1
|
Fang C, Yang L, Xiao F, Yan K, Zhou W. Genotype and phenotype features and prognostic factors of neonatal-onset pyridoxine-dependent epilepsy: A systematic review. Epilepsy Res 2024; 202:107363. [PMID: 38636407 DOI: 10.1016/j.eplepsyres.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is a rare autosomal recessive disorder due to a deficiency of α-aminoadipic semialdehyde dehydrogenase. This study aimed to systematically explore genotypic and phenotypic features and prognostic factors of neonatal-onset PDE. A literature search covering PubMed, Elsevier, and Web of Science was conducted from January 2006 to August 2023. We identified 56 eligible studies involving 169 patients and 334 alleles. The c.1279 G>C variant was the most common variant of neonatal-onset PDE (25.7 %). All patients were treated with pyridoxine; forty patients received dietary intervention therapy. 63.9 % of the patients were completely seizure-free; however, 68.6 % of the patients had neurodevelopmental delays. Additionally, homozygous c.1279 G>C variants were significantly associated with ventriculomegaly, abnormal white matter signal, and cysts (P<0.05). In contrast, homozygous c.1364 T>C was associated with clonic seizure (P=0.031). Pyridoxine used immediately at seizure onset was an independent protective factor for developmental delay (P=0.035; odds ratio [OR]: 3.14). Besides, pyridoxine used early in the neonatal period was a protective factor for language delay (P=0.044; OR: 4.59). In contrast, neonatal respiratory distress (P=0.001; OR: 127.44) and abnormal brain magnetic resonance imaging (P=0.049; OR: 3.64) were risk factors. Prenatal movement abnormality (P=0.041; OR: 20.56) and abnormal white matter signal (P=0.012; OR: 24.30) were risk factors for motor delay. Myoclonic seizure (P=0.023; OR: 7.13) and status epilepticus (P=0.000; OR: 9.93) were risk factors for breakthrough seizures. In conclusion, our study indicated that pyridoxine should be started immediately when unexplained neonatal seizures occur and not later than the neonatal period to prevent poor neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Chuchu Fang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lin Yang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kai Yan
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Falsaperla R, Sciacca M, Collotta AD, Tardino LG, Marino S, Marino SD, Privitera GF, Vitaliti G, Ruggieri M. PYRIDOXINE-dependent epilepsy (PDE): An observational study of neonatal cases on the role of pyridoxine in patients treated with standard anti-seizure medications. Seizure 2024; 118:156-163. [PMID: 38735085 DOI: 10.1016/j.seizure.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The main objective of this study was to evaluate the neurological consequences of delayed pyridoxine administration in patients diagnosed with Pyridoxin Dependent Epilepsies (PDE). MATERIALS AND METHODS We reviewed 29 articles, comprising 52 genetically diagnosed PDE cases, ensuring data homogeneity. Three additional cases were included from the General Pediatric Operative Unit of San Marco Hospital. Data collection considered factors like age at the first seizure's onset, EEG reports, genetic analyses, and more. Based on the response to first-line antiseizure medications, patients were categorized into four distinct groups. Follow-up evaluations employed various scales to ascertain neurological, cognitive, and psychomotor developments. RESULTS Our study includes 55 patients (28 males and 27 females), among whom 15 were excluded for the lack of follow-up data. 21 patients were categorized as "Responder with Relapse", 11 as "Resistant", 6 as "Pyridoxine First Approach", and 2 as "Responders". The neurological outcome revealed 37,5 % with no neurological effects, 37,5 % showed complications in two developmental areas, 15 % in one, and 10 % in all areas. The statistical analysis highlighted a positive correlation between the time elapsed from the administration of pyridoxine after the first seizure and worse neurological outcomes. On the other hand, a significant association was found between an extended latency period (that is, the time that elapsed between the onset of the first seizure and its recurrence) and worse neurological outcomes in patients who received an unfavorable score on the neurological evaluation noted in a subsequent follow-up. CONCLUSIONS The study highlights the importance of early recognition and intervention in PDE. Existing medical protocols frequently overlook the timely diagnosis of PDE. Immediate administration of pyridoxine, guided by a swift diagnosis in the presence of typical symptoms, might improve long-term neurological outcomes, and further studies should evaluate the outcome of PDE neonates promptly treated with Pyridoxine.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- General Pediatrics and Pediatric Emergency Department, "Policlinico G.Rodolico-San Marco" University Hospital, University of Catania, 95100 Catania, Italy; Unit of Neonatal Intensive Care and Neonatology, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, 95100 Catania, Italy.
| | - Monica Sciacca
- General Pediatrics and Pediatric Emergency Department, "Policlinico G.Rodolico-San Marco" University Hospital, University of Catania, 95100 Catania, Italy
| | - Ausilia Desiree Collotta
- General Pediatrics and Pediatric Emergency Department, "Policlinico G.Rodolico-San Marco" University Hospital, University of Catania, 95100 Catania, Italy
| | - Lucia Giovanna Tardino
- General Pediatrics and Pediatric Emergency Department, "Policlinico G.Rodolico-San Marco" University Hospital, University of Catania, 95100 Catania, Italy
| | - Silvia Marino
- General Pediatrics and Pediatric Emergency Department, "Policlinico G.Rodolico-San Marco" University Hospital, University of Catania, 95100 Catania, Italy
| | - Simona Domenica Marino
- General Pediatrics and Pediatric Emergency Department, "Policlinico G.Rodolico-San Marco" University Hospital, University of Catania, 95100 Catania, Italy
| | - Greta Francesca Privitera
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanna Vitaliti
- General Pediatrics and Pediatric Emergency Department, "Policlinico G.Rodolico-San Marco" University Hospital, University of Catania, 95100 Catania, Italy.
