2017; 47:42-50. [DOI: 10.1016/j.seizure.2017.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
|
35
|
Meng DW, Liu HG, Yang AC, Zhang K, Zhang JG. Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats. Chin Med J (Engl) 2017; 129:960-6. [PMID: 27064042 PMCID: PMC4831532 DOI: 10.4103/0366-6999.179799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis. Methods: Sixty-four rats were divided into four groups: The control group, the kainic acid (KA) group, the sham-deep brain stimulation (DBS) group, and the DBS group. KA was used to induce epilepsy. Seizure count and latency to the first spontaneous seizures were calculated. Nissl staining was used to analyze hippocampal neuronal loss. Polymerase chain reaction and Western blotting were conducted to assess the expression of caspase-3 (Casp3), B-cell lymphoma-2 (Bcl2), and Bcl2-associated X protein (Bax) in the hippocampal CA3 region. One-way analysis of variance was used to determine the differences between the four groups. Results: The latency to the first spontaneous seizures in the DBS group was significantly longer than that in the KA group (27.50 ± 8.05 vs. 16.38 ± 7.25 days, P = 0.0005). The total seizure number in the DBS group was also significantly reduced (DBS vs. KA group: 11.75 ± 6.80 vs. 23.25 ± 7.72, P = 0.0002). Chronic ANT-DBS reduced neuronal loss in the hippocampal CA3 region (DBS vs. KA group: 23.58 ± 6.34 vs. 13.13 ± 4.00, P = 0.0012). After chronic DBS, the relative mRNA expression level of Casp3 was decreased (DBS vs. KA group: 1.18 ± 0.37 vs. 2.09 ± 0.46, P = 0.0003), and the relative mRNA expression level of Bcl2 was increased (DBS vs. KA group: 0.92 ± 0.21 vs. 0.48 ± 0.16, P = 0.0004). The protein expression levels of CASP3 (DBS vs. KA group: 1.25 ± 0.26 vs. 2.49 ± 0.38, P < 0.0001) and BAX (DBS vs. KA group: 1.57 ± 0.49 vs. 2.80 ± 0.63, P = 0.0012) both declined in the DBS group whereas the protein expression level of BCL2 (DBS vs. KA group: 0.78 ± 0.32 vs. 0.36 ± 0.17, P = 0.0086) increased in the DBS group. Conclusions: This study demonstrated that chronic ANT stimulation could exert a neuroprotective effect on hippocampal neurons. This neuroprotective effect is likely to be mediated by the inhibition of apoptosis in the epileptic hippocampus.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050; Beijing Key Laboratory of Neuromodulation, Beijing 100050; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| |
Collapse
|
36
|
Hartl E, Feddersen B, Bötzel K, Mehrkens JH, Noachtar S. Seizure Control and Active Termination by Anterior Thalamic Deep Brain Stimulation. Brain Stimul 2017; 10:168-170. [DOI: 10.1016/j.brs.2016.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 01/03/2023] Open
|
37
|
Lehtimäki K, Långsjö JW, Ollikainen J, Heinonen H, Möttönen T, Tähtinen T, Haapasalo J, Tenhunen J, Katisko J, Öhman J, Peltola J. Successful management of super-refractory status epilepticus with thalamic deep brain stimulation. Ann Neurol 2016; 81:142-146. [DOI: 10.1002/ana.24821] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Lehtimäki
- Department of Neurosciences and Rehabilitation; Tampere University Hospital; Tampere Finland
| | | | - Jyrki Ollikainen
- Department of Neurosciences and Rehabilitation; Tampere University Hospital; Tampere Finland
| | - Hanna Heinonen
- Department of Clinical Neurophysiology; Tampere University Hospital; Tampere Finland
| | - Timo Möttönen
- Department of Neurosciences and Rehabilitation; Tampere University Hospital; Tampere Finland
| | - Timo Tähtinen
- Department of Neurosciences and Rehabilitation; Tampere University Hospital; Tampere Finland
| | - Joonas Haapasalo
- Department of Neurosciences and Rehabilitation; Tampere University Hospital; Tampere Finland
| | - Jyrki Tenhunen
- Intensive Care Unit; Uppsala University Hospital; Uppsala Sweden
| | - Jani Katisko
- Department of Neurosurgery; Oulu University Hospital; Oulu Finland
| | - Juha Öhman
- Department of Neurosciences and Rehabilitation; Tampere University Hospital; Tampere Finland
| | - Jukka Peltola
- Department of Neurosciences and Rehabilitation; Tampere University Hospital; Tampere Finland
| |
Collapse
|
38
|
