1
|
Padmasola GP, Friscourt F, Rigoni I, Vulliémoz S, Schaller K, Michel CM, Sheybani L, Quairiaux C. Involvement of the contralateral hippocampus in ictal-like but not interictal epileptic activities in the kainate mouse model of temporal lobe epilepsy. Epilepsia 2024; 65:2082-2098. [PMID: 38758110 DOI: 10.1111/epi.17970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Animal and human studies have shown that the seizure-generating region is vastly dependent on distant neuronal hubs that can decrease duration and propagation of ongoing seizures. However, we still lack a comprehensive understanding of the impact of distant brain areas on specific interictal and ictal epileptic activities (e.g., isolated spikes, spike trains, seizures). Such knowledge is critically needed, because all kinds of epileptic activities are not equivalent in terms of clinical expression and impact on the progression of the disease. METHODS We used surface high-density electroencephalography and multisite intracortical recordings, combined with pharmacological silencing of specific brain regions in the well-known kainate mouse model of temporal lobe epilepsy. We tested the impact of selective regional silencing on the generation of epileptic activities within a continuum ranging from very transient to more sustained and long-lasting discharges reminiscent of seizures. RESULTS Silencing the contralateral hippocampus completely suppresses sustained ictal activities in the focus, as efficiently as silencing the focus itself, but whereas focus silencing abolishes all focus activities, contralateral silencing fails to control transient spikes. In parallel, we observed that sustained focus epileptiform discharges in the focus are preceded by contralateral firing and more strongly phase-locked to bihippocampal delta/theta oscillations than transient spiking activities, reinforcing the presumed dominant role of the contralateral hippocampus in promoting long-lasting, but not transient, epileptic activities. SIGNIFICANCE Altogether, our work provides suggestive evidence that the contralateral hippocampus is necessary for the interictal to ictal state transition and proposes that crosstalk between contralateral neuronal activity and ipsilateral delta/theta oscillation could be a candidate mechanism underlying the progression from short- to long-lasting epileptic activities.
Collapse
Affiliation(s)
- Guru Prasad Padmasola
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Fabien Friscourt
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
| | - Isotta Rigoni
- EEG and Epilepsy Unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
- Department of Clinical and Experimental Epilepsy, Queen's Square Institute of Neurology, London, UK
| | - Charles Quairiaux
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Hobson BA, Rowland DJ, Dou Y, Saito N, Harmany ZT, Bruun DA, Harvey DJ, Chaudhari AJ, Garbow JR, Lein PJ. A longitudinal MRI and TSPO PET-based investigation of brain region-specific neuroprotection by diazepam versus midazolam following organophosphate-induced seizures. Neuropharmacology 2024; 251:109918. [PMID: 38527652 PMCID: PMC11250911 DOI: 10.1016/j.neuropharm.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.
Collapse
Affiliation(s)
- Brad A Hobson
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA; Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, Davis, CA 95616, USA.
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, Davis, CA 95616, USA.
| | - Yimeng Dou
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA.
| | - Naomi Saito
- Department of Public Health Sciences, University of California, Davis, School of Medicine, California 95616, USA.
| | - Zachary T Harmany
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, Davis, CA 95616, USA.
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, California 95616, USA.
| | - Abhijit J Chaudhari
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, Davis, CA 95616, USA; Department of Radiology, University of California, Davis, School of Medicine, California 95817, USA.
| | - Joel R Garbow
- Biomedical Magnetic Resonance Center, Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, 63110, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021; 22:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Indexed: 12/22/2022]
Abstract
Electroresponsive hydrogels possess a conducting material component and respond to electric stimulation through reversible absorption and expulsion of water. The high level of hydration, soft elastomeric compliance, biocompatibility, and enhanced electrochemical properties render these hydrogels suitable for implantation in the brain to enhance the transmission of neural electric signals and ion transport. This review provides an overview of critical electroresponsive hydrogel properties for augmenting electric stimulation in the brain. A background on electric stimulation in the brain through electroresponsive hydrogels is provided. Common conducting materials and general techniques to integrate them into hydrogels are briefly discussed. This review focuses on and summarizes advances in electric stimulation of electroconductive hydrogels for therapeutic applications in the brain, such as for controlling delivery of drugs, directing neural stem cell differentiation and neurogenesis, improving neural biosensor capabilities, and enhancing neural electrode-tissue interfaces. The key challenges in each of these applications are discussed and recommendations for future research are also provided.