| | - Martino Ruggieri
- Department of Child and Experimental Medicine, Section of Paediatrics and Child Neuropsychiatry, University of Catania, Italy
| |
Collapse
|
3
|
Mastrangelo M, Gasparri V, Bernardi K, Foglietta S, Ramantani G, Pisani F. Epilepsy Phenotypes of Vitamin B6-Dependent Diseases: An Updated Systematic Review. CHILDREN 2023; 10:children10030553. [PMID: 36980111 PMCID: PMC10047402 DOI: 10.3390/children10030553] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Background: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). Patients and methods: We conducted a systematic review of published pediatric cases with a confirmed molecular genetic diagnosis of vitamin B6-dependent epilepsy according to PRISMA guidelines. Data on demographic features, seizure semiology, EEG patterns, neuroimaging, treatment, and developmental outcomes were collected. Results: 497 published patients fulfilled the inclusion criteria. Seizure onset manifested at 59.8 ± 291.6 days (67.8% of cases in the first month of life). Clonic, tonic-clonic, and myoclonic seizures accounted for two-thirds of the cases, while epileptic spasms were observed in 7.6%. Burst-suppression/suppression-burst represented the most frequently reported specific EEG pattern (14.4%), mainly in PLPB, ALDH7A1, and PNPO deficiency. Pyridoxine was administered to 312 patients (18.5% intravenously, 76.9% orally, 4.6% not specified), and 180 also received antiseizure medications. Pyridoxine dosage ranged between 1 and 55 mg/kg/die. Complete seizure freedom was achieved in 160 patients, while a significant seizure reduction occurred in 38. PLP, lysine-restricted diet, and arginine supplementation were used in a small proportion of patients with variable efficacy. Global developmental delay was established in 30.5% of a few patients in whom neurocognitive tests were performed. Conclusions: Despite the wide variability, the most frequent hallmarks of the epilepsy phenotype in patients with vitamin B6-dependent seizures include generalized or focal motor seizure semiology and a burst suppression/suppression burst pattern in EEG.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Correspondence:
| | - Valentina Gasparri
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Katerina Bernardi
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Foglietta
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children’s Hospital Zurich and University of Zurich, 8032 Zurich, Switzerland
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| |
Collapse
|
4
|
La Mendola FMC, Timpanaro T, Caruso D, Garozzo MT, Presti S, Romano C, Praticò ER, Lombardo G, Zanghì A, Falsaperla R. ALDH7A1 Gene and Its Related Pyridoxine-Dependent Epilepsy. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractDespite being classically reported as caused by mutations in solute carriers genes (SLC2A1), it has been recently shown that also mutations in ALDH7A1 can cause pyridoxine-dependent epilepsy (PDE). ALDH7A1 is a gene encoding for the antiquitin, an enzyme that catalyzes the nicotinamide adenine dinucleotide-dependent dehydrogenation of L-α-aminoadipic semialdehyde/L-Δ1-piperideine 6-carboxylate. It is a highly treatable disorder, but nevertheless it is still not certain when to consider this diagnosis and how to test for it. It is possible to identify a classical form and an atypical one of PDE associated with more than 70 mutations of ALDH7A1 gene. The typical form is characterized by the onset of seizures within the first month of life and can be treated with pyridoxine in monotherapy, as they are not responsive to traditional anticonvulsant therapy. The atypical forms are equally pyridoxine-dependent, but are characterized by a later onset of seizures, sometimes up to the age of 3 years. Several brain abnormalities have been associated with ALDH7A1 mutations. Seizure control is achieved by the administration of high-dose pyridoxine, which must be started in the patient as soon as possible. However, it has been observed that pyridoxine therapy does not prevent developmental delay in most cases; in these cases, it can be recommended and useful to supplement arginine with pyridoxine therapy associated with a dietary restriction of lysine.
Collapse
Affiliation(s)
| | - Tiziana Timpanaro
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Daniela Caruso
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Teresa Garozzo
- Unit of Pediatric and Pediatric Emergency, Hospital “Cannizzaro,” Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Romano
- Italian Blind Union, Catania section, Catania, Italy
| | | | - Giulia Lombardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
5
|
Abstract
Epilepsy includes a number of medical conditions with recurrent seizures as common denominator. The large number of different syndromes and seizure types as well as the highly variable inter-individual response to the therapies makes management of this condition often challenging. In the last two decades, a genetic etiology has been revealed in more than half of all epilepsies and single gene defects in ion channels or neurotransmitter receptors have been associated with most inherited forms of epilepsy, including some focal and lesional forms as well as specific epileptic developmental encephalopathies. Several genetic tests are now available, including targeted assays up to revolutionary tools that have made sequencing of all coding (whole exome) and non-coding (whole genome) regions of the human genome possible. These recent technological advances have also driven genetic discovery in epilepsy and increased our understanding of the molecular mechanisms of many epileptic disorders, eventually providing targets for precision medicine in some syndromes, such as Dravet syndrome, pyroxidine-dependent epilepsy, and glucose transporter 1 deficiency. However, these examples represent a relatively small subset of all types of epilepsy, and to date, precision medicine in epilepsy has primarily focused on seizure control, and other clinical aspects, such as neurodevelopmental and neuropsychiatric comorbidities, have yet been possible to address. We herein summarize the most recent advances in genetic testing and provide up-to-date approaches for the choice of the correct test for some epileptic disorders and tailored treatments that are already applicable in some monogenic epilepsies. In the next years, the most probably scenario is that epilepsy treatment will be very different from the currently almost empirical approach, eventually with a "precision medicine" approach applicable on a large scale.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "G. Gaslini", Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via Gaslini 5, 16148, Genoa, Italy.