Kim HY, Hur YJ, Kim HD, Park KM, Kim SE, Hwang TG. Modification of electrophysiological activity pattern after anterior thalamic deep brain stimulation for intractable epilepsy: report of 3 cases. J Neurosurg 2016; 126:2028-2035. [DOI: 10.3171/2016.6.jns152958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVEThalamic stimulation can provoke electroencephalography (EEG) synchronization or desynchronization, which can help to reduce the occurrence of seizures in intractable epilepsy, though the underlying mechanism is not fully understood. Therefore, the authors investigated changes in EEG electrical activity to better understand the seizure-reducing effects of deep brain stimulation (DBS) in patients with intractable epilepsy.METHODSElectrical activation patterns in the epileptogenic brains of 3 patients were analyzed using classical low-resolution electromagnetic tomography analysis recursively applied (CLARA). Electrical activity recorded during thalamic stimulation was compared with that recorded during the preoperative and postoperative off-stimulation states in patients who underwent anterior thalamic nucleus DBS for intractable epilepsy.RESULTSInterictal EEG was fully synchronized to the β frequency in the postoperative on-stimulation period. The CLARA showed that electrical activity during preoperative and postoperative off-stimulation states was localized in cortical and subcortical areas, including the insular, middle frontal, mesial temporal, and precentral areas. No electrical activity was localized in deep nucleus structures. However, with CLARA, electrical activity in the postoperative on-stimulation period was localized in the anterior cingulate area, basal ganglia, and midbrain.CONCLUSIONSAnterior thalamic stimulation could spread electrical current to the underlying neuronal networks that connect with the thalamus, which functions as a cortical pacemaker. Consequently, the thalamus could modify electrical activity within these neuronal networks and influence cortical EEG activity by inducing neuronal synchronization between the thalamus and cortical structures.
Collapse
Affiliation(s)
| | | | - Heung-Dong Kim
- 4Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kang Min Park
- 3Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan; and
| | - Sung Eun Kim
- 3Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan; and
| | | |
Collapse
|
39
|
Salam MT, Perez Velazquez JL, Genov R. Seizure Suppression Efficacy of Closed-Loop Versus Open-Loop Deep Brain Stimulation in a Rodent Model of Epilepsy. IEEE Trans Neural Syst Rehabil Eng 2016; 24:710-9. [DOI: 10.1109/tnsre.2015.2498973] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Enke AM, St Louis E, Jackson CF, Makin SM. Non-pharmacological treatments for improving memory in people with epilepsy. Hippokratia 2015. [DOI: 10.1002/14651858.cd011945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashley M Enke
- Mayo Clinic and Foundation; Department of Sleep Medicine; 200 First Street Southwest Rochester Minnesota USA 55905
| | - Erik St Louis
- Mayo Clinic and Foundation; Neurology and Medicine; 200 First Street Southwest Rochester Minnesota USA 55905
| | - Cerian F Jackson
- Institute of Translational Medicine, University of Liverpool; Department of Molecular and Clinical Pharmacology; Clinical Sciences Centre for Research and Education, Lower Lane Fazakerley Liverpool UK L9 7LJ
| | - Selina M Makin
- The Walton Centre NHS Foundation Trust; Lower Lane Fazakerley Liverpool UK L9 7LJ
| |
Collapse
|
41
|
Jiao J, Jensen W, Harreby KR, Sevcencu C. The Effect of Spinal Cord Stimulation on Epileptic Seizures. Neuromodulation 2015; 19:154-60. [PMID: 26516727 DOI: 10.1111/ner.12362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/18/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) has been applied to relieve chronic pain for decades. Recent studies suggested that SCS also might alleviate epileptic seizures, but the most effective stimulation parameters are not known. The objective of this work was to investigate the role of SCS frequency in alleviating spike-and-wave (SW) discharges induced in rats by pentylenetetrazole (PTZ) infusion. MATERIALS AND METHODS The SW discharges were induced in nine rats. An epidural electrode was placed in the spinal canal at the cervical level. SCS was delivered at four frequencies (30, 80, 130 and 180 Hz) and compared with control intervals without stimulation. The effect was evaluated by analyzing electrocorticographic and intracortical (IC) signals. The means of normalized SW spike power (mSP) and frequency (mSF) were derived from the IC recordings and used to estimate the seizure severity. RESULTS Compared with the control intervals, SCS conducted at 30 Hz significantly increased the mSP and mSF indicating an increase of the SW spiking activity; 80 Hz did not induce significant changes of the features. In contrast, 130- and 180-Hz SCS reduced both mSP and mSF significantly indicating a reduction of the SW spiking activity. CONCLUSIONS The present results showed that 130-Hz and 180-Hz SCS reduced the SWs power and frequency which may indicate an anticonvulsive effect of these SCS frequencies, whereas 30-Hz SCS induced the opposite effects and, therefore, may be proconvulsive.