Collapse
Affiliation(s)
- Zerin M Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Emily Wilts
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Timothy E Long
- Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85287, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
4
|
Boux F, Forbes F, Collomb N, Zub E, Mazière L, de Bock F, Blaquiere M, Stupar V, Depaulis A, Marchi N, Barbier EL. Neurovascular multiparametric MRI defines epileptogenic and seizure propagation regions in experimental mesiotemporal lobe epilepsy. Epilepsia 2021; 62:1244-1255. [PMID: 33818790 DOI: 10.1111/epi.16886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Improving the identification of the epileptogenic zone and associated seizure-spreading regions represents a significant challenge. Innovative brain-imaging modalities tracking neurovascular dynamics during seizures may provide new disease biomarkers. METHODS With use of a multi-parametric magnetic resonance imaging (MRI) analysis at 9.4 Tesla, we examined, elaborated, and combined multiple cellular and cerebrovascular MRI read-outs as imaging biomarkers of the epileptogenic and seizure-propagating regions. Analyses were performed in an experimental model of mesial temporal lobe epilepsy (MTLE) generated by unilateral intra-hippocampal injection of kainic acid (KA). RESULTS In the ipsilateral epileptogenic hippocampi, tissue T1 and blood-brain barrier (BBB) permeability to gadolinium were increased 48-72 hours post-KA, as compared to sham and contralateral hippocampi. BBB permeability endured during spontaneous focal seizures (4-6 weeks), along with a significant increase of apparent diffusion coefficient (ADC) and blood volume fraction (BVf). Simultaneously, ADC and BVf were augmented in the contralateral hippocampus, a region characterized by electroencephalographic seizure spreading, discrete histological neurovascular cell modifications, and no tissue sclerosis. We next asked whether combining all the acquired MRI parameters could deliver criteria to classify the epileptogenic from the seizure-spreading and sham hippocampi in these experimental conditions and over time. To differentiate sham from epileptogenic areas, the automatic multi-parametric classification provided a maximum accuracy of 97.5% (32 regions) 48-72 hours post-KA and of 100% (60 regions) at spontaneous seizures stage. To differentiate sham, epileptogenic, and seizure-spreading areas, the accuracies of the automatic classification were 93.1% (42 regions) 48-72 hours post-KA and 95% (80 regions) at spontaneous seizure stage. SIGNIFICANCE Combining multi-parametric MRI acquisition and machine-learning analyses delivers specific imaging identifiers to segregate the epileptogenic from the contralateral seizure-spreading hippocampi in experimental MTLE. The potential clinical value of our findings is critically discussed.
Collapse
Affiliation(s)
- Fabien Boux
- Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Inserm, U1216, Grenoble 38000, France.,Inria, CNRS, G-INP, University of Grenoble Alpes, Grenoble, France
| | - Florence Forbes
- Inria, CNRS, G-INP, University of Grenoble Alpes, Grenoble, France
| | - Nora Collomb
- Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Inserm, U1216, Grenoble 38000, France
| | - Emma Zub
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (University of Montpellier, UMR 5203 CNRS, U 1191 INSERM), Montpellier, France
| | - Lucile Mazière
- Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Inserm, U1216, Grenoble 38000, France
| | - Fréderic de Bock
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (University of Montpellier, UMR 5203 CNRS, U 1191 INSERM), Montpellier, France
| | - Marine Blaquiere
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (University of Montpellier, UMR 5203 CNRS, U 1191 INSERM), Montpellier, France
| | - Vasile Stupar
- Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Inserm, U1216, Grenoble 38000, France
| | - Antoine Depaulis
- Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Inserm, U1216, Grenoble 38000, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (University of Montpellier, UMR 5203 CNRS, U 1191 INSERM), Montpellier, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Inserm, U1216, Grenoble 38000, France
| |
Collapse
|
5
|
Hannan S, Faulkner M, Aristovich K, Avery J, Walker MC, Holder DS. Optimised induction of on-demand focal hippocampal and neocortical seizures by electrical stimulation. J Neurosci Methods 2020; 346:108911. [DOI: 10.1016/j.jneumeth.2020.108911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
|
6
|
Blazquez Freches G, Chavarrias C, Shemesh N. BOLD-fMRI in the mouse auditory pathway. Neuroimage 2018; 165:265-277. [DOI: 10.1016/j.neuroimage.2017.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/31/2023] Open
|
7
|
Neuroimaging in animal models of epilepsy. Neuroscience 2017; 358:277-299. [DOI: 10.1016/j.neuroscience.2017.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
8
|
