1
|
Decker ST, Funai K. Mitochondrial membrane lipids in the regulation of bioenergetic flux. Cell Metab 2024; 36:1963-1978. [PMID: 39178855 PMCID: PMC11374467 DOI: 10.1016/j.cmet.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Oxidative phosphorylation (OXPHOS) occurs through and across the inner mitochondrial membrane (IMM). Mitochondrial membranes contain a distinct lipid composition, aided by lipid biosynthetic machinery localized in the IMM and class-specific lipid transporters that limit lipid traffic in and out of mitochondria. This unique lipid composition appears to be essential for functions of mitochondria, particularly OXPHOS, by its effects on direct lipid-to-protein interactions, membrane properties, and cristae ultrastructure. This review highlights the biological significance of mitochondrial lipids, with a particular spotlight on the role of lipids in mitochondrial bioenergetics. We describe pathways for the biosynthesis of mitochondrial lipids and provide evidence for their roles in physiology, their implications in human disease, and the mechanisms by which they regulate mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Stephen Thomas Decker
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Cuccurullo C, Striano P, Coppola A. Familial Adult Myoclonus Epilepsy: A Non-Coding Repeat Expansion Disorder of Cerebellar-Thalamic-Cortical Loop. Cells 2023; 12:1617. [PMID: 37371086 DOI: 10.3390/cells12121617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Familial adult myoclonus Epilepsy (FAME) is a non-coding repeat expansion disorder that has been reported under different acronyms and initially linked to four main loci: FAME1 (8q23.3-q24.1), FAME 2 (2p11.1-q12.1), FAME3 (5p15.31-p15.1), and FAME4 (3q26.32-3q28). To date, it is known that the genetic mechanism underlying FAME consists of the expansion of similar non-coding pentanucleotide repeats, TTTCA and TTTTA, in different genes. FAME is characterized by cortical tremor and myoclonus usually manifesting within the second decade of life, and infrequent seizures by the third or fourth decade. Cortical tremor is the core feature of FAME and is considered part of a spectrum of cortical myoclonus. Neurophysiological investigations as jerk-locked back averaging (JLBA) and corticomuscular coherence analysis, giant somatosensory evoked potentials (SEPs), and the presence of long-latency reflex I (or C reflex) at rest support cortical tremor as the result of the sensorimotor cortex hyperexcitability. Furthermore, the application of transcranial magnetic stimulation (TMS) protocols in FAME patients has recently shown that inhibitory circuits are also altered within the primary somatosensory cortex and the concomitant involvement of subcortical networks. Moreover, neuroimaging studies and postmortem autoptic studies indicate cerebellar alterations and abnormal functional connectivity between the cerebellum and cerebrum in FAME. Accordingly, the pathophysiological mechanism underlying FAME has been hypothesized to reside in decreased sensorimotor cortical inhibition through dysfunction of the cerebellar-thalamic-cortical loop, secondary to primary cerebellar pathology. In this context, the non-coding pentameric expansions have been proposed to cause cerebellar damage through an RNA-mediated toxicity mechanism. The elucidation of the underlying pathological mechanisms of FAME paves the way to novel therapeutic possibilities, such as RNA-targeting treatments, possibly applicable to other neurodegenerative non-coding disorders.
Collapse
Affiliation(s)
- Claudia Cuccurullo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16126 Genova, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
3
|
Wang G, Song Y, Su J, Fan Z, Xu L, Fang P, Liu C, Long H, Hu C, Zhou L, Huang S, Zhou P, Wang K, Pang N, Shen H, Li S, Hu D, Xiao B, Zeng LL, Long L. Altered cerebellar-motor loop in benign adult familial myoclonic epilepsy type 1: The structural basis of cortical tremor. Epilepsia 2022; 63:3192-3203. [PMID: 36196770 DOI: 10.1111/epi.17430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cortical tremor/myoclonus is the hallmark feature of benign adult familial myoclonic epilepsy (BAFME), the mechanism of which remains elusive. A hypothesis is that a defective control in the preexisting cerebellar-motor loop drives cortical tremor. Meanwhile, the basal ganglia system might also participate in BAFME. This study aimed to discover the structural basis of cortical tremor/myoclonus in BAFME. METHODS Nineteen patients with BAFME type 1 (BAFME1) and 30 matched healthy controls underwent T1-weighted and diffusion tensor imaging scans. FreeSurfer and spatially unbiased infratentorial template (SUIT) toolboxes were utilized to assess the motor cortex and the cerebellum. Probabilistic tractography was generated for two fibers to test the hypothesis: the dentato-thalamo-(M1) (primary motor cortex) and globus pallidus internus (GPi)-thalamic projections. Average fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) of each tract were extracted. RESULTS Cerebellar atrophy and dentate nucleus alteration were observed in the patients. In addition, patients with BAFME1 exhibited reduced AD and FA in the left and right dentato-thalamo-M1 nondecussating fibers, respectively false discovery rate (FDR) correction q < .05. Cerebellar projections showed negative correlations with somatosensory-evoked potential P25-N33 amplitude and were independent of disease duration and medication. BAFME1 patients also had increased FA and decreased MD in the left GPi-thalamic projection. Higher FA and lower RD in the right GPi-thalamic projection were also observed (FDR q < .05). SIGNIFICANCE The present findings support the hypothesis that the cerebello-thalamo-M1 loop might be the structural basis of cortical tremor in BAFME1. The basal ganglia system also participates in BAFME1 and probably serves a regulatory role.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Yanmin Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Zhipeng Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Fang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.,Department of Military Medical Psychology, Air Force Medical University, Xian, China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People's Hospital, Changsha, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Sha Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Pinting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Nan Pang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatric, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Shuyu Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
4
|
Wang G, Wu W, Xu Y, Yang Z, Xiao B, Long L. Imaging Genetics in Epilepsy: Current Knowledge and New Perspectives. Front Mol Neurosci 2022; 15:891621. [PMID: 35706428 PMCID: PMC9189397 DOI: 10.3389/fnmol.2022.891621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a neurological network disease with genetics playing a much greater role than was previously appreciated. Unfortunately, the relationship between genetic basis and imaging phenotype is by no means simple. Imaging genetics integrates multidimensional datasets within a unified framework, providing a unique opportunity to pursue a global vision for epilepsy. This review delineates the current knowledge of underlying genetic mechanisms for brain networks in different epilepsy syndromes, particularly from a neural developmental perspective. Further, endophenotypes and their potential value are discussed. Finally, we highlight current challenges and provide perspectives for the future development of imaging genetics in epilepsy.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yuchen Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuanyi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- *Correspondence: Lili Long
| |
Collapse
|
5
|
Loureiro JR, Castro AF, Figueiredo AS, Silveira I. Molecular Mechanisms in Pentanucleotide Repeat Diseases. Cells 2022; 11:cells11020205. [PMID: 35053321 PMCID: PMC8773600 DOI: 10.3390/cells11020205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.