| | - Berge A Minassian
- Department of Pediatrics Division of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
6
|
Abstract
Introduction: Vitamin B6 dependent epilepsies are a group of treatable diseases (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinaemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects) responding to pyridoxine or pyridoxal-5I-phosphate. Areas covered: A critical review was conducted on the therapeutic management of all the reported patients with genetically confirmed diagnoses of diseases affecting vitamin B6 metabolism and presenting with pyridoxine or pyridoxal-5I-phosphate dependent-seizures. Data about safety and efficacy were analyzed as well as the management of supplementation with pyridoxine or pyridoxal-5I-phosphate both in the acute phases and in the maintenance therapies. The authors also analyzed alternative therapeutic strategies for ALDH7A1 deficiency (lysine-restricted diet, arginine supplementation, oligonucleotide antisense therapy, upstream inhibition of aminoadipic semialdehyde synthase). Expert opinion: The administration of pyridoxine or pyridoxal-5I-phosphate should be considered in all intractable seizures also beyond the first year of life. Lysine restricted diet and arginine supplementation should be introduced in all the confirmed ALDH7A1 deficient patients. Pre or post-natal supplementation with pyridoxine should be given in familial cases until an eventual molecular genetic disconfirmation. Minor data about alternative therapies are available for other disorders of vitamin B6 metabolism.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome , Roma , Italy
| | - Serena Cesario
- Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome , Roma , Italy
| |
Collapse
|
7
|
Guelfi S, Botia JA, Thom M, Ramasamy A, Perona M, Stanyer L, Martinian L, Trabzuni D, Smith C, Walker R, Ryten M, Reimers M, Weale ME, Hardy J, Matarin M. Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain 2019; 142:1616-1630. [DOI: 10.1093/brain/awz074] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sebastian Guelfi
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Juan A. Botia
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Maria Thom
- Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Marina Perona
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), National Scientific and Technical Research Council (CONICET), Argentina
| | - Lee Stanyer
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Lillian Martinian
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert Walker
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Mark Reimers
- Neuroscience Program and Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael E. Weale
- Department Medical and Molecular Genetics, King’s College London, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Mar Matarin
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London, WC1N 3, UK
| |
Collapse
|
8
|
Toldo I, Bonardi CM, Bettella E, Polli R, Talenti G, Burlina A, Sartori S, Murgia A. Brain malformations associated to Aldh7a1 gene mutations: Report of a novel homozygous mutation and literature review. Eur J Paediatr Neurol 2018; 22:1042-1053. [PMID: 30005813 DOI: 10.1016/j.ejpn.2018.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND The ALDH7A1 gene is known to be responsible for autosomal recessive pyridoxine-dependent epilepsy (OMIM 266100). The phenotypic spectrum of ALDH7A1 mutations is very heterogeneous ranging from refractory epilepsy and neurodevelopmental delay, to multisystem neonatal disorder. AIM The present study aims at describing the phenotype associated with a novel homozygous ALDH7A1 mutation and the spectrum of brain malformations associated with pyridoxine-dependent epilepsy. METHODS We conducted a literature review on the Internet database Pubmed (up to November 2017) searching for ALDH7A1 mutations associated with brain malformations and brain MRI findings. RESULTS We present the case of two siblings, children of related parents. The proband presented neonatal focal seizures not responding to conventional antiepileptic drugs. Electroencephalography showed a suppression burst pattern and several multifocal ictal patterns, responsive to pyridoxine. Brain MRI was normal. Molecular analysis by targeted next-generation sequencing panel for epileptic encephalopathy disclosed a homozygous missense mutation of ALDH7A1. The same mutation was then found in a stored sample of DNA from peripheral blood of an older sister dead 3 years earlier. This girl presented a complex brain malformation diagnosed with a foetal MRI and had neonatal refractory seizures with suppression burst pattern. She died at 6 months of age. LITERATURE REVIEW The brain abnormalities most frequently reported in pyridoxine-dependent epilepsy include: agenesia/hypoplasia of the corpus callosum, not specific white matter abnormalities, large cisterna magna, ventriculomegaly, haemorrhages, cerebellum hypoplasia/dysplasia, and, more rarely, dysplasia of the brainstem and hydrocephalus. DISCUSSION AND CONCLUSIONS ALDH7A1 mutations have been associated to different brain abnormalities, documented by MRI only in few cases. The study cases expand the clinical spectrum of ALDH7A1 associated conditions, suggesting to look for ALDH7A1 mutations not only in classical phenotypes but also in patients with brain malformations, mainly if there is a response to a pyridoxine trial.
Collapse
Affiliation(s)
- Irene Toldo
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | | | - Elisa Bettella
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Roberta Polli
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Giacomo Talenti
- Department of Neurosciences, University Hospital of Padua, Italy.
| | - Alberto Burlina
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | - Stefano Sartori
- Department of Woman's and Child's Health, University Hospital of Padua, Italy.
| | | |
Collapse
|
9
|
Wang S, Sun J, Tu Y, Zhu L, Feng Z. Clinical and genetic characteristics of pyridoxine-dependent epilepsy: Case series report of three Chinese patients with phenotypic variability. Exp Ther Med 2017; 14:1989-1992. [PMID: 28962114 PMCID: PMC5609134 DOI: 10.3892/etm.2017.4735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/28/2017] [Indexed: 11/26/2022] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare disorder caused by aldehyde dehydrogenase 7 family member A1 (ALDH7A1) deficiency. The present study reported on three Chinese cases of PDE with phenotypic variability for providing further insight into this disease. All three patients presented with recurrent seizures and readily responded to treatment with pyridoxine, in line with the typical symptomology of PDE. The three cases varied in their clinical manifestations with regard to the time of onset, seizure type, EEG findings and mental development. Four ALDH7A1 mutations were identified in Case 1 (c.1008+1G>A and c.871+5G>A) and Case 2 (c.977A>G and c.1463A>G). To the best of our knowledge, the present study was the first to report on the mutations c.871+5G>A and c.1463A>G. Early definitive diagnosis and timely treatment with pyridoxine was the cornerstone of management of PDE. Timely treatment was associated with excellent prognosis. A high index of suspicion in cases and early genetic testing may facilitate early diagnosis of this rare disease.
Collapse
Affiliation(s)
- Sanmei Wang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Jing Sun
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Yao Tu
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Lina Zhu
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Zhichun Feng
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing 100700, P.R. China
| |
Collapse
|
10
|
Marguet F, Barakizou H, Tebani A, Abily-Donval L, Torre S, Bayoudh F, Jebnoun S, Brasseur-Daudruy M, Marret S, Laquerriere A, Bekri S. Pyridoxine-dependent epilepsy: report on three families with neuropathology. Metab Brain Dis 2016; 31:1435-1443. [PMID: 27438048 DOI: 10.1007/s11011-016-9869-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE) is a pharmacoresistant epileptogenic encephalopathy controlled by pyridoxine supplementation at pharmacological doses. Despite supplementation, the long-term outcome is often poor possibly because of recurrent seizures and developmental structural brain abnormalities. We report on five patients with PDE from three unrelated families. The diagnosis was confirmed by ALDH7A1 sequencing, which allowed for the characterization of two homozygous variations [NM_001182.3:c.1279G > C - p.(Glu427Gln) and c.834G > A - p.(Val278Val)]. Brain autopsy was conducted for one untreated patient with molecularly confirmed antiquitin deficiency. Macroscopic and histological examination revealed a combination of lesions resulting from recurrent seizures and consisting of extensive areas of cortical necrosis, gliosis, and hippocampic sclerosis. The examination also revealed developmental abnormalities including corpus callosum dysgenesis and corticospinal pathfinding anomalies. This case is the second to be reported in the literature, and our findings show evidence that antiquitin is required for normal brain development and functioning. Despite prophylactic prenatal pyridoxine supplementation during the last trimester of pregnancy in one of the three families and sustained pyridoxine treatment in three living patients, the clinical outcome remained poor with delayed acquisition of neurocognitive skills. Combined therapy (pyridoxine/arginine supplementation and lysine-restricted diet) should be considered early in the course of the disease for a better long-term outcome. Enhanced knowledge of PDE features is required to improve treatment strategies.
