1
|
Gorshkov O, Ombao H. Assessment of Fractal Synchronization during an Epileptic Seizure. ENTROPY (BASEL, SWITZERLAND) 2024; 26:666. [PMID: 39202136 PMCID: PMC11353581 DOI: 10.3390/e26080666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024]
Abstract
In this paper, we define fractal synchronization (FS) based on the idea of stochastic synchronization and propose a mathematical apparatus for estimating FS. One major advantage of our proposed approach is that fractal synchronization makes it possible to estimate the aggregate strength of the connection on multiple time scales between two projections of the attractor, which are time series with a fractal structure. We believe that one of the promising uses of FS is the assessment of the interdependence of encephalograms. To demonstrate this approach in evaluating the cross-dependence between channels in a network of electroencephalograms, we evaluated the FS of encephalograms during an epileptic seizure. Fractal synchronization demonstrates the presence of desynchronization during an epileptic seizure.
Collapse
Affiliation(s)
- Oleg Gorshkov
- Statistics Program, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;
| | | |
Collapse
|
2
|
Li X, Qu Z, Li Z, Su R, Yin B, Yin L. Effect of GABAa-receptors on neuronal discharge and ion activity in focal seizures. Cereb Cortex 2024; 34:bhae110. [PMID: 38518225 DOI: 10.1093/cercor/bhae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Focal seizures are a type of epileptic event that has plagued the medical community for a long time, and the existing drug treatment is mainly based on the modulation of ${GABA}_a$-receptors to affect GABAergic signaling to achieve the therapeutic purpose. The majority of research currently focuses on the impact of ${GABA}_a$-receptors on neuronal firing, failing to analyze the molecular and ionic mechanisms involved. Specifically, the research on deeper-level mechanisms on how ${GABA}_a$-receptors affect neuronal firing by altering ion activity has not been addressed. This research aimed to study the effects of different ${GABA}_a$-receptor structures on ion activity in focal seizures model by adjusting parameters of the ${GABA}_a$-receptors: the rise time constant (${tau}_1$) and decay time constant (${tau}_2$). The research indicates that as the values of ${tau}_1$ and ${tau}_2$ of the ${GABA}_a$-receptor change, the ion concentration will vary based on the change of the ${GABA}_a$-receptor potential. To a certain extent, the duration of epileptic activity will also be affected to a certain extent. In conclusion, the alteration of ${GABA}_a$-receptor structure will affect the inhibitory effect of interneurons on pyramidal neurons, and different parameters of the ${GABA}_a$-receptor will directly impact the therapeutic effect.
Collapse
Affiliation(s)
- Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P.R. China
| | - Zhongjie Qu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P.R. China
| | - Zipeng Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P.R. China
| | - Rui Su
- School of Medical Imaging, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Bowen Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Liyong Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
3
|
Guo F, Cui Y, Li A, Liu M, Jian Z, Chen K, Yao D, Guo D, Xia Y. Differential patterns of very high-frequency oscillations in two seizure types of the pilocarpine-induced TLE model. Brain Res Bull 2023; 204:110805. [PMID: 37925081 DOI: 10.1016/j.brainresbull.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
AIMS Very high-frequency oscillations (VHFOs, >500 Hz) are considered a highly sensitive biomarker of seizures. We hypothesized that VHFOs may exhibit specificity towards hypersynchronous (HYP) seizures and low-voltage fast (LVF) seizures in temporal lobe epilepsy (TLE). METHODS Local field potentials were recorded from the hippocampal network in TLE mice induced by pilocarpine. Subsequently, we analyzed the VHFO features, including their temporal-frequency characteristics and VHFO/theta coupling, during three states: baseline, preictal, and postictal for both HYP- and LVF-seizure groups. RESULTS Significant changes in most of the VHFO features were observed during the preictal state in both seizure groups. In the postictal state, VHFO features in the HYP-seizure group exhibited inverse alterations and appeared to align with those observed during baseline conditions. However, such phenomena were not observed after TLE seizures in the LVF-seizure group. CONCLUSION Our findings highlight distinct patterns of VHFO feature changes across different states of HYP seizures and LVF seizures. These results suggest that VHFOs could serve as indicative biomarkers for seizure alterations specifically associated with HYP-seizure states.