Collapse
Affiliation(s)
- Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana S. Figueiredo
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-2240-8800
| |
Collapse
|
6
|
Dubbioso R, Striano P, Tomasevic L, Bilo L, Esposito M, Manganelli F, Coppola A. OUP accepted manuscript. Brain Commun 2022; 4:fcac037. [PMID: 35233526 PMCID: PMC8882005 DOI: 10.1093/braincomms/fcac037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/26/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Familial adult myoclonic epilepsy type 2 is a hereditary condition characterized by cortical tremor, myoclonus and epilepsy. It belongs to the spectrum of cortical myoclonus and the sensorimotor cortex hyperexcitability represents an important pathogenic mechanism underlying this condition. Besides pericentral cortical structures, the impairment of subcortical networks seems also to play a pathogenetic role, mainly via the thalamo-cortical pathway. However, the mechanisms underlying cortical–subcortical circuits dysfunction, as well as their impact on clinical manifestations, are still unknown. Therefore, the main aims of our study were to systematically study with an extensive electrophysiological battery, the cortical sensorimotor, as well as thalamo-cortical networks in genetically confirmed familial adult myoclonic epilepsy patients and to establish reliable neurophysiological biomarkers for the diagnosis. In 26 familial myoclonic epilepsy subjects, harbouring the intronic ATTTC repeat expansion in the StAR-related lipid transfer domain-containing 7 gene, 17 juvenile myoclonic epilepsy patients and 22 healthy controls, we evaluated the facilitatory and inhibitory circuits within the primary motor cortex using single and paired-pulse transcranial magnetic stimulation paradigms. We also probed the excitability of the somatosensory, as well as the thalamo-somatosensory cortex connection by using ad hoc somatosensory evoked potential protocols. The sensitivity and specificity of transcranial magnetic stimulation and somatosensory evoked potential metrics were derived from receiver operating curve analysis. Familial adult myoclonic epilepsy patients displayed increased facilitation and decreased inhibition within the sensorimotor cortex compared with juvenile myoclonic epilepsy patients (all P < 0.05) and healthy controls (all P < 0.05). Somatosensory evoked potential protocols also displayed a significant reduction of early high-frequency oscillations and less inhibition at paired-pulse protocol, suggesting a concomitant failure of thalamo-somatosensory cortex circuits. Disease onset and duration and myoclonus severity did not correlate either with sensorimotor hyperexcitability or thalamo-cortical measures (all P > 0.05). Patients with a longer disease duration had more severe myoclonus (r = 0.467, P = 0.02) associated with a lower frequency (r = −0.607, P = 0.001) and higher power of tremor (r = 0.479, P = 0.02). Finally, familial adult myoclonic epilepsy was reliably diagnosed using transcranial magnetic stimulation, demonstrating its superiority as a diagnostic factor compared to somatosensory evoked potential measures. In conclusion, deficits of sensorimotor cortical and thalamo-cortical circuits are involved in the pathophysiology of familial adult myoclonic epilepsy even if these alterations are not associated with clinical severity. Transcranial magnetic stimulation-based measurements display an overall higher accuracy than somatosensory evoked potential parameters to reliably distinguish familial adult myoclonic epilepsy from juvenile myoclonic epilepsy and healthy controls.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
- Correspondence may also be addressed to: Dubbioso Raffaele MD PhD Department of Neurosciences Reproductive Sciences and Odontostomatology University Federico II of Napoli Via Sergio Pansini, 5. 80131 Napoli, Italy E-mail:
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Correspondence to: Striano Pasquale, MD, PhD Department of Neurosciences Rehabilitation, Ophthalmology, Genetics Maternal and Child Health (DiNOGMI) University of Genoa, Via Gaslini 5 padiglione 16, I piano, 16148 Genova, Italy E-mail: ;
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University, Kobenhavn, Denmark
| | - Leonilda Bilo
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | | | - Fiore Manganelli
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| |
Collapse
|
7
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Peters L, Depienne C, Klebe S. Familial adult myoclonic epilepsy (FAME): clinical features, molecular characteristics, pathophysiological aspects and diagnostic work-up. MED GENET-BERLIN 2021; 33:311-318. [PMID: 38835431 PMCID: PMC11006339 DOI: 10.1515/medgen-2021-2100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/16/2021] [Indexed: 06/06/2024]
Abstract
Familial adult myoclonic epilepsy (FAME) is a rare autosomal dominant disorder characterized by myoclonus and seizures. The genetic variant underlying FAME is an intronic repeat expansion composed of two different pentamers: an expanded TTTTA, which is the motif originally present at the locus, and an insertion of TTTCA repeats, which is usually located at the 3' end and likely corresponds to the pathogenic part of the expansion. This repeat expansion has been identified so far in six genes located on different chromosomes, which remarkably encode proteins with distinct cellular localizations and functions. Although the exact pathophysiological mechanisms remain to be clarified, it is likely that FAME repeat expansions lead to disease independently of the gene where they occur. We herein review the clinical and molecular characteristics of this singular genetic disorder, which interestingly shares clinical features with other more common neurological disorders whose etiology remains mainly unsolved.
Collapse
Affiliation(s)
- Lorenz Peters
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| |
Collapse
|
9
|
Tojima M, Hitomi T, Matsuhashi M, Neshige S, Usami K, Oi K, Kobayashi K, Takeyama H, Shimotake A, Takahashi R, Ikeda A. A Biomarker for Benign Adult Familial Myoclonus Epilepsy: High-Frequency Activities in Giant Somatosensory Evoked Potentials. Mov Disord 2021; 36:2335-2345. [PMID: 34050549 DOI: 10.1002/mds.28666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Benign adult familial myoclonus epilepsy (BAFME) is one of the diseases that cause cortical myoclonus (CM) with giant somatosensory evoked potentials (SEPs). There are no useful diagnostic biomarkers differentiating BAFME from other CM diseases. OBJECTIVE To establish reliable biomarkers including high-frequency oscillations (HFOs) with giant SEPs for the diagnosis of BAFME. METHODS This retrospective case study included 49 consecutive CM patients (16 BAFME and 33 other CM patients) who exhibited giant P25 or N35 SEPs. SEPs were processed by a band-pass filter of 400-1000 Hz to analyze HFOs. Clinical and SEP findings were compared between (1) BAFME and other CM groups and (2) patients with presence and absence of P25-HFOs (HFOs superimposed on giant P25). The diagnostic power of each factor for BAFME was calculated. RESULTS All 16 BAFME patients showed SEP P25-HFOs with significantly higher occurrence (P < 0.0001) compared with that of other CM groups. The presence of P25-HFOs significantly correlated with a BAFME diagnosis (P < 0.0001) and high SEP P25 and N35 amplitudes (P = 0.01 and P < 0.0001, respectively). BAFME was reliably diagnosed using P25-HFOs with high sensitivity (100%), specificity (87.9%), positive predictive value (80%), and negative predictive value (100%), demonstrating its superiority as a diagnostic factor compared to other factors. CONCLUSIONS P25-HFOs with giant SEPs is a potential biomarker for BAFME diagnosis. P25-HFOs may reflect cortical hyperexcitability partly due to paroxysmal depolarizing shifts in epileptic neuronal activities and higher degrees of rhythmic tremulousness than those in ordinary CM. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maya Tojima
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichiro Neshige
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuki Oi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirofumi Takeyama
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Latorre A, Rocchi L, Magrinelli F, Mulroy E, Berardelli A, Rothwell JC, Bhatia KP. Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain 2021; 143:2653-2663. [PMID: 32417917 DOI: 10.1093/brain/awaa129] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cortical tremor is a fine rhythmic oscillation involving distal upper limbs, linked to increased sensorimotor cortex excitability, as seen in cortical myoclonus. Cortical tremor is the hallmark feature of autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE), a syndrome not yet officially recognized and characterized by clinical and genetic heterogeneity. Non-coding repeat expansions in different genes have been recently recognized to play an essential role in its pathogenesis. Cortical tremor is considered a rhythmic variant of cortical myoclonus and is part of the 'spectrum of cortical myoclonus', i.e. a wide range of clinical motor phenomena, from reflex myoclonus to myoclonic epilepsy, caused by abnormal sensorimotor cortical discharges. The aim of this update is to provide a detailed analysis of the mechanisms defining cortical tremor, as seen in FCMTE. After reviewing the clinical and genetic features of FCMTE, we discuss the possible mechanisms generating the distinct elements of the cortical myoclonus spectrum, and how cortical tremor fits into it. We propose that the spectrum is due to the evolution from a spatially limited focus of excitability to recruitment of more complex mechanisms capable of sustaining repetitive activity, overcoming inhibitory mechanisms that restrict excitatory bursts, and engaging wide areas of cortex. Finally, we provide evidence for a possible common denominator of the elements of the spectrum, i.e. the cerebellum, and discuss its role in FCMTE, according to recent genetic findings.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
11
|
Striano P, Coppola A, Dubbioso R, Minetti C. Cortical tremor: a tantalizing conundrum between cortex and cerebellum. Brain 2021; 143:e87. [PMID: 33011757 DOI: 10.1093/brain/awaa260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Antonietta Coppola
- Epilepsy Center, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Carlo Minetti
- Paediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| |
Collapse
|
12
|
Mahadevan R, Bhoyar RC, Viswanathan N, Rajagopal RE, Essaki B, Suroliya V, Chelladurai R, Sankaralingam S, Shanmugam G, Vayanakkan S, Shamim U, Mathur A, Jain A, Imran M, Faruq M, Scaria V, Sivasubbu S, Kalyanaraman S. Genomic analysis of patients in a South Indian Community with autosomal dominant cortical tremor, myoclonus and epilepsy suggests a founder repeat expansion mutation in the SAMD12 gene. Brain Commun 2021; 3:fcaa214. [PMID: 33501421 PMCID: PMC7811760 DOI: 10.1093/braincomms/fcaa214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
Autosomal Dominant Cortical Tremor, Myoclonus and Epilepsy is a non-progressive disorder characterized by distal tremors. Autosomal Dominant Cortical Tremor, Myoclonus and Epilepsy has been reported globally with different genetic predispositions of autosomal dominant inheritance with a high degree of penetrance. In south India, Autosomal Dominant Cortical Tremor, Myoclonus and Epilepsy has been reported in a large cohort of 48 families, in which the genetic defect was not identified. This report pertains to the whole-genome analysis of four individuals followed by repeat-primed PCR for 102 patients from a familial cohort of 325 individuals. All the patients underwent extensive clinical evaluation including neuropsychological examinations. The whole-genome sequencing was done for two affected and two unaffected individuals, belonging to two different families. The whole-genome sequencing analysis revealed the repeat expansion of TTTTA and TTTCA in intron 4 of the SAMD12 gene located on chromosome 8 in the patients affected with Autosomal Dominant Cortical Tremor, Myoclonus and Epilepsy, whereas the unaffected family members were negative for the similar expansion. Further, the repeat-primed PCR analysis of 102 patients showed the expansion of the TTTCA repeats in the intron 4 of SAMD12 gene. All patients registered for this study belong to a single community called “Nadar” whose nativity is confined to the southern districts of India, with reported unique genetic characteristics. This is the largest and most comprehensive single report on clinically and genetically characterized Autosomal Dominant Cortical Tremor, Myoclonus and Epilepsy patients belonging to a unique ethnic group worldwide.