Collapse
Affiliation(s)
- Florent Marguet
- Pathology Laboratory, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
| | - Hager Barakizou
- Department of Pediatrics, Military Hospital of Tunis, Tunis, Tunisia
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
- Department of Metabolic Biochemistry, Rouen University Hospital, 1 Rue de Germont, 76031, Rouen Cedex, France
| | - Lenaig Abily-Donval
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
- Department of Neonatology, Intensive care unit, and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Stéphanie Torre
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
- Department of Neonatology, Intensive care unit, and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Fethi Bayoudh
- Department of Pediatrics, Military Hospital of Tunis, Tunis, Tunisia
| | - Sami Jebnoun
- Department of Pediatrics, Clinique Avicenne Tunis, Tunis, Tunisia
| | | | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
- Department of Neonatology, Intensive care unit, and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Annie Laquerriere
- Pathology Laboratory, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM, CHU Rouen, IRIB, Laboratoire NeoVasc ERI28, Rouen, 76000, France.
- Department of Metabolic Biochemistry, Rouen University Hospital, 1 Rue de Germont, 76031, Rouen Cedex, France.
| |
Collapse
|
11
|
Yuzyuk T, Thomas A, Viau K, Liu A, De Biase I, Botto LD, Pasquali M, Longo N. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy. Mol Genet Metab 2016; 118:167-172. [PMID: 27324284 DOI: 10.1016/j.ymgme.2016.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022]
Abstract
Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE.
Collapse
Affiliation(s)
- Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA.
| | - Amanda Thomas
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | - Krista Viau
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Aiping Liu
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Irene De Biase
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Lorenzo D Botto
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA; Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA; Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Pyridoxine-Dependent Epilepsy: An Expanding Clinical Spectrum. Pediatr Neurol 2016; 59:6-12. [PMID: 26995068 DOI: 10.1016/j.pediatrneurol.2015.12.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pyridoxine-dependent epilepsy is a rare autosomal recessive epileptic encephalopathy caused by antiquitin (ALDH7A1) deficiency. In spite of adequate seizure control, 75% of patients suffer intellectual developmental disability. Antiquitin deficiency affects lysine catabolism resulting in accumulation of α-aminoadipic semialdehyde/pyrroline 6' carboxylate and pipecolic acid. Beside neonatal refractory epileptic encephalopathy, numerous neurological manifestations and metabolic/biochemical findings have been reported. METHODS AND RESULTS We present a phenotypic spectrum of antiquitin deficiency based on a literature review (2006 to 2015) of reports (n = 49) describing the clinical presentation of confirmed patients (n > 200) and a further six patient vignettes. Possible presentations include perinatal asphyxia; neonatal withdrawal syndrome; sepsis; enterocolitis; hypoglycemia; neuroimaging abnormalities (corpus callosum and cerebellar abnormalities, hemorrhage, white matter lesions); biochemical abnormalities (lactic acidosis, electrolyte disturbances, neurotransmitter abnormalities); and seizure response to pyridoxine, pyridoxal-phosphate, and folinic acid dietary interventions. DISCUSSION The phenotypic spectrum of pyridoxine-dependent epilepsy is wide, including a myriad of neurological and systemic symptoms. Its hallmark feature is refractory seizures during the first year of life. Given its amenability to treatment with lysine-lowering strategies in addition to pyridoxine supplementation for optimal seizure control and developmental outcomes, early diagnosis of pyridoxine-dependent epilepsy is essential. All infants presenting with unexplained seizures should be screened for antiquitin deficiency by determination of α-aminoadipic semialdehyde/pyrroline 6' carboxylate (in urine, plasma or cerebrospinal fluid) and ALDH7A1 molecular analysis.
Collapse
|
13
|
Riikonen R, Mankinen K, Gaily E. Long-term outcome in pyridoxine-responsive infantile epilepsy. Eur J Paediatr Neurol 2015; 19:647-51. [PMID: 26310861 DOI: 10.1016/j.ejpn.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/06/2015] [Accepted: 08/06/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dose regimens of pyridoxine (vitamin B6) for treatment of infantile spasms have varied from 200 mg/d to 300 mg/kg/d. Only two long-term outcome studies of the treated patients are available. METHODS We asked all pediatric neurologists treating pediatric epilepsy in Finland if they had seen patients with pyridoxine-responsive infantile epilepsy. Five children with infantile spasms and hypsarrhythmia and one with focal epilepsy were reported as pyridoxine responders. Data on clinical presentation and outcome were collected from patient charts. RESULTS All B6 responders had un-known aetiology. Two patients were studied for pyridoxal 5'-phosphate oxidase (PNPO) deficiency and showed negative results. Ages at seizure onset ranged from 4 to 7 months. The maintenance dose of oral pyridoxine was 150 mg/day. Response occurred within 1-to 14 days (mean 5 days). Two patients were treated with concomitant antiepileptic drugs. Duration of pyridoxine therapy varied from 6 weeks to 4 years (mean 26 months). Four patients had later seizure recurrence: one at 15 months with motor seizures (stopped by valproate), another two in adolescence with focal epilepsy and one at 20 years with unclassified epilepsy. Intelligence was normal in five patients and one had a mild mental deficiency. Follow-up ranged from 8.5 to 24 years. CONCLUSIONS Rare patients with infantile epilepsy but not pyridoxine dependency may respond to smaller doses of pyridoxine than reported before. Long-term cognitive outcome appears to be good but late seizure recurrence (in adolescence or in adulthood) occur. So far it is unknown if the response was determined by genetic traits or disease-related factors.
Collapse
Affiliation(s)
- R Riikonen
- Children's Hospital and Science Service Center, Kuopio University Hospital, Kuopio, PO Box 1627, FI 70211, Finland.
| | - K Mankinen
- Länsi-Pohja Central Hospital, Kauppakatu 25, 94100, Kemi, Finland.
| | - E Gaily
- Department of Pediatric Neurology, Children's Hospital, University of Helsinki, PO Box 280, 00029 HUS, Helsinki, Finland.
| |
Collapse
|
14
|
Nasr E, Mamak E, Feigenbaum A, Donner EJ, Mercimek-Mahmutoglu S. Long-term treatment outcome of two patients with pyridoxine-dependent epilepsy caused by ALDH7A1 mutations: normal neurocognitive outcome. J Child Neurol 2015; 30:648-53. [PMID: 24789515 DOI: 10.1177/0883073814531331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyridoxine-dependent epilepsy is an autosomal recessively inherited disorder of lysine catabolism caused by mutations in the ALDH7A1 gene. We report 2 patients with normal neurocognitive outcome (full-scale IQ of 108 and 74) and their more than 10 years' treatment outcome on pyridoxine monotherapy. Both patients had specific borderline impairments in visual processing speed. More long-term treatment outcome reports will increase our knowledge about the natural history of the disease.