Rozendaal YJW, van Luijtelaar G, Ossenblok PPW. Spatiotemporal mapping of interictal epileptiform discharges in human absence epilepsy: A MEG study. Epilepsy Res 2015; 119:67-76. [PMID: 26681490 DOI: 10.1016/j.eplepsyres.2015.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/03/2015] [Accepted: 11/13/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE Although absence epilepsy is considered to be a prototypic type of generalized epilepsy, it is still under debate whether generalized 3 Hz spike-and-wave discharges (SWDs) might have a cortical focal origin. Here it is investigated whether focal interictal epileptiform discharges (IEDs), which typically occur in the electro- (EEG) and magnetoencephalogram (MEG) in case of focal epilepsy, are present in the MEG of children with absence epilepsy. Next, the location of the sources of the IEDs is established, and it is investigated whether the location is concordant to the earlier established focal cortical regions involved in the generalized SWDs of these children. METHODS Whole head MEG recordings of seven children with absence epilepsy were reviewed with respect to the presence of IEDs (spikes and sharp waves). These IEDs were grouped into distinct clusters, in which each contribution to a cluster yields a comparable magnetic field distribution. Source localization was then performed onto the average signal of each cluster using an equivalent current dipole model and a realistic head model of the cortical surface. RESULTS IEDs were detected in 6 out of 7 patients. Source reconstruction indicated most often frontal, central or parietal origins of the IED in either the left and or right hemisphere. Spatiotemporal assessment of the IEDs indicated a stable location of the averages of these discharges, indicating a single underlying cortical source. DISCUSSION The outcome of this pilot study shows that MEG is well suited for the detection of IEDs and suggests that their estimated sources coincide rather well with the cortical regions involved during the spikes of the SWDs. It is discussed whether the presence of IEDs, classically seen as a marker of focal epilepsies, indicate that absence epilepsy should be considered as a focal type of epilepsy, in which changes in the network are evolving rapidly.
Collapse
Affiliation(s)
- Yvonne J W Rozendaal
- Department Function and Medical Technology, Academic Center of Epileptology, Kempenhaeghe & Maastricht UMC+, PO Box 61, 5590AB Heeze, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands.
| | - Gilles van Luijtelaar
- Donders Centre of Cognition, Radboud University, PO Box 9104, 6500HE Nijmegen, The Netherlands.
| | - Pauly P W Ossenblok
- Department Function and Medical Technology, Academic Center of Epileptology, Kempenhaeghe & Maastricht UMC+, PO Box 61, 5590AB Heeze, The Netherlands.
| |
Collapse
|
9
|
Faingold CL, Blumenfeld H. Targeting Neuronal Networks with Combined Drug and Stimulation Paradigms Guided by Neuroimaging to Treat Brain Disorders. Neuroscientist 2015; 21:460-74. [PMID: 26150315 PMCID: PMC6287502 DOI: 10.1177/1073858415592377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Improved therapy of brain disorders can be achieved by focusing on neuronal networks, utilizing combined pharmacological and stimulation paradigms guided by neuroimaging. Neuronal networks that mediate normal brain functions, such as hearing, interact with other networks, which is important but commonly neglected. Network interaction changes often underlie brain disorders, including epilepsy. "Conditional multireceptive" (CMR) brain areas (e.g., brainstem reticular formation and amygdala) are critical in mediating neuroplastic changes that facilitate network interactions. CMR neurons receive multiple inputs but exhibit extensive response variability due to milieu and behavioral state changes and are exquisitely sensitive to agents that increase or inhibit GABA-mediated inhibition. Enhanced CMR neuronal responsiveness leads to expression of emergent properties--nonlinear events--resulting from network self-organization. Determining brain disorder mechanisms requires animals that model behaviors and neuroanatomical substrates of human disorders identified by neuroimaging. However, not all sites activated during network operation are requisite for that operation. Other active sites are ancillary, because their blockade does not alter network function. Requisite network sites exhibit emergent properties that are critical targets for pharmacological and stimulation therapies. Improved treatment of brain disorders should involve combined pharmacological and stimulation therapies, guided by neuroimaging, to correct network malfunctions by targeting specific network neurons.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology, Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Hal Blumenfeld
- Departmens of Neurology, Neurobiology, and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Abstract
Electroencephalography (EEG) has been used to study and characterize epilepsy for decades, but has a limited ability to localize epileptiform activity to a specific brain region. With recent technological advances, high-quality EEG can now be recorded during functional magnetic resonance imaging (fMRI), which characterizes brain activity through local changes in blood oxygenation. By combining these techniques, the specific timing of interictal events can be identified on the EEG at millisecond resolution and spatially localized with fMRI at millimeter resolution. As a result, simultaneous EEG-fMRI provides the opportunity to better investigate the spatiotemporal mechanisms of the generation of epileptiform activity in the brain. This article discusses the technical considerations and their solutions for recording simultaneous EEG-fMRI and the results of studies to date. It also addresses the application of EEG-fMRI to epilepsy in humans, including clinical applications and ongoing challenges.