Collapse
Affiliation(s)
- Radha Mahadevan
- Department of Neurology, Tirunelveli Medical College, Tirunelveli 627011, Tamil Nadu, India
| | - Rahul C Bhoyar
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | | | - Raskin Erusan Rajagopal
- Multidisciplinary Research Unit, Tirunelveli Medical College, Tirunelveli 627011, Tamil Nadu, India
| | - Bobby Essaki
- Department of Neurology, Tirunelveli Medical College, Tirunelveli 627011, Tamil Nadu, India
| | - Varun Suroliya
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | - Rachel Chelladurai
- Department of Neurology, Tirunelveli Medical College, Tirunelveli 627011, Tamil Nadu, India
| | | | | | | | - Uzma Shamim
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | - Aradhana Mathur
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | - Abhinav Jain
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | - Mohamed Imran
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | - Vinod Scaria
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110025, India
| | - Shantaraman Kalyanaraman
- Multidisciplinary Research Unit, Tirunelveli Medical College, Tirunelveli 627011, Tamil Nadu, India
| |
Collapse
|
13
|
Swinkin E, Lizárraga KJ, Algarni M, Garcia Dominguez L, Baarbé JK, Saravanamuttu J, Chen R, Slow E, Lang AE, Wennberg RA. A Distinct EEG Marker of Celiac Disease-Related Cortical Myoclonus. Mov Disord 2020; 36:999-1005. [PMID: 33251639 DOI: 10.1002/mds.28407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Celiac disease is associated with motor cortex hyperexcitability and neurological manifestations including cortical myoclonus. Electroencephalography abnormalities have been described, but no distinct pattern has been reported. METHODS We describe the neurophysiological characteristics of 3 patients with celiac-associated cortical myoclonus using electroencephalography, magnetoencephalography, and transcranial magnetic stimulation. RESULTS Electroencephalography in all cases demonstrated lateralized low-amplitude, electropositive beta-frequency polyspike activity over the central head region, corresponding to motor cortex contralateral to the myoclonic limb. Jerk-locked back-averaging demonstrated a preceding cortical potential; magnetoencephalography source localization revealed a cortical generator in the posterior wall of the precentral gyrus for the back-averaged potential and oscillatory abnormality. In 1 patient, cerebellar inhibition of the motor cortex was physiologically normal. CONCLUSIONS Central head oscillatory, low-amplitude, electropositive electroencephalography polyspike activity may be a distinct marker of celiac-related cortical myoclonus and is consistent with celiac-related motor cortex hyperexcitability, which may not necessarily result from cerebellar disinhibition. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emily Swinkin
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Karlo J Lizárraga
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Motor Physiology and Neuromodulation Program, Division of Movement Disorders and Center for Health and Technology (CHeT), Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Musleh Algarni
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Luis Garcia Dominguez
- Mitchell Goldhar MEG Unit, Clinical Neurophysiology Laboratory, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Julianne K Baarbé
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada
| | - James Saravanamuttu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Elizabeth Slow
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Richard A Wennberg
- Mitchell Goldhar MEG Unit, Clinical Neurophysiology Laboratory, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Familial cortical myoclonic tremor with epilepsy: TTTCA/TTTTA repeat expansions and expanding phenotype in two Chinese families. Brain Res 2020; 1737:146796. [PMID: 32194077 DOI: 10.1016/j.brainres.2020.146796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023]
Abstract
Recently, expanded intronic TTTCA and TTTTA repeat in SAMD12 were identified in families with familial cortical myoclonic tremor with epilepsy (FCMTE). We conducted to this study to clarify the genetic etiology and to describe the clinical, neurophysiologic, and imaging features in two unrelated Chinese families with FCMTE. In this study, we performed the RP-PCR and long-range PCR analysis to examine and verifyTTTCA and TTTTA expansions in five affected members whose severities of cortical tremor, neuropsychology and MRI were also evaluated. Reliable clinical information was collected from another two affected members. Our results revealed that expansions of intronic TTTCA and TTTTA repeats in SAMD12 were both identified in all five affected subjects. All seven affected living patients had cortical tremor with a median age at onset of 16.4 years (range, 10-22 years). Convulsions occurred in 5 of 7 with a median age at onset of 32.4 years (range, 10-42 years). Among five patients evaluated for cortical tremor severity and psychiatric comorbidity, two patients had severe cortical tremor, anxiety and depression. Abnormal brain MRI findings including the possible existence of demyelination, severe atrophy of the cerebral hemisphere and abnormal bilateral symmetrical signals in the globus pallidus were observed in three patients, respectively. These results further expanded the known genotype in two Chinese families affected with FCMTE. Border clinical spectrum needs to be confirmed in future studies from additional FCMTE families genetically diagnosed.
Collapse
|
15
|
Liu C, Song Y, Yuan Y, Peng Y, Pang N, Duan R, Huang W, Qin X, Xiao W, Long H, Huang S, Zhou P, Long L, Xiao B. TTTCA Repeat Expansion of SAMD12 in a New Benign Adult Familial Myoclonic Epilepsy Pedigree. Front Neurol 2020; 11:68. [PMID: 32174879 PMCID: PMC7055650 DOI: 10.3389/fneur.2020.00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/20/2020] [Indexed: 11/23/2022] Open
Abstract
Benign adult familial myoclonic epilepsy (BAFME) is an autosomal dominant disorder characterized by adult-onset cortical myoclonus with or without seizures. Recently, it was reported to be associated with intronic TTTTA/TTTCA expansions. To investigate whether these abnormal expansions are involved in our new pedigree from China, whole exome sequencing (WES) and repeat-primed polymerase chain reaction (RP-PCR) analysis were performed to detect potential mutation in pedigree members. Neither causal mutations cosegregated with the disease in the family nor any novel mutation was identified through WES, while an abnormal TTTCA expansion in SAMD12 was identified by RP-PCR and then proved to be cosegregated in the pedigree. All the 12 alive affected individuals (M/F = 4/8; average age = 46.7 years old, range from 27 to 66) showed typical characteristics of BAFME. In addition, maternal clinical anticipation was observed in six mother/child pairs. In conclusion, our study offered the evidence of intronic pentanucleotide expansions in SAMD12 from a new Chinese BAFME pedigree, which further confirmed the association between this expansion and the pathogenesis of BAFME.
Collapse
Affiliation(s)
- Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanmin Song
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Yuan
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Peng
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Nan Pang
- Department of Pediatric, Xiangya Hospital, Central South University, Changsha, China
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Wen Huang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xuehui Qin
- Department of Neurology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sha Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Pinting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Corbett MA, Kroes T, Veneziano L, Bennett MF, Florian R, Schneider AL, Coppola A, Licchetta L, Franceschetti S, Suppa A, Wenger A, Mei D, Pendziwiat M, Kaya S, Delledonne M, Straussberg R, Xumerle L, Regan B, Crompton D, van Rootselaar AF, Correll A, Catford R, Bisulli F, Chakraborty S, Baldassari S, Tinuper P, Barton K, Carswell S, Smith M, Berardelli A, Carroll R, Gardner A, Friend KL, Blatt I, Iacomino M, Di Bonaventura C, Striano S, Buratti J, Keren B, Nava C, Forlani S, Rudolf G, Hirsch E, Leguern E, Labauge P, Balestrini S, Sander JW, Afawi Z, Helbig I, Ishiura H, Tsuji S, Sisodiya SM, Casari G, Sadleir LG, van Coller R, Tijssen MAJ, Klein KM, van den Maagdenberg AMJM, Zara F, Guerrini R, Berkovic SF, Pippucci T, Canafoglia L, Bahlo M, Striano P, Scheffer IE, Brancati F, Depienne C, Gecz J. Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat Commun 2019; 10:4920. [PMID: 31664034 PMCID: PMC6820779 DOI: 10.1038/s41467-019-12671-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved.