Collapse
Affiliation(s)
- Jianhang Jiao
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Winnie Jensen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian R Harreby
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Cristian Sevcencu
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
42
|
Sun L, Peräkylä J, Polvivaara M, Öhman J, Peltola J, Lehtimäki K, Huhtala H, Hartikainen KM. Human anterior thalamic nuclei are involved in emotion-attention interaction. Neuropsychologia 2015; 78:88-94. [PMID: 26440152 DOI: 10.1016/j.neuropsychologia.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
Patients treated with deep brain stimulation (DBS) provide an opportunity to study affective processes in humans with "lesion on demand" at key nodes in the limbic circuitries, such as at the anterior thalamic nuclei (ANT). ANT has been suggested to play a role in emotional control with its connection to the orbitofrontal cortex and the anterior cingulate cortex. However, direct evidence for its role in emotional function in human subjects is lacking. Reported side effects of ANT-DBS in the treatment of refractory epilepsy include depression related symptoms. In line with these mood-related clinical side effects, we have previously reported that stimulating the anterior thalamus increased emotional interference in a visual attention task as indicated by prolonged reaction times due to threat-related emotional distractors. We used event-related potentials to investigate potential attentional mechanism behind this behavioural observation. We hypothesized that ANT-DBS leads to greater attention capture by threat-related distractors. We tested this hypothesis using centro-parietal N2-P3 peak-to-peak amplitude as a measure of allocated attentional resources. Six epileptic patients treated with deep brain stimulation at ANT participated in the study. Electroencephalography was recorded while the patients performed a computer based Executive-Reaction Time test with threat-related emotional distractors. During the task, either ANT or a thalamic control location was stimulated, or the stimulation was turned off. Stimulation of ANT was associated with increased centro-parietal N2-P3 amplitude and increased reaction time in the context of threat-related emotional distractors. We conclude that high frequency electric stimulation of ANT leads to greater attentional capture by emotional stimuli. This is the first study to provide direct evidence from human subjects with on-line electric manipulation of ANT for its role in emotion-attention interaction.