Collapse
Affiliation(s)
- Enas Nasr
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Eva Mamak
- Department of Psychology, The Hospital for Sick Children, Toronto, Canada
| | - Anette Feigenbaum
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada Department of Pediatrics & Biochemical Genetics, Rady Children's Hospital-San Diego, University of California, San Diego, CA, USA
| | - Elizabeth J Donner
- Division of Neurology, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
15
|
Improving molecular diagnosis in epilepsy by a dedicated high-throughput sequencing platform. Eur J Hum Genet 2014; 23:354-62. [PMID: 24848745 DOI: 10.1038/ejhg.2014.92] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/17/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
We analyzed by next-generation sequencing (NGS) 67 epilepsy genes in 19 patients with different types of either isolated or syndromic epileptic disorders and in 15 controls to investigate whether a quick and cheap molecular diagnosis could be provided. The average number of nonsynonymous and splice site mutations per subject was similar in the two cohorts indicating that, even with relatively small targeted platforms, finding the disease gene is not an univocal process. Our diagnostic yield was 47% with nine cases in which we identified a very likely causative mutation. In most of them no interpretation would have been possible in absence of detailed phenotype and familial information. Seven out of 19 patients had a phenotype suggesting the involvement of a specific gene. Disease-causing mutations were found in six of these cases. Among the remaining patients, we could find a probably causative mutation only in three. None of the genes affected in the latter cases had been suspected a priori. Our protocol requires 8-10 weeks including the investigation of the parents with a cost per patient comparable to sequencing of 1-2 medium-to-large-sized genes by conventional techniques. The platform we used, although providing much less information than whole-exome or whole-genome sequencing, has the advantage that can also be run on 'benchtop' sequencers combining rapid turnaround times with higher manageability.
Collapse
|
16
|
Abstract
The hydrosoluble vitamins are a group of organic substances that are required by humans in small amounts to prevent disorders of metabolism. Significant progress has been made in our understanding of the biochemical, physiologic and nutritional aspects of the water-soluble vitamins. Deficiency of these particular vitamins, most commonly due to inadequate nutrition, can result in disorders of the nervous system. Many of these disorders have been successfully prevented in developed countries; however, they are still common in developing countries. Of the hydrosoluble vitamins, the nervous system depends the most on vitamins B and C (ascorbic acid) for proper functioning. The B group vitamins include thiamin (vitamin B1), riboflavin (vitamin B2), niacin or niacinamide (vitamin B3), pantothenic acid (vitamin B5), pyridoxine or pyridoxal (vitamin B6) and cobalamin (vitamin B12). Clinical findings depend upon the deficiency of the underlying vitamin; generally, deficiency symptoms are seen from a combination rather than an isolated vitamin deficiency. True hereditary metabolic disorders and serious deficiency-associated diseases are rare and in general limited to particular geographic regions and high-risk groups. Their recognition is truly important as that determines the appropriate therapeutic management. The general availability of vitamins to practically everyone and several national health programs have saved many lives and prevented complications. However, there has been some apprehension for several decades about how harmless generous dosages of these vitamins are. Overt overdosages can cause vitamin toxicity affecting various body systems including the nervous system. Systemically, vitamin toxicity is associated with nonspecific symptoms, such as nausea, vomiting, diarrhea, and skin rash which are common with any acute or chronic vitamin overdose. At a national level, recommended daily allowances for vitamins become policy statements. Nutrition policy has far reaching implications in the food industry, in agriculture, and in food provision programs. Overall, water-soluble vitamins are complex molecular structures and even today, many areas of vitamin biochemistry still need to be explored. Many readers might be of the opinion that the classic forms of nutritional deficiency diseases have faded into the background of interesting history. This has caused their diverse symptoms to be neglected by most modern physicians since vitamin enrichment of many foods automatically erases them from their consideration in differential diagnosis. Vitamin B12 and folic acid deficiencies are discussed in other chapters.
Collapse
Affiliation(s)
- Jasvinder Chawla
- Department of Neurology, Hines VA Hospital, Hines, IL, USA; Department of Neurology, Loyola University Medical Center, Maywood, IL, USA.
| | - David Kvarnberg
- Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
17
|
Tlili A, Hamida Hentati N, Chaabane R, Gargouri A, Fakhfakh F. Pyridoxine-dependent epilepsy in Tunisia is caused by a founder missense mutation of the ALDH7A1 gene. Gene 2013; 518:242-5. [DOI: 10.1016/j.gene.2013.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
|
18
|
Proudfoot M, Jardine P, Straukiene A, Noad R, Parrish A, Ellard S, Weatherby S. Long-Term Follow-up of a Successfully Treated Case of Congenital Pyridoxine-Dependent Epilepsy. JIMD Rep 2013; 10:103-6. [PMID: 23430810 DOI: 10.1007/8904_2012_210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 12/19/2012] [Accepted: 12/26/2012] [Indexed: 03/15/2023] Open
Abstract
Autosomal recessive disorders affecting pyridoxine (vitamin B6) metabolism are a rare but well-recognized cause of neonatal seizures. Antiquitin deficiency, caused by mutations in ALDH7A1, is a disorder of the lysine degradation pathway causing accumulation of an intermediate that complexes with pyridoxal phosphate. Reports of long-term follow-up of neonatal pyridoxine-dependent seizures (PDS) remain scarce and prognostic information is varied. We report a case of PDS in a 47-year-old lady who originally presented shortly after birth in 1964. Pyridoxine replacement was successful and diagnostic confirmation was obtained later in life, initially by biochemical analysis of serum pipecolic acid. Subsequently we organized genetic analysis of ALDH7A1, which revealed compound heterozygous mutations. To our knowledge, this represents the longest duration of follow-up published to date.
Collapse
|
19
|
Plecko B. Pyridoxine and pyridoxalphosphate-dependent epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1811-7. [PMID: 23622403 DOI: 10.1016/b978-0-444-59565-2.00050-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To date we know of four inborn errors of autosomal recessive inheritance that lead to vitamin B6-dependent seizures. Among these, pyridoxine-dependent seizures due to antiquitin deficiency is by far the most common, although exact incidence data are lacking. In PNPO deficiency, samples have to be collected prior to treatment, while PDE, hyperprolinemia type II and congenital HPP can be diagnosed while on vitamin B6 supplementation. A vitamin B6 withdrawal for diagnostic purposes is nowadays only indicated in patients with a clear vitamin B6 response but normal biochemical work-up. In the presence of therapy-resistant neonatal seizures, early consideration of a vitamin B6 trial over 3 consecutive days is crucial in order to prevent irreversible brain damage. While PLP would be effective in all four disorders, pyridoxine fails to treat seizures in PNPO deficiency. As PLP is unlicensed within Europe and North America, pyridoxine is widely used as the first line drug, but if it is ineffective it should be followed by a trial with PLP, especially in neonates. As severe apnea has been described in responders, resuscitation equipment should be at hand during a first pyridoxine/PLP administration. Patients and parents have to be informed about the lifelong dependency and recurrence risks in forthcoming pregnancies.