Collapse
|
11
|
Dedeurwaerdere S, Shultz SR, Federico P, Engel J. Workshop on Neurobiology of Epilepsy appraisal: new systemic imaging technologies to study the brain in experimental models of epilepsy. Epilepsia 2014; 55:819-28. [PMID: 24836499 DOI: 10.1111/epi.12642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 12/14/2022]
Abstract
Modern functional neuroimaging provides opportunities to visualize activity of the entire brain, making it an indispensable diagnostic tool for epilepsy. Various forms of noninvasive functional neuroimaging are now also being performed as research tools in animal models of epilepsy and provide opportunities for parallel animal/human investigations into fundamental mechanisms of epilepsy and identification of epilepsy biomarkers. Recent animal studies of epilepsy using positron emission tomography, tractography, and functional magnetic resonance imaging were reviewed. Epilepsy is an abnormal emergent property of disturbances in neuronal networks which, even for epilepsies characterized by focal seizures, involve widely distributed systems, often in both hemispheres. Functional neuroimaging in animal models now provides opportunities to examine neuronal disturbances in the whole brain that underlie generalized and focal seizure generation as well as various types of epileptogenesis. Tremendous advances in understanding the contribution of specific properties of widely distributed neuronal networks to both normal and abnormal human behavior have been provided by current functional neuroimaging methodologies. Successful application of functional neuroimaging of the whole brain in the animal laboratory now permits investigations during epileptogenesis and correlation with deep brain electroencephalography (EEG) activity. With the continuing development of these techniques and analytical methods, the potential for future translational research on epilepsy is enormous. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
|
12
|
Abstract
Epilepsy is one of the most common chronic neurological conditions worldwide. Anti-epileptic drugs (AEDs) can suppress seizures, but do not affect the underlying epileptic state, and many epilepsy patients are unable to attain seizure control with AEDs. To cure or prevent epilepsy, disease-modifying interventions that inhibit or reverse the disease process of epileptogenesis must be developed. A major limitation in the development and implementation of such an intervention is the current poor understanding, and the lack of reliable biomarkers, of the epileptogenic process. Neuroimaging represents a non-invasive medical and research tool with the ability to identify early pathophysiological changes involved in epileptogenesis, monitor disease progression, and assess the effectiveness of possible therapies. Here we will provide an overview of studies conducted in animal models and in patients with epilepsy that have utilized various neuroimaging modalities to investigate epileptogenesis.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Building 144, Royal Parade, Parkville, VIC, 3010, Australia,
| | | | | | | |
Collapse
|
13
|
Obenaus A. Neuroimaging biomarkers for epilepsy: advances and relevance to glial cells. Neurochem Int 2013; 63:712-8. [PMID: 23665337 DOI: 10.1016/j.neuint.2013.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022]
Abstract
Glial cells play an important role in normal brain function and emerging evidence would suggest that their dysfunction may be responsible for some epileptic disease states. Neuroimaging of glial cells is desirable, but there are no clear methods to assess neither their function nor localization. Magnetic resonance imaging (MRI) is now part of a standardized epilepsy imaging protocol to assess patients. Structural volumetric and T2-weighted imaging changes can assist in making a positive diagnosis in a majority of patients. The alterations reported in structural and T2 imaging is predominantly thought to reflect early neuronal loss followed by glial hypertrophy. MR spectroscopy for myo-inositol is a being pursued to identify glial alterations along with neuronal markers. Diffusion weighted imaging (DWI) is ideal for acute epileptiform events, but is not sensitive to either glial cells or neuronal long-term changes found in epilepsy. However, DWI variants such as diffusion tensor imaging or q-space imaging may shed additional light on aberrant glial function in the future. The sensitivity and specificity of PET radioligands, including those targeting glial cells (translocator protein) hold promise in being able to image glial cells. As the role of glial function/dysfunction in epilepsy becomes more apparent neuroimaging methods will evolve to assist the clinician and researcher in visualizing their location and function.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Division of Interdisciplinary Studies, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA; Cell and Molecular Development and Biology Program, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