Collapse
Affiliation(s)
- Lihua Sun
- Behavioral Neurology Research Unit, Tampere University Hospital, Finn-Medi 6-7, Pirkanmaa Hospital District, P.O. Box 2000, FI-33520 Tampere, Finland
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Finn-Medi 6-7, Pirkanmaa Hospital District, P.O. Box 2000, FI-33520 Tampere, Finland
| | - Markus Polvivaara
- Behavioral Neurology Research Unit, Tampere University Hospital, Finn-Medi 6-7, Pirkanmaa Hospital District, P.O. Box 2000, FI-33520 Tampere, Finland
| | - Juha Öhman
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Kai Lehtimäki
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- School of Health Sciences, University of Tampere, Tampere, Finland
| | - Kaisa M Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Finn-Medi 6-7, Pirkanmaa Hospital District, P.O. Box 2000, FI-33520 Tampere, Finland; Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
43
|
Shi L, Yang AC, Li JJ, Meng DW, Jiang B, Zhang JG. Favorable modulation in neurotransmitters: Effects of chronic anterior thalamic nuclei stimulation observed in epileptic monkeys. Exp Neurol 2015; 265:94-101. [DOI: 10.1016/j.expneurol.2015.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
44
|
Pittau F, Mégevand P, Sheybani L, Abela E, Grouiller F, Spinelli L, Michel CM, Seeck M, Vulliemoz S. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol 2014; 5:218. [PMID: 25414692 PMCID: PMC4220689 DOI: 10.3389/fneur.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023] Open
Abstract
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Collapse
Affiliation(s)
- Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Pierre Mégevand
- Laboratory for Multimodal Human Brain Mapping, Hofstra North Shore LIJ School of Medicine , Manhasset, NY , USA
| | - Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital , Bern , Switzerland
| | - Frédéric Grouiller
- Radiology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| |
Collapse
|
45
|
Miranda MF, Hamani C, de Almeida ACG, Amorim BO, Macedo CE, Fernandes MJS, Nobrega JN, Aarão MC, Madureira AP, Rodrigues AM, Andersen ML, Tufik S, Mello LE, Covolan L. Role of adenosine in the antiepileptic effects of deep brain stimulation. Front Cell Neurosci 2014; 8:312. [PMID: 25324724 PMCID: PMC4183090 DOI: 10.3389/fncel.2014.00312] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022] Open
Abstract
Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine.
Collapse
Affiliation(s)
- Maisa F Miranda
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Clement Hamani
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo São Paulo, Brazil ; Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health Toronto, Canada ; Division of Neurosurgery, Toronto Western Hospital, University of Toronto Toronto, Canada
| | - Antônio-Carlos G de Almeida
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Beatriz O Amorim
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Carlos E Macedo
- Departamento de Psicobiologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Maria José S Fernandes
- Disciplina de Neurologia Experimental, Universidade Federal de São Paulo São Paulo, Brazil
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health Toronto, Canada
| | - Mayra C Aarão
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Ana Paula Madureira
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Antônio M Rodrigues
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei São João del-Rei, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Luiz E Mello
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Luciene Covolan
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
46
|
Covolan L, de Almeida ACG, Amorim B, Cavarsan C, Miranda MF, Aarão MC, Madureira AP, Rodrigues AM, Nobrega JN, Mello LE, Hamani C. Effects of anterior thalamic nucleus deep brain stimulation in chronic epileptic rats. PLoS One 2014; 9:e97618. [PMID: 24892420 PMCID: PMC4043725 DOI: 10.1371/journal.pone.0097618] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
Abstract
Deep brain stimulation (DBS) has been investigated for the treatment of epilepsy. In rodents, an increase in the latency for the development of seizures and status epilepticus (SE) has been reported in different animal models but the consequences of delivering stimulation to chronic epileptic animals have not been extensively addressed. We study the effects of anterior thalamic nucleus (AN) stimulation at different current intensities in rats rendered epileptic following pilocarpine (Pilo) administration. Four months after Pilo-induced SE, chronic epileptic rats were bilaterally implanted with AN electrodes or had sham-surgery. Stimulation was delivered for 6 h/day, 5 days/week at 130 Hz, 90 µsec. and either 100 µA or 500 µA. The frequency of spontaneous recurrent seizures in animals receiving stimulation was compared to that recorded in the preoperative period and in rats given sham treatment. To investigate the effects of DBS on hippocampal excitability, brain slices from animals receiving AN DBS or sham surgery were studied with electrophysiology. We found that rats treated with AN DBS at 100 µA had a 52% non-significant reduction in the frequency of seizures as compared to sham-treated controls and 61% less seizures than at baseline. Animals given DBS at 500 µA had 5.1 times more seizures than controls and a 2.8 fold increase in seizure rate as compared to preoperative values. In non-stimulated controls, the average frequency of seizures before and after surgery remained unaltered. In vitro recordings have shown that slices from animals previously given DBS at 100 µA had a longer latency for the development of epileptiform activity, shorter and smaller DC shifts, and a smaller spike amplitude compared to non-stimulated controls. In contrast, a higher spike amplitude was recorded in slices from animals given AN DBS at 500 µA.