Collapse
Affiliation(s)
- Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Thessa Kroes
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Liana Veneziano
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Mark F Bennett
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Melbourne, 3010, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, 3084, VIC, Australia
| | - Rahel Florian
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, 3084, VIC, Australia
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvana Franceschetti
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Member of the European Reference Network on Rare and Complex epilepsies, ERN EpiCARE, London, UK
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | | | - Davide Mei
- Neuroscience and Neurogenetics Department, Meyer Children's Hospital, Florence, Italy
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Sabine Kaya
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Rachel Straussberg
- Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Tel Aviv University Medical School, 69978, Tel Aviv, Israel
| | - Luciano Xumerle
- Personal Genomics, Strada le Grazie 15, 37134, Verona, Italy
| | - Brigid Regan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, 3084, VIC, Australia
| | - Douglas Crompton
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, 3084, VIC, Australia
- Department of Neurology, Northern Health, Melbourne, VIC, Australia
| | - Anne-Fleur van Rootselaar
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anthony Correll
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Rachael Catford
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Sara Baldassari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Kirston Barton
- Kinghorn Centre for Clinical Genomics, Garvan Institute for Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Shaun Carswell
- Kinghorn Centre for Clinical Genomics, Garvan Institute for Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Martin Smith
- Kinghorn Centre for Clinical Genomics, Garvan Institute for Medical Research, Darlinghurst, NSW, 2010, Australia
- St-Vincent's Clinical School, Faulty of Medicine, UNSW Sydney, Darlinghurst, NSW, 2010, Australia
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Renee Carroll
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Alison Gardner
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Kathryn L Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Ilan Blatt
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Michele Iacomino
- Laboratory of Neurogenetics, IRCCS Istituto "G. Gaslini", Genova, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | | | - Julien Buratti
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Boris Keren
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Sylvie Forlani
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Gabrielle Rudolf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Department of Neurology, Strasbourg University Hospital, Strasbourg, France
- Centre National de la Recherche Scientifique, U7104, Illkirch, France
| | - Edouard Hirsch
- Department of Neurology, Strasbourg University Hospital, Strasbourg, France
| | - Eric Leguern
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Pierre Labauge
- MS Unit, Montpellier University Hospital, Montpellier, France
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| | - Zaid Afawi
- Tel Aviv University Medical School, 69978, Tel Aviv, Israel
| | - Ingo Helbig
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
- Division of Neurology Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hiroyuki Ishiura
- Department of Neurology, the University of Tokyo Hospital, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, the University of Tokyo Hospital, Tokyo, Japan
- Medical Genome Center, the University of Tokyo Hospital, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| | - Giorgio Casari
- TIGEM - Telethon Institute of Genetics and Medicine, Naples, and San Raffaele University, Milan, Italy
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
| | | | - Marina A J Tijssen
- Department of Neurology, University of Groningen, Groningen, The Netherlands
| | - Karl Martin Klein
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University, Frankfurt am Main, Frankfurt, Germany
- Department of Neurology, Epilepsy Center Hessen, Philipps University, Marburg, Marburg, Germany
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Federico Zara
- Laboratory of Neurogenetics, IRCCS Istituto "G. Gaslini", Genova, Italy
| | - Renzo Guerrini
- Neuroscience and Neurogenetics Department, Meyer Children's Hospital, Florence, Italy
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, 3084, VIC, Australia
| | - Tommaso Pippucci
- Medical Genetics Unit, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Laura Canafoglia
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Member of the European Reference Network on Rare and Complex epilepsies, ERN EpiCARE, London, UK
| | - Melanie Bahlo
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "G. Gaslini", Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, 3084, VIC, Australia
- Royal Children's Hospital, Murdoch Children's Research Institute and Florey Institute, Melbourne, VIC, Australia
| | - Francesco Brancati
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- Medical Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Christel Depienne
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, U7104, Illkirch, France
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, 5005, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, 5000, SA, Australia.
| |
Collapse
|
17
|
Familial adult myoclonic epilepsy: A new expansion repeats disorder. Seizure 2019; 67:73-77. [PMID: 30928698 DOI: 10.1016/j.seizure.2019.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Familial adult myoclonic epilepsy (FAME), also described with different acronyms (ADCME, BAFME, FEME, FCTE and others), is a high-penetrant autosomal dominant condition featuring cortical hand tremors, myoclonic jerks, and occasional/rare convulsive seizures. Prevalence is unknown since this condition is often under-recognized, but it is estimated to be less than 1/35,000. The disease usually starts in the second decade of life and has been genetically associated with at least 4 different loci (8q24, 2p11.1-q12.2, 5p15.31-p15 and 3q26.32-3q28). Recently, the expansion of non coding TTTTA and TTTCA repeats has been identified as the causative mutation in Japanese families linked to the 8q24. The diagnosis is supported by clinical features and electrophysiological investigations as jerk-locked back averaging, C-reflex, and somatosensory-evoked potential. Photic stimulation, emotional stress, and sleep deprivation may trigger both tonic-clonic and myoclonic seizures. FAME has a slow but progressive clinical course occurring with intellectual disability and worsening of both tremor and myoclonus although with a less severe decline compared to other progressive myoclonic epilepsies. Valproate, levetiracetam, and benzodiazepines are considered the first-line treatments.
Collapse
|
18
|
Tan Z, Long X, Tian F, Huang L, Xie F, Li S. Alterations in Brain Metabolites in Patients with Epilepsy with Impaired Consciousness: A Case-Control Study of Interictal Multivoxel 1H-MRS Findings. AJNR Am J Neuroradiol 2019; 40:245-252. [PMID: 30679211 DOI: 10.3174/ajnr.a5944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/01/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies have shown perfusion abnormalities in the thalamus and upper brain stem in patients with epilepsy with impaired consciousness. We hypothesized that these areas associated with consciousness will also show metabolic abnormalities. However, metabolic abnormalities in those areas correlated with consciousness has not been characterized with multiple-voxel 1H-MRS. In this study, we investigated the metabolic alterations in these brain regions and assessed the correlation between seizure features and metabolic alterations. MATERIALS AND METHODS Fifty-seven patients with epilepsy and 24 control subjects underwent routine MR imaging and 3D multiple-voxel 1H-MRS. Patients were divided into 3 subgroups: focal impaired awareness seizures (n = 18), primary generalized tonic-clonic seizures (n = 19), and secondary generalized tonic-clonic seizures (n = 20). The measured metabolite alterations in NAA/Cr, NAA/(Cr + Cho), and Cho/Cr ratios in brain regions associated with the consciousness network were compared between the patient and control groups. ROIs were placed in the bilateral inferior frontal gyrus, supramarginal gyrus, cingulate gyrus, precuneus, thalamus, and upper brain stem. Correlations between clinical parameters (epilepsy duration and seizure frequency) and metabolite alterations were analyzed. RESULTS Significantly lower NAA/Cr and NAA/(Cho + Cr) ratios (P < .05 and < .01, respectively) were observed in the bilateral thalamus and upper brain stem in all experimental groups, and significantly high Cho/Cr ratios (P < .05) were observed in the right thalamus in the focal impaired awareness seizures group. There were no significant differences in metabolite ratios among the 3 patient groups (P > .05). The secondary generalized tonic-clonic seizures group showed a negative correlation between the duration of epilepsy and the NAA/(Cr + Cho) ratio in the bilateral thalamus (P < .05). CONCLUSIONS Metabolic alterations were observed in the brain stem and thalamus in patients with epilepsy with impaired consciousness.