14
|
Airaksinen AM, Hekmatyar SK, Jerome N, Niskanen JP, Huttunen JK, Pitkänen A, Kauppinen RA, Gröhn OH. Simultaneous BOLD fMRI and local field potential measurements during kainic acid-induced seizures. Epilepsia 2012; 53:1245-53. [PMID: 22690801 DOI: 10.1111/j.1528-1167.2012.03539.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To investigate how kainic acid-induced epileptiform activity is related to hemodynamic changes probed by blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS Epileptiform activity was induced with kainic acid (KA) (10 mg/kg, i.p.), and simultaneous fMRI at 7 Tesla, and deep electrode local field potential (LFP) recordings were performed from the right hippocampus in awake and medetomidine-sedated adult Wistar rats. KEY FINDINGS Recurrent seizure activity induced by KA was detected in LFP both in medetomidine-sedated and awake rats, even though medetomidine sedation reduced the mean duration of individual seizures as compared to awake rats (33 ± 24 and 46 ± 34 s, respectively, mean ± SD p < 0.01). KA administration also triggered robust positive BOLD responses bilaterally in the hippocampus both in awake and medetomidine-sedated rats; however, in both animal groups some of the seizures detected in LFP recording did not cause detectable BOLD signal change. SIGNIFICANCE Our data suggest that medetomidine sedation can be used for simultaneous fMRI and electrophysiologic studies of normal and epileptic brain function, even though seizure duration after medetomidine administration was shorter than that in awake animals. The results also indicate that neuronal activity and BOLD response can become decoupled during recurrent kainic acid-induced seizures, which may have implications to interpretation of fMRI data obtained during prolonged epileptiform activity.
Collapse
Affiliation(s)
- Antti M Airaksinen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mishra AM, Ellens DJ, Schridde U, Motelow JE, Purcaro MJ, DeSalvo MN, Enev M, Sanganahalli BG, Hyder F, Blumenfeld H. Where fMRI and electrophysiology agree to disagree: corticothalamic and striatal activity patterns in the WAG/Rij rat. J Neurosci 2011; 31:15053-64. [PMID: 22016539 PMCID: PMC3432284 DOI: 10.1523/jneurosci.0101-11.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/27/2011] [Accepted: 08/14/2011] [Indexed: 11/21/2022] Open
Abstract
The relationship between neuronal activity and hemodynamic changes plays a central role in functional neuroimaging. Under normal conditions and in neurological disorders such as epilepsy, it is commonly assumed that increased functional magnetic resonance imaging (fMRI) signals reflect increased neuronal activity and that fMRI decreases represent neuronal activity decreases. Recent work suggests that these assumptions usually hold true in the cerebral cortex. However, less is known about the basis of fMRI signals from subcortical structures such as the thalamus and basal ganglia. We used WAG/Rij rats (Wistar albino Glaxo rats of Rijswijk), an established animal model of human absence epilepsy, to perform fMRI studies with blood oxygen level-dependent and cerebral blood volume (CBV) contrasts at 9.4 tesla, as well as laser Doppler cerebral blood flow (CBF), local field potential (LFP), and multiunit activity (MUA) recordings. We found that, during spike-wave discharges, the somatosensory cortex and thalamus showed increased fMRI, CBV, CBF, LFP, and MUA signals. However, the caudate-putamen showed fMRI, CBV, and CBF decreases despite increases in LFP and MUA signals. Similarly, during normal whisker stimulation, the cortex and thalamus showed increases in CBF and MUA, whereas the caudate-putamen showed decreased CBF with increased MUA. These findings suggest that neuroimaging-related signals and electrophysiology tend to agree in the cortex and thalamus but disagree in the caudate-putamen. These opposite changes in vascular and electrical activity indicate that caution should be applied when interpreting fMRI signals in both health and disease from the caudate-putamen, as well as possibly from other subcortical structures.