Collapse
Affiliation(s)
- Luciene Covolan
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Beatriz Amorim
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clarissa Cavarsan
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maisa Ferreira Miranda
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Mayra C. Aarão
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Ana Paula Madureira
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Antônio M. Rodrigues
- Laboratório de Neurociência Experimental e Computacional, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - José N. Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Luiz E. Mello
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
Guo H, Zhang H, Kuang Y, Wang C, Jing X, Gu J, Gao G. Electrical Stimulation of the Substantia Nigra Pars Reticulata (SNr) Suppresses Chemically Induced Neocortical Seizures in Rats. J Mol Neurosci 2014; 53:546-52. [DOI: 10.1007/s12031-013-0220-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 11/29/2022]
|
48
|
Long S, Frey S, Freestone DR, LeChevoir M, Stypulkowski P, Giftakis J, Cook M. Placement of deep brain electrodes in the dog using the Brainsight frameless stereotactic system: a pilot feasibility study. J Vet Intern Med 2013; 28:189-97. [PMID: 24237394 PMCID: PMC4895539 DOI: 10.1111/jvim.12235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/03/2013] [Accepted: 09/19/2013] [Indexed: 12/03/2022] Open
Abstract
Background Deep brain stimulation (DBS) together with concurrent EEG recording has shown promise in the treatment of epilepsy. A novel device is capable of combining these 2 functions and may prove valuable in the treatment of epilepsy in dogs. However, stereotactic implantation of electrodes in dogs has not yet been evaluated. Objective To evaluate the feasibility and safety of implanting stimulating and recording electrodes in the brain of normal dogs using the Brainsight system and to evaluate the function of a novel DBS and recording device. Animals Four male intact Greyhounds, confirmed to be normal by clinical and neurologic examinations and hematology and biochemistry testing. Methods MRI imaging of the brain was performed after attachment of fiducial markers. MRI scans were used to calculate trajectories for electrode placement in the thalamus and hippocampus, which was performed via burr hole craniotomy. Postoperative CT scanning was performed to evaluate electrode location and accuracy of placement was calculated. Serial neurologic examinations were performed to evaluate neurologic deficits and EEG recordings obtained to evaluate the effects of stimulation. Results Electrodes were successfully placed in 3 of 4 dogs with a mean accuracy of 4.6 ± 1.5 mm. EEG recordings showed evoked potentials in response to stimulation with a circadian variation in time‐to‐maximal amplitude. No neurologic deficits were seen in any dog. Conclusions and Clinical Importance Stereotactic placement of electrodes is safe and feasible in the dog. The development of a novel device capable of providing simultaneous neurostimulation and EEG recording potentially represents a major advance in the treatment of epilepsy.
Collapse
Affiliation(s)
- S Long
- Section of Neurology and Neurosurgery, Faculty of Veterinary Science, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
[Treatment of epilepsy: peripheral and central stimulation techniques]. DER NERVENARZT 2013; 84:517-28; quiz 529. [PMID: 23525589 DOI: 10.1007/s00115-013-3749-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The efficacy of electrical stimulation in the treatment of epileptic seizures was demonstrated experimentally even in the 1970s. Clinical studies have proven the efficacy of vagus nerve stimulation and in recent years also of stimulation of the trigeminal nerve, the anterior nucleus of the thalamus and of the epileptic focus in treating focal epilepsy. Mechanisms of action depend on the stimulation site and parameters and include activation of endogenous antiepileptic nuclei, modulation of propagation of epileptic activity and suppression of ictal activity at the site of generation. Based on available data the tolerability of peripheral and central brain stimulation appears to be good but experiences from wider clinical use are still lacking.
Collapse
|
50
|
Yan N, Chen N, Lu J, Wang Y, Wang W. Electroacupuncture at acupoints could predict the outcome of anterior nucleus thalamus high-frequency electrical stimulation in medically refractory epilepsy. Med Hypotheses 2013; 81:426-8. [DOI: 10.1016/j.mehy.2013.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/10/2013] [Accepted: 06/01/2013] [Indexed: 01/14/2023]
|