Collapse
Affiliation(s)
- Z Tan
- From the Departments of Neurology (Z.T., X.L., F.T., L.H., S.L.)
| | - X Long
- From the Departments of Neurology (Z.T., X.L., F.T., L.H., S.L.)
| | - F Tian
- From the Departments of Neurology (Z.T., X.L., F.T., L.H., S.L.)
| | - L Huang
- From the Departments of Neurology (Z.T., X.L., F.T., L.H., S.L.)
| | - F Xie
- Radiology (F.X.), Xiangya Hospital, Central South University, Changsha, China
| | - S Li
- From the Departments of Neurology (Z.T., X.L., F.T., L.H., S.L.)
| |
Collapse
|
19
|
Lei XX, Liu Q, Lu Q, Huang Y, Zhou XQ, Sun HY, Wu LW, Cui LY, Zhang X. TTTCA repeat expansion causes familial cortical myoclonic tremor with epilepsy. Eur J Neurol 2018; 26:513-518. [PMID: 30351492 DOI: 10.1111/ene.13848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/12/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate whether abnormal TTTTA and TTTCA repeat expansions in introns of SAMD12, TNRC6A and RAPGEF2 are involved in the pathogenesis of familial cortical myoclonic tremor with epilepsy (FCMTE). METHODS Five families diagnosed with FCMTE were included in the current genetic analysis. Whole-exome sequencing was performed in selected patients of each family. TTTTA and TTTCA expansions were examined by repeat-primed polymerase chain reaction. The clinical features of FCMTE were elicited as defined by the common genetic mechanism of 14 patients. RESULTS Abnormal TTTCA expansion was identified and co-segregated in all five FCMTE families, four inserted in SAMD12 and one in RAPGEF2. The insertion of expanded TTTCA was not found in 116 control alleles. TTTTA expansion in SAMD12 was detected in 90.9% (10/11) of patients or mutation carriers; TTTTA expansion in RAPGEF2 was not found. The onset age of myoclonic tremor was 27.4 ± 5.9 (19-37) and epilepsy usually presented around age 34. Focal and generalized seizures were witnessed with various origins recorded by electroencephalogram. Cognitive deficits were not common within the first 3 years after epilepsy onset. Emotional instability was reported by most patients. No patients showed any cerebellar deficits. Valproate added with clonazepam is effective in controlling seizures but cannot guarantee a complete remission of tremor. Repeat length showed intergenerational instability and was inversely correlated with age at onset of myoclonic tremor and epilepsy. CONCLUSIONS TTTCA expansion insertion is associated with FCMTE in Chinese families. The homogenous genetic mechanism allowed for a higher precision of FCMTE description.
Collapse
Affiliation(s)
- X X Lei
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Q Liu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Q Lu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - Y Huang
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - X Q Zhou
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - H Y Sun
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - L W Wu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - L Y Cui
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - X Zhang
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Kobayashi K, Hitomi T, Matsumoto R, Watanabe M, Takahashi R, Ikeda A. Nationwide survey in Japan endorsed diagnostic criteria of benign adult familial myoclonus epilepsy. Seizure 2018; 61:14-22. [DOI: 10.1016/j.seizure.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022] Open
|
21
|
van den Ende T, Sharifi S, van der Salm SMA, van Rootselaar AF. Familial Cortical Myoclonic Tremor and Epilepsy, an Enigmatic Disorder: From Phenotypes to Pathophysiology and Genetics. A Systematic Review. Tremor Other Hyperkinet Mov (N Y) 2018; 8:503. [PMID: 29416935 PMCID: PMC5801339 DOI: 10.7916/d85155wj] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE) is characterized by distal tremulous myoclonus, generalized seizures, and signs of cortical reflex myoclonus. FCMTE has been described in over 100 pedigrees worldwide, under several different names and acronyms. Pathological changes have been located in the cerebellum. This systematic review discusses the clinical spectrum, treatment, pathophysiology, and genetic findings. Methods We carried out a PubMed search, using a combination of the following search terms: cortical tremor, myoclonus, epilepsy, benign course, adult onset, familial, and autosomal dominant; this resulted in a total of 77 studies (761 patients; 126 pedigrees) fulfilling the inclusion and exclusion criteria. Results Phenotypic differences across pedigrees exist, possibly related to underlying genetic differences. A "benign" phenotype has been described in several Japanese families and pedigrees linked to 8q (FCMTE1). French patients (5p linkage; FCMTE3) exhibit more severe progression, and in Japanese/Chinese pedigrees (with unknown linkage) anticipation has been suggested. Preferred treatment is with valproate (mind teratogenicity), levetiracetam, and/or clonazepam. Several genes have been identified, which differ in potential pathogenicity. Discussion Based on the core features (above), the syndrome can be considered a distinct clinical entity. Clinical features may also include proximal myoclonus and mild progression with aging. Valproate or levetiracetam, with or without clonazepam, reduces symptoms. FCMTE is a heterogeneous disorder, and likely to include a variety of different conditions with mutations of different genes. Distinct phenotypic traits might reflect different genetic mutations. Genes involved in Purkinje cell outgrowth or those encoding for ion channels or neurotransmitters seem good candidate genes.
Collapse
Affiliation(s)
- Tom van den Ende
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| | - Sarvi Sharifi
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| | - Sandra M. A. van der Salm
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Cerebellar Atrophy in Cortical Myoclonic Tremor and Not in Hereditary Essential Tremor-a Voxel-Based Morphometry Study. THE CEREBELLUM 2017; 15:696-704. [PMID: 26519379 PMCID: PMC5097101 DOI: 10.1007/s12311-015-0734-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Essential tremor (ET) presumably has a cerebellar origin. Imaging studies showed various cerebellar and also cortical structural changes. A number of pathology studies indicated cerebellar Purkinje cell pathology. ET is a heterogeneous disorder, possibly indicating different underlying disease mechanisms. Familial cortical myoclonic tremor with epilepsy (FCMTE), with evident Purkinje cell degeneration, can be an ET mimic. Here, we investigate whole brain and, more specifically, cerebellar morphological changes in hereditary ET, FCMTE, and healthy controls. Anatomical magnetic resonance images were preprocessed using voxel-based morphometry. Study 1 included voxel-wise comparisons of 36 familial, propranolol-sensitive ET patients, with subgroup analysis on age at onset and head tremor, and 30 healthy controls. Study 2 included voxel-wise comparisons in another nine ET patients, eight FCMTE patients, and nine healthy controls. Study 3 compared total cerebellar volume between 45 ET patients, 8 FCTME patients, and 39 controls. In our large sample of selected hereditary ET patients and ET subgroups, no local atrophy was observed compared to healthy controls or FCMTE. In ET patients with head tremor, a volume increase in cortical motor regions was observed. In FCMTE, a decrease in total cerebellar volume and in local cerebellar gray matter was observed compared to healthy controls and ET patients. The current study did not find local atrophy, specifically not in the cerebellum in hereditary ET, contrary to FCMTE. Volume increase of cortical motor areas in ET patients with head tremor might suggest cortical plasticity changes due to continuous involuntary head movements.
Collapse
|
23
|
Cerebellar Involvement in Patients with Mild to Moderate Myoclonus Due to EPM1: Structural and Functional MRI Findings in Comparison with Healthy Controls and Ataxic Patients. Brain Topogr 2016; 30:380-389. [PMID: 27785699 DOI: 10.1007/s10548-016-0534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
EPM1 (epilepsy, progressive myoclonic 1; Unverricht-Lundborg disease, OMIM #254800) is the most frequent form of progressive myoclonus epilepsy. Previous findings have suggested that its pathophysiology mainly involves the cerebellum, but the evaluation of cerebellar dysfunction is still unsatisfactory. The aim of this study was to assess the structural and functional involvement of the cerebellum in EPM1. We used voxel-based morphometry and spatially unbiased infra-tentorial template analyses of structural magnetic resonance imaging (MRI) scans, and functional MRI (fMRI) scans during block and event-related go/no-go motor tasks to study 13 EPM1 patients with mild to moderate myoclonus. We compared the results with those obtained in 12 age-matched healthy controls (HCs) and in 12 patients with hereditary spinocerebellar ataxia (SCA). Structural analyses revealed different patterns of atrophic changes in the EPM1 and SCA patients: in the former, they involved both cerebrum and cerebellum but, in the latter, only the cerebellum. During fMRI, block and event-related go/no-go tasks similarly activated the cerebellum and cerebrum in the EPM1 patients and HCs, whereas both tasks revealed much less cerebellar activation in the SCA patients than in the other two groups. Volumetric evaluation of the EPM1 patients showed that the cerebellum seemed to be marginally involved in a widespread atrophic process, and fMRI showed that it was not functionally impaired during motor tasks.