Collapse
Affiliation(s)
- Barbara Plecko
- Department of Pediatrics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Bok LA, Halbertsma FJ, Houterman S, Wevers RA, Vreeswijk C, Jakobs C, Struys E, Van Der Hoeven JH, Sival DA, Willemsen MA. Long-term outcome in pyridoxine-dependent epilepsy. Dev Med Child Neurol 2012; 54:849-54. [PMID: 22804844 DOI: 10.1111/j.1469-8749.2012.04347.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The long-term outcome of the Dutch pyridoxine-dependent epilepsy cohort and correlations between patient characteristics and follow-up data were retrospectively studied. METHOD Fourteen patients recruited from a national reference laboratory were included (four males, 10 females, from 11 families; median age at assessment 6y; range 2y 6mo-16y). The following data were retrieved: sex; age at seizure onset; age at the start of pyridoxine therapy; level of urinary alpha-aminoadipic semialdehyde; antiquitin mutations; developmental milestones; evaluation of neurocognitive functioning and school career; magnetic resonance imaging (MRI) and electroencephalography (EEG) assessments. RESULTS Pyridoxine was started antenatally in two children, in the first week of life in five, in the first month of life in three, or after the first month of life (range 2.5-8mo) in four. No child was physically disabled; however, only five walked at 2 years of age. Mental development was delayed in most: median IQ or developmental index was 72 (SD 19). Pyridoxine monotherapy controlled seizures in 10 of 14 children, whereas four needed additional antiepileptic drugs. Seizure persistence, antiepileptic drugs (other than pyridoxine), EEG background, and epileptiform activity were not associated with outcome. On neonatal MRI, structural and white matter abnormalities occurred in five of eight children; on follow-up, the number of abnormal MRIs was increased. Delayed initiation of pyridoxine medication and corpus callosum abnormalities were significantly associated with unfavourable neurodevelopmental outcome, but normal follow-up imaging did not predict a good outcome. INTERPRETATION Outcome of patients with pyridoxine-dependent epilepsy remains poor. Individual outcome cannot be predicted by the evaluated characteristics. We suggest that collaborated research in structured settings could help to improve treatment strategies and outcome for pyridoxine-dependent epilepsy.
Collapse
Affiliation(s)
- Levinus A Bok
- Department of Pediatrics, Máxima Medical Center, Veldhoven, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yeghiazaryan NS, Striano P, Spaccini L, Pezzella M, Cassandrini D, Zara F, Mastrangelo M. Long-term follow-up in two siblings with pyridoxine-dependent seizures associated with a novel ALDH7A1 mutation. Eur J Paediatr Neurol 2011; 15:547-50. [PMID: 21733724 DOI: 10.1016/j.ejpn.2011.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/23/2011] [Accepted: 05/27/2011] [Indexed: 11/28/2022]
Abstract
Pyridoxine-dependent seizures (PDS) is a rare disorder characterized by seizures resistant to anticonvulsants but controlled by daily pharmacologic doses of pyridoxine. Mutations in the antiquitin (ALDH7A1) gene have recently reported to cause PDS in most of patients. We report the long-term follow-up in two PDS siblings carrying a novel ALDH7A1 mutation.
Collapse
Affiliation(s)
- Nune S Yeghiazaryan
- Muscular and Neurodegenerative Disease Unit and Laboratory of Neurogenetics, Institute G. Gaslini, University of Genova, Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Douaud M, Feve K, Pituello F, Gourichon D, Boitard S, Leguern E, Coquerelle G, Vieaud A, Batini C, Naquet R, Vignal A, Tixier-Boichard M, Pitel F. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model. PLoS One 2011; 6:e26932. [PMID: 22046416 PMCID: PMC3203167 DOI: 10.1371/journal.pone.0026932] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/06/2011] [Indexed: 11/18/2022] Open
Abstract
Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans.
Collapse
Affiliation(s)
- Marine Douaud
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Katia Feve
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Fabienne Pituello
- CNRS-Université Toulouse III, Centre de Biologie du Développement, Toulouse, France
| | - David Gourichon
- INRA PEAT, Pôle d'Expérimentation Avicole de Tours, Nouzilly, France
| | - Simon Boitard
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Eric Leguern
- INSERM, Neurogénétique Moléculaire et Cellulaire, Paris, France
| | - Gérard Coquerelle
- INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Agathe Vieaud
- INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Cesira Batini
- CNRS, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Paris, France
| | - Robert Naquet
- CNRS, Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France
| | - Alain Vignal
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | | | - Frédérique Pitel
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
23
|
Stockler S, Plecko B, Gospe SM, Coulter-Mackie M, Connolly M, van Karnebeek C, Mercimek-Mahmutoglu S, Hartmann H, Scharer G, Struijs E, Tein I, Jakobs C, Clayton P, Van Hove JLK. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011; 104:48-60. [PMID: 21704546 DOI: 10.1016/j.ymgme.2011.05.014] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022]
Abstract
Antiquitin (ATQ) deficiency is the main cause of pyridoxine dependent epilepsy characterized by early onset epileptic encephalopathy responsive to large dosages of pyridoxine. Despite seizure control most patients have intellectual disability. Folinic acid responsive seizures (FARS) are genetically identical to ATQ deficiency. ATQ functions as an aldehyde dehydrogenase (ALDH7A1) in the lysine degradation pathway. Its deficiency results in accumulation of α-aminoadipic semialdehyde (AASA), piperideine-6-carboxylate (P6C) and pipecolic acid, which serve as diagnostic markers in urine, plasma, and CSF. To interrupt seizures a dose of 100 mg of pyridoxine-HCl is given intravenously, or orally/enterally with 30 mg/kg/day. First administration may result in respiratory arrest in responders, and thus treatment should be performed with support of respiratory management. To make sure that late and masked response is not missed, treatment with oral/enteral pyridoxine should be continued until ATQ deficiency is excluded by negative biochemical or genetic testing. Long-term treatment dosages vary between 15 and 30 mg/kg/day in infants or up to 200 mg/day in neonates, and 500 mg/day in adults. Oral or enteral pyridoxal phosphate (PLP), up to 30 mg/kg/day can be given alternatively. Prenatal treatment with maternal pyridoxine supplementation possibly improves outcome. PDE is an organic aciduria caused by a deficiency in the catabolic breakdown of lysine. A lysine restricted diet might address the potential toxicity of accumulating αAASA, P6C and pipecolic acid. A multicenter study on long term outcomes is needed to document potential benefits of this additional treatment. The differential diagnosis of pyridoxine or PLP responsive seizure disorders includes PLP-responsive epileptic encephalopathy due to PNPO deficiency, neonatal/infantile hypophosphatasia (TNSALP deficiency), familial hyperphosphatasia (PIGV deficiency), as well as yet unidentified conditions and nutritional vitamin B6 deficiency. Commencing treatment with PLP will not delay treatment in patients with pyridox(am)ine phosphate oxidase (PNPO) deficiency who are responsive to PLP only.