Collapse
Affiliation(s)
- Asht Mangal Mishra
- Departments of Neurology
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | | | | | | | | | | | - Basavaraju G. Sanganahalli
- Diagnostic Radiology
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Fahmeed Hyder
- Diagnostic Radiology
- Biomedical Engineering, and
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hal Blumenfeld
- Departments of Neurology
- Neurobiology
- Neurosurgery
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
16
|
Gröhn O, Sierra A, Immonen R, Laitinen T, Lehtimäki K, Airaksinen A, Hayward N, Nairismagi J, Lehto L, Pitkänen A. Multimodal MRI assessment of damage and plasticity caused by status epilepticus in the rat brain. Epilepsia 2011; 52 Suppl 8:57-60. [DOI: 10.1111/j.1528-1167.2011.03239.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Neuroimaging in Animal Seizure Models with (18)FDG-PET. EPILEPSY RESEARCH AND TREATMENT 2011; 2011:369295. [PMID: 22937232 PMCID: PMC3420690 DOI: 10.1155/2011/369295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/24/2011] [Accepted: 03/31/2011] [Indexed: 12/25/2022]
Abstract
Small animal neuroimaging has become increasingly available to researchers, expanding the breadth of questions studied with these methods. Applying these noninvasive techniques to the open questions underlying epileptogenesis is no exception. A major advantage of small animal neuroimaging is its translational appeal. Studies can be well controlled and manipulated, examining the living brain in the animal before, during, and after the disease onset or disease treatment. The results can also be compared to data collected on human patients. Over the past decade, we and others have explored metabolic patterns in animal models of epilepsy to gain insight into the circuitry underlying development of the disease. In this paper, we provide technical details on how metabolic imaging that uses 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG) and positron emission tomography (PET) is performed and explain the strengths and limitations of these studies. We will also highlight recent advances toward understanding epileptogenesis through small animal imaging.
Collapse
|
18
|
Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011; 2011:618127. [PMID: 21403864 PMCID: PMC3049350 DOI: 10.1155/2011/618127] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/19/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are induced in response to many injuries including stroke, neurodegenerative disease, epilepsy, and trauma. The overexpression of one HSP in particular, Hsp70, serves a protective role in several different models of nervous system injury, but has also been linked to a deleterious role in some diseases. Hsp70 functions as a chaperone and protects neurons from protein aggregation and toxicity (Parkinson disease, Alzheimer disease, polyglutamine diseases, and amyotrophic lateral sclerosis), protects cells from apoptosis (Parkinson disease), is a stress marker (temporal lobe epilepsy), protects cells from inflammation (cerebral ischemic injury), has an adjuvant role in antigen presentation and is involved in the immune response in autoimmune disease (multiple sclerosis). The worldwide incidence of neurodegenerative diseases is high. As neurodegenerative diseases disproportionately affect older individuals, disease-related morbidity has increased along with the general increase in longevity. An understanding of the underlying mechanisms that lead to neurodegeneration is key to identifying methods of prevention and treatment. Investigators have observed protective effects of HSPs induced by preconditioning, overexpression, or drugs in a variety of models of brain disease. Experimental data suggest that manipulation of the cellular stress response may offer strategies to protect the brain during progression of neurodegenerative disease.
Collapse
|
19
|
Sumiyoshi A, Riera JJ, Ogawa T, Kawashima R. A mini-cap for simultaneous EEG and fMRI recording in rodents. Neuroimage 2011; 54:1951-65. [DOI: 10.1016/j.neuroimage.2010.09.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/17/2010] [Accepted: 09/21/2010] [Indexed: 11/29/2022] Open
|
20
|
Ekimova IV, Nitsinskaya LE, Romanova IV, Pastukhov YF, Margulis BA, Guzhova IV. Exogenous protein Hsp70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures. J Neurochem 2010; 115:1035-44. [DOI: 10.1111/j.1471-4159.2010.06989.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Identifying the structures involved in seizure generation using sequential analysis of ictal-fMRI data. Neuroimage 2009; 47:173-83. [DOI: 10.1016/j.neuroimage.2009.03.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/04/2009] [Accepted: 03/18/2009] [Indexed: 11/21/2022] Open
|
22
|
Rektor I, Zákopcan J, Tyrlíková I, Kuba R, Brázdil M, Chrastina J, Novák Z. Secondary generalization in seizures of temporal lobe origin: Ictal EEG pattern in a stereo-EEG study. Epilepsy Behav 2009; 15:235-9. [PMID: 19332146 DOI: 10.1016/j.yebeh.2009.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/18/2009] [Accepted: 03/22/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We tested the hypothesis that secondary generalized seizures (SGS) are not truly generalized and may involve selective regions. METHODS The spread from focal to generalized seizures in temporal lobe epilepsy (TLE) was studied in 20 SGS recorded via stereo-EEG (SEEG) in 15 candidates for surgery. Electrodes were assigned to fronto-orbital, prefrontal, and temporal cortex, cingulate, hippocampus, and amygdala. The onset of SGS was ascertained by behavioral analysis of the video recordings. EEG recordings were evaluated using the rating scale developed by Blumenfeld [Blumenfeld H, Rivera M, McNally KA, Davis K, Spencer DD, Spencer SS. Ictal neocortical slowing in temporal lobe epilepsy. Neurology 2004;63:1015-21]. The seizure rating in each region was compared with the rating in the hippocampus. RESULTS Ranking significantly differed in the cingulate and fronto-orbital cortex; there was a trend toward significance in the prefrontal cortex. In these regions, slow activity dominated. CONCLUSION The onset of secondary generalization, when the head, face and all limbs are involved, does not implicate global cortical involvement.