Collapse
|
24
|
Long L, Zeng LL, Song Y, Shen H, Fang P, Zhang L, Xu L, Gong J, Zhang YC, Zhang Y, Zhou P, Huang S, Chen S, Xie Y, Hu D, Xiao B. Altered cerebellar-cerebral functional connectivity in benign adult familial myoclonic epilepsy. Epilepsia 2016; 57:941-8. [PMID: 27037791 DOI: 10.1111/epi.13372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The pathogenesis of benign adult familial myoclonic epilepsy (BAFME) remains unknown, although cerebellar pathologic changes and brain hyperexcitability have been reported. We used resting-state functional magnetic resonance imaging (fMRI) to examine the functional connectivity between the cerebellum and cerebrum in a Chinese family with BAFME for the first time. METHODS Eleven adults with BAFME and 15 matched healthy controls underwent resting-state blood oxygen level-dependent (BOLD) fMRI scanning. The cerebellar seeds, including the bilateral crus I, lobule VIII, lobule VIIb, and lobule IV&V, were defined a priori. Next, regional time courses were obtained for each individual by averaging the BOLD time series over all voxels in each seed region. Then, seed-based functional connectivity z-maps were produced by computing Pearson's correlation coefficients (converted to z-scores by Fisher transformation) between each seed signal and the time series from all other voxels within the entire brain. Finally, a second-level random-effect two-sample t-test was performed on the individual z-maps in a voxel-wise manner. RESULTS Reduced functional connectivity of the right cerebellar crus I with the left middle frontal gyrus and right cerebellar lobule IX was observed in the default network of BAFME. Enhanced functional connectivity of the left cerebellar lobule VIII with the bilateral middle temporal gyri, right putamen, and left cerebellar crus I was found in the dorsal attention network of BAFME. Enhanced functional connectivity between the left cerebellar lobule VIIb and right frontal pole was found in the control network of BAFME. SIGNIFICANCE Altered cerebellar-cerebral functional connectivity may contribute to the understanding of the nosogenesis of BAFME and explain the cognitive dysfunction in this Chinese family with BAFME.
Collapse
Affiliation(s)
- Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Li Zeng
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Yanmin Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Shen
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Peng Fang
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Linlin Zhang
- Department of Neurology, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Lin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Gong
- Department of Neurology, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Yun-Ci Zhang
- Department of Neurology, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Yong Zhang
- Department of Neurology, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Pinting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sha Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dewen Hu
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Coppola A, Caccavale C, Santulli L, Balestrini S, Cagnetti C, Licchetta L, Esposito M, Bisulli F, Tinuper P, Provinciali L, Minetti C, Zara F, Striano P, Striano S. Psychiatric comorbidities in patients from seven families with autosomal dominant cortical tremor, myoclonus, and epilepsy. Epilepsy Behav 2016; 56:38-43. [PMID: 26827300 DOI: 10.1016/j.yebeh.2015.12.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The objective of this report was to assess the psychiatric comorbidity in a group of patients affected by autosomal dominant cortical tremor, myoclonus, and epilepsy (ADCME). METHODS Reliable and validated psychodiagnostic scales including the BDI (Beck Depression Inventory), STAI-Y1 and 2 (State-Trait Anxiety Inventory - Y; 1 and 2), MMPI-2 (Minnesota Multiphasic Personality Inventory - 2), and QoLIE-31 (Quality of Life in Epilepsy Inventory - 31) were administered to 20 patients with ADCME, 20 patients with juvenile myoclonic epilepsy (JME), and 20 healthy controls. RESULTS There was a higher prevalence of mood disorders in patients with ADCME compared to patients with JME and healthy controls, particularly depression (p=0.035 and p=0.017, respectively) and state anxiety (p=0.024 and p=0.019, respectively). Trait anxiety was not different from JME (p=0.102) but higher than healthy controls (p=0.017). The myoclonus score positively correlated with both state (rho: 0.58, p=0.042) and trait anxiety (rho: 0.65, p=0.011). These psychiatric features were also often associated with pathological traits of personality: paranoid (OR: 25.7, p=0.003), psychasthenia (OR: 7.0, p=0.023), schizophrenia (OR: 8.5, p=0.011), and hypomania (OR: 5.5, p=0.022). Finally, in patients with ADCME, decreased quality of life correlated with these psychiatric symptoms. SIGNIFICANCE Patients with ADCME show a significant psychiatric burden that impairs their quality of life. A comprehensive psychiatric evaluation should be offered at the time of diagnosis to detect these comorbidities and to treat them.
Collapse
Affiliation(s)
- Antonietta Coppola
- Epilepsy Centre, Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy; Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy.
| | - Carmela Caccavale
- Epilepsy Centre, Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | - Lia Santulli
- Epilepsy Centre, Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK; Epilepsy Society, Chesham Lane, Chalfont St. Peter, Bucks, UK; Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Claudia Cagnetti
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Laura Licchetta
- IRCCS, Neurological Science Institute of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Marcello Esposito
- Department of Neurological Science, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | - Francesca Bisulli
- IRCCS, Neurological Science Institute of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Paolo Tinuper
- IRCCS, Neurological Science Institute of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Leandro Provinciali
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neurosciences, Department of Neurosciences, "G. Gaslini" Institute, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| | - Salvatore Striano
- Epilepsy Centre, Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| |
Collapse
|
26
|
Cen ZD, Xie F, Xiao JF, Luo W. Rational search for genes in familial cortical myoclonic tremor with epilepsy, clues from recent advances. Seizure 2016; 34:83-9. [DOI: 10.1016/j.seizure.2015.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022] Open
|
27
|
Zeng LL, Long L, Shen H, Fang P, Song Y, Zhang L, Xu L, Gong J, Zhang Y, Zhang Y, Xiao B, Hu D. Gray Matter Loss and Related Functional Connectivity Alterations in A Chinese Family With Benign Adult Familial Myoclonic Epilepsy. Medicine (Baltimore) 2015; 94:e1767. [PMID: 26496303 PMCID: PMC4620778 DOI: 10.1097/md.0000000000001767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Benign adult familial myoclonic epilepsy (BAFME) is a non-progressive monogenic epilepsy syndrome. So far, the structural and functional brain reorganizations in BAFME remain uncharacterized. This study aims to investigate gray matter atrophy and related functional connectivity alterations in patients with BAFME using magnetic resonance imaging (MRI).Eleven BAFME patients from a Chinese pedigree and 15 matched healthy controls were enrolled in the study. Optimized voxel-based morphometric and resting-state functional MRI approaches were performed to measure gray matter atrophy and related functional connectivity, respectively. The Trail-Making Test-part A and part B, Digit Symbol Test (DST), and Verbal Fluency Test (VFT) were carried out to evaluate attention and executive functions.The BAFME patients exhibited significant gray matter loss in the right hippocampus, right temporal pole, left orbitofrontal cortex, and left dorsolateral prefrontal cortex. With these regions selected as seeds, the voxel-wise functional connectivity analysis revealed that the right hippocampus showed significantly enhanced connectivity with the right inferior parietal lobule, bilateral middle cingulate cortex, left precuneus, and left precentral gyrus. Moreover, the BAFME patients showed significant lower scores in DST and VFT tests compared with the healthy controls. The gray matter densities of the right hippocampus, right temporal pole, and left orbitofrontal cortex were significantly positively correlated with the DST scores. In addition, the gray matter density of the right temporal pole was significantly positively correlated with the VFT scores, and the gray matter density of the right hippocampus was significantly negatively correlated with the duration of illness in the patients.The current study demonstrates gray matter loss and related functional connectivity alterations in the BAFME patients, perhaps underlying deficits in attention and executive functions in the BAFME.
Collapse
Affiliation(s)
- Ling-Li Zeng
- From the College of Mechatronics and Automation (Ling-Li Zeng, Hui Shen, Peng Fang, Dewen Hu), National University of Defense Technology, Changsha, Hunan 410073; Department of Neurology (Lili Long, Yanmin Song, Lin Xu, Bo Xiao), Xiangya Hospital, Central South University, Changsha, Hunan 410000; Fuyang People's Hospital (Linlin Zhang, Jian Gong, Yunci Zhang, Yong Zhang), Fuyang, Anhui 236000, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cen ZD, Xie F, Lou DN, Lu XJ, Ouyang ZY, Liu L, Cao J, Li D, Yin HM, Wang ZJ, Xiao JF, Luo W. Fine mapping and whole-exome sequencing of a familial cortical myoclonic tremor with epilepsy family. Am J Med Genet B Neuropsychiatr Genet 2015; 168:595-9. [PMID: 26130016 DOI: 10.1002/ajmg.b.32337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/16/2015] [Indexed: 02/05/2023]
Abstract
Familial cortical myoclonic tremor with epilepsy (FCMTE) is an autosomal dominant epilepsy syndrome. Four loci, including 8q24 (FCMTE1), 2p11.1-q12.2 (FCMTE2), 5p15.31-p15.1 (FCMTE3), and 3q26.32-3q28 (FCMTE4) were previously reported. Herein, we report a new FCMTE1 pedigree from Chinese population with its clinical and genetic study results. Whole genome scan was performed to identify the causative gene region and copy number variants. Whole-exome sequencing was used to identify the causative gene. There were twelve affected members alive in this FCMTE1 pedigree. Nine affected members had both cortical myoclonic tremor and epilepsy, while three affected members had only cortical myoclonic tremor. Electrophysiologic examinations manifested giant somatosensory evoked potentials and long-latency cortical reflex in some affected members. Whole genome scan identified a 20.4 Mb causative gene region at 8q22.3-q24.13. No copy number variants were identified as the causative mutation. Whole-exome sequencing identified a co-segregated mutation (c.206A>T; p.Y69F) in the SLC30A8 gene. However, the evidence supporting this gene as the causative gene of FCMTE1 is not enough. We report the first Chinese FCMTE1 pedigree. No copy number variants, point mutation or small insertion/deletion were detected in the identified region that showed an association with FCMTE1. Further studies could focus on other possible genetic mechanisms while the association between the SLC30A8 and FCMTE1 needs further evidence.