Collapse
Affiliation(s)
- Sylvia Stockler
- Division of Biochemical Diseases, British Columbia Children's Hospital, University of British Columbia, 4480 Oak Street, Vancouver BC, Canada V6H 3V4.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Millet A, Salomons GS, Cneude F, Corne C, Debillon T, Jakobs C, Struys E, Hamelin S. Novel mutations in pyridoxine-dependent epilepsy. Eur J Paediatr Neurol 2011; 15:74-7. [PMID: 20427214 DOI: 10.1016/j.ejpn.2010.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 11/25/2022]
Abstract
PURPOSE Pyridoxine-Dependent Epilepsy (PDE) is a rare autosomal recessive disease with neonatal seizures resistant to conventional anti-epileptic drugs. This metabolic disease has to be diagnosed early and treated to improve outcome. We report on two new mutations that open new prenatal prospects and suggest a new diagnostic procedure. CASE REPORT We describe PDE in a neonate carrying two novel mutations in the ALDH7A1 gene: c.[852_856delCTTAG] + [1230C > A]; p.[(Phe410Leu)] + p.[(Leu285CysfsX26)]. This case also illustrates that diagnosis could have been made without any pyridoxine withdrawal, thanks to the measurement of biomarkers. The patient was successfully treated with pyridoxine supplementation and currently shows normal neurological development.
Collapse
Affiliation(s)
- A Millet
- Division of Neonatology, Department of Paediatrics, Grenoble University Hospital, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Human antiquitin: structural and functional studies. Chem Biol Interact 2010; 191:165-70. [PMID: 21185811 DOI: 10.1016/j.cbi.2010.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 11/21/2022]
Abstract
Antiquitin (ALDH7) is a member of the aldehyde dehydrogenase superfamily which oxidizes various aldehydes to form the corresponding carboxylic acids. Human antiquitin (ALDH7A1) is believed to play a role in detoxification, osmoregulation and more specifically, in lysine metabolism in which alpha-aminoadipic semialdehyde is identified as the specific, physiological substrate of the enzyme. In the present study, the structural basis for the substrate specificity was studied by site-directed mutagenesis. Kinetic analysis on wild-type human antiquitin and its mutants E121A and R301A demonstrated the importance of Glu121 and Arg301 in the binding as well as the turnover of alpha-aminoadipic semialdehyde. On the functional aspect, in addition to the already diversified physiological functions of antiquitin, the recent demonstration of its presence in the nucleus suggests that it may also play a role in cell growth and cell cycle progression. In this investigation, the expression level of antiquitin was monitored in synchronized WRL68 and HEK293 cell culture systems. It was found that the protein was up-regulated during G(1)-S phase transition. Immunofluorescence staining of the synchronized cells demonstrated an increased expression and accumulation of antiquitin in the nucleus during the G(1)-S phase transition. Knockdown of antiquitin using shRNA transfection also resulted in changes in the levels of several key cell cycle-regulating proteins.
Collapse
|
26
|
Scharer G, Brocker C, Vasiliou V, Creadon-Swindell G, Gallagher RC, Spector E, Van Hove JLK. The genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy due to mutations in ALDH7A1. J Inherit Metab Dis 2010; 33:571-81. [PMID: 20814824 PMCID: PMC3112356 DOI: 10.1007/s10545-010-9187-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Pyridoxine-dependent epilepsy is a disorder associated with severe seizures that may be caused by deficient activity of α-aminoadipic semialdehyde dehydrogenase, encoded by the ALDH7A1 gene, with accumulation of α-aminoadipic semialdehyde and piperideine-6-carboxylic acid. The latter reacts with pyridoxal-phosphate, explaining the effective treatment with pyridoxine. We report the clinical phenotype of three patients, their mutations and those of 12 additional patients identified in our clinical molecular laboratory. There were six missense, one nonsense, and five splice-site mutations, and two small deletions. Mutations c.1217_1218delAT, I431F, IVS-1(+2)T > G, IVS-2(+1)G > A, and IVS-12(+1)G > A are novel. Some disease alleles were recurring: E399Q (eight times), G477R (six times), R82X (two times), and c.1217_1218delAT (two times). A systematic review of mutations from the literature indicates that missense mutations cluster around exons 14, 15, and 16. Nine mutations represent 61% of alleles. Molecular modeling of missense mutations allows classification into three groups: those that affect NAD+ binding or catalysis, those that affect the substrate binding site, and those that affect multimerization. There are three clinical phenotypes: patients with complete seizure control with pyridoxine and normal developmental outcome (group 1) including our first patient; patients with complete seizure control with pyridoxine but with developmental delay (group 2), including our other two patients; and patients with persistent seizures despite pyridoxine treatment and with developmental delay (group 3). There is preliminary evidence for a genotype-phenotype correlation with patients from group 1 having mutations with residual activity. There is evidence from patients with similar genotypes for nongenetic factors contributing to the phenotypic spectrum.