Collapse
Affiliation(s)
- Ivan Rektor
- First Department of Neurology, Masaryk University, St. Anne's Hospital, Pekarská 53, Brno 656 91, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatiotemporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and frontoparietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder.
Collapse
Affiliation(s)
- Joshua E. Motelow
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- QNMR, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
24
|
Canals S, Beyerlein M, Murayama Y, Logothetis NK. Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magn Reson Imaging 2008; 26:978-86. [DOI: 10.1016/j.mri.2008.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
|
25
|
Faingold CL. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain. Med Hypotheses 2008; 71:668-81. [PMID: 18762389 DOI: 10.1016/j.mehy.2008.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 01/15/2023]
Abstract
CNS neuronal networks are known to control normal physiological functions, including locomotion and respiration. Neuronal networks also mediate the pathophysiology of many CNS disorders. Stimulation therapies, including localized brain and vagus nerve stimulation, electroshock, and acupuncture, are proposed to activate "therapeutic" neuronal networks. These therapeutic networks are dormant prior to stimulatory treatments, but when the dormant networks are activated they compete with pathophysiological neuronal networks, disrupting their function. This competition diminishes the disease symptoms, providing effective therapy for otherwise intractable CNS disorders, including epilepsy, Parkinson's disease, chronic pain, and depression. Competition between stimulation-activated therapeutic networks and pathophysiological networks is a major mechanism mediating the therapeutic effects of stimulation. This network interaction is hypothesized to involve competition for "control" of brain regions that contain high proportions of conditional multireceptive (CMR) neurons. CMR regions, including brainstem reticular formation, amygdala, and cerebral cortex, have extensive connections to numerous brain areas, allowing these regions to participate potentially in many networks. The participation of CMR regions in any network is often variable, depending on the conditions affecting the organism, including vigilance states, drug treatment, and learning. This response variability of CMR neurons is due to the high incidence of excitatory postsynaptic potentials that are below threshold for triggering action potentials. These subthreshold responses can be brought to threshold by blocking inhibition or enhancing excitation via the paradigms used in stimulation therapies. Participation of CMR regions in a network is also strongly affected by pharmacological treatments (convulsant or anesthetic drugs) and stimulus parameters (strength and repetition rate). Many studies indicate that treatment of unanesthetized animals with antagonists (bicuculline or strychnine) of inhibitory neurotransmitter (GABA or glycine) receptors can cause CMR neurons to become consistently responsive to external inputs (e.g., peripheral nerve, sensory, or electrical stimuli in the brain) to which these neurons did not previously respond. Conversely, agents that enhance GABA-mediated inhibition (e.g., barbiturates and benzodiazepines) or antagonize glutamate-mediated excitation (e.g., ketamine) can cause CMR neurons to become unresponsive to inputs to which they responded previously. The responses of CMR neurons exhibit extensive short-term and long-term plasticity, which permits them to participate to a variable degree in many networks. Short-term plasticity subserves termination of disease symptoms, while long-term plasticity in CMR regions subserves symptom prevention. This network interaction hypothesis has value for future research in CNS disease mechanisms and also for identifying therapeutic targets in specific brain networks for more selective stimulation and pharmacological therapies.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|