Collapse
Affiliation(s)
- Zhi-Dong Cen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pediatrics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan-Ning Lou
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing-Jiao Lu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Yuan Ouyang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Cheng du, Sichuan, China
| | - Jin Cao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hou-Min Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong-Jin Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian-Feng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Luo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Altered intrinsic brain activity in patients with familial cortical myoclonic tremor and epilepsy: An amplitude of low-frequency fluctuation study. J Neurol Sci 2015; 351:133-139. [DOI: 10.1016/j.jns.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
|
30
|
Termsarasab P, Yang AC, Frucht SJ. Myoclonus in ataxia-telangiectasia. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5:298. [PMID: 25793145 PMCID: PMC4365056 DOI: 10.7916/d88p5z9x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/03/2015] [Indexed: 01/02/2023]
Abstract
Background Various movement disorders can be found in ataxia–telangiectasia (AT), including ataxia, dystonia, chorea, and myoclonus, but myoclonus has rarely been described as the predominant feature in AT. Case Report We report two AT patients with prominent myoclonus, illustrating an unusual presentation of this disorder. Sequencing of the ATM gene in the first patient revealed a homozygous truncating mutation, c.5908C>T (p.Q1970*) in exon 38 of the ATM gene, which has been previously reported as a founder mutation in the Costa Rican population. Discussion Myoclonus can be a predominant or presenting feature in AT, even without dystonia.
Collapse
Affiliation(s)
- Pichet Termsarasab
- Movement Disorder Division, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy C Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven J Frucht
- Movement Disorder Division, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
Long L, Song Y, Zhang L, Hu C, Gong J, Xu L, Long H, Zhou L, Zhang Y, Zhang Y, Xiao B. A case-control proton magnetic resonance spectroscopy study confirms cerebellar dysfunction in benign adult familial myoclonic epilepsy. Neuropsychiatr Dis Treat 2015; 11:485-91. [PMID: 25750529 PMCID: PMC4348134 DOI: 10.2147/ndt.s77910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Benign adult familial myoclonic epilepsy (BAFME) is a rare form of epilepsy syndrome. The pathogenesis of BAFME remains unclear, though it seems to involve dysfunction of the cerebellum. OBJECTIVES The purpose of this study was to use proton magnetic resonance spectroscopy ((1)H-MRS) to investigate whether neurochemical changes underlie abnormal brain function in BAFME. METHODS Twelve BAFME patients from one family and 12 age- and sex-matched healthy controls were enrolled in this study. The ratios of NAA/Cr, NAA/Cho, Cho/Cr, and NAA/(Cr+Cho) were analyzed. RESULTS The BAFME patients exhibited a decreased N-acetylaspartate (NAA)/choline (Cho) ratio in the cerebellar cortex, whereas there were no significant differences in the NAA/creatine (Cr), Cho/Cr, and NAA/(Cr+Cho) ratios compared with healthy controls. There were no significant differences in (1)H-MRS values in the frontal cortex or thalamus between the BAFME patients and controls. No correlation was detected between the NAA/Cho ratio in the cerebellar cortex and disease duration, myoclonus severity, or tremor severity. CONCLUSION Our results indicate clear cerebellar dysfunction in BAFME. (1)H-MRS is a useful tool for the diagnosis of BAFME in combination with family history and electrophysiological examination.
Collapse
Affiliation(s)
- Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yanmin Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Linlin Zhang
- The People's Hospital of Fuyang, Anhui Province, People's Republic of China
| | - Chongyu Hu
- Department of Neurology, Hunan Provincial People's Hospital, People's Republic of China
| | - Jian Gong
- The People's Hospital of Fuyang, Anhui Province, People's Republic of China
| | - Lin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yunci Zhang
- The People's Hospital of Fuyang, Anhui Province, People's Republic of China
| | - Yong Zhang
- The People's Hospital of Fuyang, Anhui Province, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
32
|
Striano P, Louis ED, Manto M. Autosomal dominant cortical tremor, myoclonus, and epilepsy: is the origin in the cerebellum? Editorial. THE CEREBELLUM 2013; 12:145-6. [PMID: 23055083 DOI: 10.1007/s12311-012-0419-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Buijink AWG, Caan MWA, Tijssen MAJ, Hoogduin JM, Maurits NM, van Rootselaar AF. Decreased cerebellar fiber density in cortical myoclonic tremor but not in essential tremor. THE CEREBELLUM 2013; 12:199-204. [PMID: 22961557 DOI: 10.1007/s12311-012-0414-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathophysiology of tremor generation remains uncertain in 'familial cortical myoclonic tremor with epilepsy' (FCMTE) and essential tremor (ET). In both disorders, imaging and pathological studies suggest involvement of the cerebellum and its projection areas. MR diffusion tensor imaging allows estimation of white matter tissue composition, and therefore is well suited to quantify structural changes in vivo. This study aimed to compare cerebellar fiber density between FCMTE and ET patients and healthy controls. Seven FCMTE patients, eight ET patients, and five healthy controls were studied. Cerebellum was annotated based on fractional anisotropy (FA) and mean diffusivity volumes. Mean cerebellar FA values were computed as well as mean cerebellar volume. Group statistics included one-way ANOVAs and post hoc independent t tests. Mean FA of the cerebellar region for FCMTE was 0.242 (SD = 0.012), for ET 0.259 (SD = 0.0115), and for controls 0.262 (SD = 0.0146). There was a significant group effect for FA (F(2) = 4.9, p = 0.02). No difference in mean cerebellar volume was found. Post hoc independent t tests revealed significantly decreased mean FA in FCMTE patients compared to controls (t[10] = 2.5, p = 0.03) and ET patients (t[13] = 2.9, p = 0.01), while there was no difference in mean FA between ET patients and controls (t[11] < 1.0). This study indicates for the first time microstructural damage of the cerebellar white matter in FCMTE in vivo. These results ascertain a role of the cerebellum in 'cortical tremor'.
Collapse
Affiliation(s)
- Arthur W G Buijink
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Toyota T, Akamatsu N, Tanaka A, Tsuji S, Uozumi T. Electroencephalographic features of benign adult familial myoclonic epilepsy. Clin Neurophysiol 2013; 125:250-4. [PMID: 24011985 DOI: 10.1016/j.clinph.2013.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate electroencephalographic (EEG) features of benign adult familial myoclonic epilepsy (BAFME). METHODS We reviewed interictal EEG features in patients with BAFME treated between April 2005 and November 2012 at a tertiary referral center. The diagnostic criteria for BAFME were the presence of infrequent generalized tonic-clonic seizures, myoclonus or myoclonic seizures, and autosomal dominant inheritance. Interictal EEG findings of epilepsy with generalized tonic-clonic seizure only (EGTCS) were reviewed for comparison. We randomly selected 10 generalized spike/polyspike and wave complexes (GSW) for each BAFME patient and measured the duration of them. Photic stimulation and hyperventilation were performed in all. RESULTS Nineteen (eight men, 11 women) patients with BAFME were included in this study. The mean frequency of GSW was 4.3±1.0Hz (mean±SD, n=14) in BAFME and 3.2±0.8Hz (n=10) in EGTCS. There was a statistically significant difference (p=0.008) between the two. Photoparoxysmal responses (PPR) were noted in 18 (95%) patients with BAFME but 1 (10%) with EGTCS. CONCLUSION Faster frequency of GSW, compared with that in EGTCS, accompanied by PPR may be characteristic EEG features of BAFME. SIGNIFICANCE These findings may lead the diagnosis of BAFME.