Collapse
Affiliation(s)
- Gunter Scharer
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Chad Brocker
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Geralyn Creadon-Swindell
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Renata C. Gallagher
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Elaine Spector
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Johan L. K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA. Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver, Education 2 South, L28-412213121 East 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Bok LA, Maurits NM, Willemsen MA, Jakobs C, Teune LK, Poll-The BT, De Coo IF, Toet MC, Hagebeuk EE, Brouwer OF, Van Der Hoeven JH, Sival DA. The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy. Epilepsia 2010; 51:2406-11. [DOI: 10.1111/j.1528-1167.2010.02747.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S, Varadkar S, Hemingway C, Marlow N, Rennie J, Baxter P, Dulac O, Nabbout R, Craigen WJ, Schmitt B, Feillet F, Christensen E, De Lonlay P, Pike MG, Hughes MI, Struys EA, Jakobs C, Zuberi SM, Clayton PT. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). ACTA ACUST UNITED AC 2010; 133:2148-59. [PMID: 20554659 PMCID: PMC2892945 DOI: 10.1093/brain/awq143] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of l-α-aminoadipic semialdehyde/l-Δ1-piperideine 6-carboxylate. However, whilst this is a highly treatable disorder, there is general uncertainty about when to consider this diagnosis and how to test for it. This study aimed to evaluate the use of measurement of urine l-α-aminoadipic semialdehyde/creatinine ratio and mutation analysis of ALDH7A1 (antiquitin) in investigation of patients with suspected or clinically proven pyridoxine-dependent epilepsy and to characterize further the phenotypic spectrum of antiquitin deficiency. Urinary l-α-aminoadipic semialdehyde concentration was determined by liquid chromatography tandem mass spectrometry. When this was above the normal range, DNA sequencing of the ALDH7A1 gene was performed. Clinicians were asked to complete questionnaires on clinical, biochemical, magnetic resonance imaging and electroencephalography features of patients. The clinical spectrum of antiquitin deficiency extended from ventriculomegaly detected on foetal ultrasound, through abnormal foetal movements and a multisystem neonatal disorder, to the onset of seizures and autistic features after the first year of life. Our relatively large series suggested that clinical diagnosis of pyridoxine dependent epilepsy can be challenging because: (i) there may be some response to antiepileptic drugs; (ii) in infants with multisystem pathology, the response to pyridoxine may not be instant and obvious; and (iii) structural brain abnormalities may co-exist and be considered sufficient cause of epilepsy, whereas the fits may be a consequence of antiquitin deficiency and are then responsive to pyridoxine. These findings support the use of biochemical and DNA tests for antiquitin deficiency and a clinical trial of pyridoxine in infants and children with epilepsy across a broad range of clinical scenarios.
Collapse
Affiliation(s)
- Philippa B Mills
- Institute of Child Health, University College London with Great Ormond Street Hospital for Children, National Health Service Trust, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wong JWY, Chan CL, Tang WK, Cheng CHK, Fong WP. Is antiquitin a mitochondrial Enzyme? J Cell Biochem 2010; 109:74-81. [PMID: 19885858 DOI: 10.1002/jcb.22381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antiquitin is an aldehyde dehydrogenase involved in the catabolism of lysine. Mutations of antiquitin have been linked with the disease pyridoxine-dependent seizures. While it is well established that lysine metabolism takes place in the mitochondrial matrix, evidence for the mitochondrial localization of antiquitin has been lacking. In the present study, the subcellular localization of antiquitin was investigated using human embryonic kidney HEK293 cells. Three different approaches were used. First, confocal microscopic analysis was carried out on cells transiently transfected with fusion constructs containing enhanced green fluorescent protein with different lengths of antiquitin based on the different potential start codons of translation. Second, immunofluorescence staining was used to detect the localization of antiquitin directly in the cells. Third, subcellular fractionation was carried out and the individual fraction was analyzed for the presence of antiquitin by Western blot and flow cytometric analyses. All the results showed that antiquitin was present not only in the cytosol but also in the mitochondria.
Collapse
Affiliation(s)
- Judy Wei-Yan Wong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
30
|
Stagos D, Chen Y, Cantore M, Jester JV, Vasiliou V. Corneal aldehyde dehydrogenases: multiple functions and novel nuclear localization. Brain Res Bull 2009; 81:211-8. [PMID: 19720116 DOI: 10.1016/j.brainresbull.2009.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a superfamily of NAD(P)(+)-dependent enzymes which catalyze the oxidation of a wide variety of endogenous and exogenous aldehydes to their corresponding acids. Some ALDHs have been identified as corneal crystallins and thereby contribute to the protective and refractive properties of the cornea. ALDH3A1 is highly expressed in the cornea of most mammals with the exception of rabbit that abundantly expresses ALDH1A1 in the cornea instead of ALDH3A1. In this study, we examined the gene expression of other ALDHs and found high messenger levels of ALDH1B1, ALDH2 and ALDH7A1 in mouse cornea and lens. Substantial evidence supports a protective role for ALDH3A1 and ALDH1A1 against ultraviolet radiation (UVR)-induced oxidative damage to ocular tissues. The mechanism by which this protection occurs includes UVR filtering, detoxification of reactive aldehydes generated by UVR exposure and antioxidant activity. We recently have identified ALDH3A1 as a nuclear protein in corneal epithelium. Herein, we show that ALDH3A1 is also found in the nucleus of rabbit keratocytes. The nuclear presence of ALDH3A1 may be involved in cell cycle regulation.
Collapse
Affiliation(s)
- Dimitrios Stagos
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Infantile spasms are an epilepsy syndrome with distinctive features, including age onset during infancy, characteristic epileptic spasms, and specific electroencephalographic patterns (interictal hypsarrhythmia and ictal voltage suppression). Adrenocorticotropic hormone (ACTH) was first employed to treat infantile spasms in 1958, and since then it has been tried in prospective and retrospective studies for infantile spasms. Oral corticosteroids were also used in a few studies for infantile spasms. Variable success in cessation of infantile spasms and normalization of electroencephalograms was demonstrated. However, frequent significant adverse effects are associated with ACTH and oral corticosteroids. Vigabatrin has been used since the 1990s, and shown to be successful in resolution of infantile spasms, especially for infantile spasms associated with tuberous sclerosis. It is associated with visual field constriction, which is often asymptomatic and requires perimetric visual field study to identify. When ACTH, oral corticosteroids, and vigabatrin fail to induce cessation of infantile spasms, other alternative treatments include valproic acid, nitrazepam, pyridoxine, topiramate, zonisamide, lamotrigine, levetiracetam, felbamate, ganaxolone, liposteroid, thyrotropin-releasing hormone, intravenous immunoglobulin and a ketogenic diet. Rarely, infantile spasms in association with biotinidase deficiency, phenylketonuria, and pyridoxine-dependent seizures are successfully treated with biotin, a low phenylalanine diet, and pyridoxine, respectively. For medically intractable infantile spasms, some properly selected patients may have complete cessation of infantile spasms with appropriate surgical treatments.
Collapse
Affiliation(s)
- Chang-Yong Tsao
- Clinical Pediatrics and Neurology, The Ohio State University, College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|