Collapse
Affiliation(s)
- Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan.
| | - Naoki Akamatsu
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Akihiro Tanaka
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Sadatoshi Tsuji
- Department of Medical Science Technology, International University of Health and Welfare, Fukuoka School of Health and Welfare, Okawa, Japan
| | - Takenori Uozumi
- Department of Neurology, Wakamatsu Hospital of the University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
35
|
Atraumatic vertebral compression fractures: differential diagnosis between benign osteoporotic and malignant fractures by MRI. Musculoskelet Surg 2013; 97 Suppl 2:S169-79. [PMID: 23949939 DOI: 10.1007/s12306-013-0277-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Atraumatic vertebral compression fractures are a common clinical problem, especially in elderly population. Metastases are the most frequent source of bone tumors, and the spine is a common site of metastatic disease; in case of cortical involvement or osteolysis, they may result in pathological compression fractures. Atraumatic compression fractures may result from other primary neoplasms of vertebrae and also from osteomyelitis, Paget's disease, hyperparathyroidism and other metabolic processes. Osteoporosis is a common source of vertebral compression fractures in elderly population, which may be indistinguishable from those of metastatic origin. The differentiation between osteoporotic compression fractures and malignant fracture is necessary to establish an appropriate staging and a therapeutic planning, especially in the acute and subacute stages. Anamnestic data about preexisting disease can be useful to individuate the potential cause of vertebral collapse. Plain radiography shows some difficulties in distinguishing whether the fracture represents a consequence of osteoporosis, a metastatic lesion or some other primary bone neoplasm. Computed tomography is one of the most suitable imaging techniques for the evaluation of bone structure and fragments and to establish the degree of cortical bone destruction; MR imaging (MRI) is the most helpful radiological investigation in order to provide the basis for the distinction between metastatic and acute osteoporotic compression fractures. The most relevant MRI findings to establish a differential diagnosis are described.
Collapse
|
36
|
Licchetta L, Pippucci T, Bisulli F, Cantalupo G, Magini P, Alvisi L, Baldassari S, Martinelli P, Naldi I, Vanni N, Liguori R, Seri M, Tinuper P. A novel pedigree with familial cortical myoclonic tremor and epilepsy (FCMTE): clinical characterization, refinement of the FCMTE2 locus, and confirmation of a founder haplotype. Epilepsia 2013; 54:1298-306. [PMID: 23663087 DOI: 10.1111/epi.12216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2013] [Indexed: 12/18/2022]
Abstract
PURPOSE We describe the clinical, neurophysiologic, and genetic features of a new, large family with familial cortical myoclonic tremor and epilepsy (FCMTE). METHODS Reliable clinical information was obtained on the 127 members. Thirty-one collaborative individuals were assessed by a detailed clinical interview and a complete neurologic examination. A polygraphic study was conducted in 15 patients, back-averaging analysis and somatosensory evoked potentials with C-reflex study in four. The genetic study investigated 30 subjects with microsatellite markers at three loci on chromosomes 8q (FCMTE1), 2p (FCMTE2), and 5p (FCMTE3). KEY FINDINGS The pedigree included 25 affected members (M/F: 9/16). We studied 16 of the 19 living affected members (M/F: 5/11; mean age 47.8 years). Cortical myoclonic tremor (CMT) was associated with generalized seizures in 10 patients (62.5%). The mean age at onset of CMT and seizures was 28.1 and 33.8 years, respectively. Four patients (25%) reported a slow progression of CMT, with severe gait impairment in one. Psychiatric disorders of variable severity recurred in 37.5% of cases. Rhythmic bursts at 7-15 Hz were recorded in all 11 affected members tested. Additional neurophysiologic investigations disclosed a cortical origin of myoclonus in all patients tested. Generalized epileptiform discharges were recorded in 25% of cases, and a photoparoxysmal response in 31%. Genetic analysis established linkage to the FCMTE2 locus on chromosome 2p11.1-2q12.2 (OMIM 607876) and narrowed the critical interval to a 10.4 Mb segment. Haplotype analysis in the present family identified a founder haplotype identical to that previously observed in families from the same geographic area. SIGNIFICANCE This study confirms evidence of a founder effect in Italian families and reduces the number of positional candidate genes in the FCMTE2 locus to 59, thereby contributing to future gene identification by Next Generation Sequencing approaches.
Collapse
Affiliation(s)
- Laura Licchetta
- IRCCS Institute of Neurological Sciences of Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Magnin E, Vidailhet M, Ryff I, Ferreira S, Labauge P, Rumbach L. Fronto-striatal dysfunction in type 3 familial cortical myoclonic tremor epilepsy occurring during aging. J Neurol 2012; 259:2714-9. [PMID: 22736081 DOI: 10.1007/s00415-012-6575-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/18/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
The aim of this work is to study the cognition, progressive gait impairment, and neuroimaging findings in two patients over 65 years old of the previously described type 3 familial cortical myoclonic tremor with epilepsy (FCMTE3). We report investigations in two of these five FCMTE3 subjects over 65 and showing progressive gait disorders. They both had a pseudo-Parkinson's way of walking and visual intolerance to bright light and brightness contrast without EEG abnormalities exacerbating cortical myoclonus or triggering seizure. Case 1 had moderate gait impairment and a severe frontal syndrome. Case 2 had severe gait impairment and diffuse cognitive disorders. Both cases had cortical hypoperfusion (predominantly in the left frontal lobe) and no cerebellar abnormality on cerebral perfusion SPECT. DAT-SPECT showed dopaminergic depletion. These data indicate fronto-striatal dysfunction associated with gait impairment and cognitive disorders appearing after several decades of disease progression. This gives clues to understanding the pathogenesis and evolution of FCMTE3. Permanent myoclonic discharges or long-term valproate treatment may cause significant toxic effects on neurons (dopaminergic and frontal neurons). Further functional and molecular analyses are required in order to better understand this pathology and the consequences of chronic cortical myoclonus.
Collapse
Affiliation(s)
- Eloi Magnin
- Department of Neurology, University Hospital of Besançon, Besançon 25030, France.
| | | | | | | | | | | |
Collapse
|
38
|
Coppola A, Santulli L, Del Gaudio L, Minetti C, Striano S, Zara F, Striano P. Natural history and long-term evolution in families with autosomal dominant cortical tremor, myoclonus, and epilepsy. Epilepsia 2011; 52:1245-50. [PMID: 21426326 DOI: 10.1111/j.1528-1167.2011.03017.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate for the first time the natural history and long-term evolution of "familial cortical tremor, myoclonus, and epilepsy." METHODS We evaluated the clinical, electrophysiologic, and treatment data of 14 patients from three families linked to 2p11.1-q12.2. A simplified scale was used to score myoclonus severity. Electroencephalography (EEG) studies were reviewed for the evaluation of background activity, paroxysmal abnormalities, and photoparoxysmal response. Data were organized for age groups. Correlation and logistic regression analysis were performed. KEY FINDINGS Patients' mean age was 47.8 ± 22.0 years (range 20-86 years). Mean age at disease onset was 20.2 ± 7.8 years (range 11-40 years); mean follow-up duration was 14.0 ± 5.8 years (range 7-28 years). Evaluation at different age groups revealed a gradual, progressive worsening of the myoclonus in 10 patients (71.4%). Two subjects aged >80 years showed myoclonus interfering with autonomous walking. Myoclonus severity was correlated with disease duration (p<0.001) and patients' age (p=0.001). Six patients (42.8%) experienced seizures, usually between the second and sixth decades of life. Evaluation of EEG long-term evolution revealed progressive slowing of background activity in parallel with the gradual worsening of myoclonus. In contrast, paroxysmal activity and photosensitivity were particularly evident during the intermediate phases of the disease. In addition, psychiatric and neuropsychological dysfunction occurred in more than one third of the patients. SIGNIFICANCE We provide data for a slight age-dependent progression and the presence of neuropsychiatric and neuropsychological dysfunction in this unique syndrome, for which the definition of familial or autosomal dominant cortical tremor, myoclonus, and epilepsy (FCTME/ADCME) seems to be, therefore, more appropriate.
Collapse
Affiliation(s)
- Antonietta Coppola
- Epilepsy Center, Department of Neurological Sciences, Federico II University, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Striano P, Robbiano A, Zara F, Striano S. Familial cortical tremor and epilepsy: a well-defined syndrome with genetic heterogeneity waiting for nosological placement in the ILAE classification. Epilepsy Behav 2010; 19:669. [PMID: 20974551 DOI: 10.1016/j.yebeh.2010.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 11/26/2022]
|
40
|
Magnetoencephalographic Findings in Two Cases of Juvenile Myoclonus Epilepsy. Brain Topogr 2009; 23:41-5. [DOI: 10.1007/s10548-009-0114-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
41
|
Striano P, de Falco FA, Minetti C, Zara F. Familial benign nonprogressive myoclonic epilepsies. Epilepsia 2009; 50 Suppl 5:37-40. [DOI: 10.1111/j.1528-1167.2009.02118.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|