Collapse
Affiliation(s)
- Fengru Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Airui Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mingqi Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhaoxin Jian
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daqing Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Xia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
4
|
Guo Z, Zhang J, Hu W, Wang X, Zhao B, Zhang K, Zhang C. Does seizure propagate within or across intrinsic brain networks? An intracranial EEG study. Neurobiol Dis 2023; 184:106220. [PMID: 37406713 DOI: 10.1016/j.nbd.2023.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Understanding the spatiotemporal propagation profiles of seizures is crucial for the preoperative assessment of epilepsy patients. The present study aimed to investigate whether seizures exhibit propagation patterns that align with intrinsic networks (INs). METHODS A quantitative analysis was conducted to examine ictal fast activity (IFA). The Epileptogenicity Index (EI) was employed to assess the epileptogenicity, spectral features, and temporal characteristics of IFA. Intra-network and inter-network comparisons were made regarding the IFA-related metrics. Additionally, the metrics were correlated with Euclidean distance. Network connection maps were generated to visualize seizures originating from different INs, allowing for comparisons between distinct groups. RESULTS Data for 81 seizures in 43 subjects were captured using stereoelectroencephalography implantation. Three metrics were compared: EI, time involvement (TI), and energy ratio index (ERI). Intra-network channels exhibited higher EI, earlier involvement of IFA, and stronger high-frequency energy. These findings were further validated through subgroup analyses stratified by neuropathology, seizure type, and seizure origination lobe. Correlation analyses revealed a negative association between distance and both EI and ERI, while distance exhibited a positive correlation with TI. Seizures originating from different INs exhibited varying propagation characteristics. CONCLUSIONS The study findings highlight the dominant role of intra-network dynamics over inter-network during seizure propagation. These results contribute to our understanding of seizure dynamics and their relationship with INs.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Chloride ion dysregulation in epileptogenic neuronal networks. Neurobiol Dis 2023; 177:106000. [PMID: 36638891 DOI: 10.1016/j.nbd.2023.106000] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mature CNS. When GABAA receptors are activated the membrane potential is driven towards hyperpolarization due to chloride entry into the neuron. However, chloride ion dysregulation that alters the ionic gradient can result in depolarizing GABAergic post-synaptic potentials instead. In this review, we highlight that GABAergic inhibition prevents and restrains focal seizures but then reexamine this notion in the context of evidence that a static and/or a dynamic chloride ion dysregulation, that increases intracellular chloride ion concentrations, promotes epileptiform activity and seizures. To reconcile these findings, we hypothesize that epileptogenic pathologically interconnected neuron (PIN) microcircuits, representing a small minority of neurons, exhibit static chloride dysregulation and should exhibit depolarizing inhibitory post-synaptic potentials (IPSPs). We speculate that chloride ion dysregulation and PIN cluster activation may generate fast ripples and epileptiform spikes as well as initiate the hypersynchronous seizure onset pattern and microseizures. Also, we discuss the genetic, molecular, and cellular players important in chloride dysregulation which regulate epileptogenesis and initiate the low-voltage fast seizure onset pattern. We conclude that chloride dysregulation in neuronal networks appears to be critical for epileptogenesis and seizure genesis, but feed-back and feed-forward inhibitory GABAergic neurotransmission plays an important role in preventing and restraining seizures as well.
Collapse
|
6
|
Sumsky S, Greenfield LJ. Network analysis of preictal iEEG reveals changes in network structure preceding seizure onset. Sci Rep 2022; 12:12526. [PMID: 35869236 PMCID: PMC9307526 DOI: 10.1038/s41598-022-16877-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Seizures likely result from aberrant network activity and synchronization. Changes in brain network connectivity may underlie seizure onset. We used a novel method of rapid network model estimation from intracranial electroencephalography (iEEG) data to characterize pre-ictal changes in network structure prior to seizure onset. We analyzed iEEG data from 20 patients from the iEEG.org database. Using 10 s epochs sliding by 1 s intervals, a multiple input, single output (MISO) state space model was estimated for each output channel and time point with all other channels as inputs, generating sequential directed network graphs of channel connectivity. These networks were assessed using degree and betweenness centrality. Both degree and betweenness increased at seizure onset zone (SOZ) channels 37.0 ± 2.8 s before seizure onset. Degree rose in all channels 8.2 ± 2.2 s prior to seizure onset, with increasing connections between the SOZ and surrounding channels. Interictal networks showed low and stable connectivity. A novel MISO model-based network estimation method identified changes in brain network structure just prior to seizure onset. Increased connectivity was initially isolated within the SOZ and spread to non-SOZ channels before electrographic seizure onset. Such models could help confirm localization of SOZ regions.
Collapse
|
7
|
Devisetty R, MB A, Jyothirmai S, Ajai R, Pillai A, Kumar A, Gopinath S, Parasuram H. Localizing epileptogenic network from SEEG using non-linear correlation, mutual information and graph theory analysis. Proc Inst Mech Eng H 2022; 236:1783-1796. [DOI: 10.1177/09544119221134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The key challenge in epilepsy surgery is precise localization and removal of the epileptogenic zone (EZ) from the brain. Localization of the epileptogenic network by visual analysis of intracranial EEG is extremely difficult. In this retrospective study, we used interictal connectivity and graph theory analysis on intracranial EEG to better delineate the epileptogenic zone. Patients who underwent surgery for drug-refractory mesial temporal and neocortical epilepsy were included. Computational measures, such as h2 nonlinear correlation and mutual information, were used to estimate the interdependency of intracranial EEGs. We observed that the Out-Degree, Out-Strength, and Betweenness centrality (graph properties) were the best predictors of EZ. From the results, we also found that graph properties with a normalized value above 0.75 were found to be a useful measure to localize the EZ with a sensitivity of 87.88 and a specificity of 87.13. Our results also validate that frequently occurring types of interictal fast discharges (IFD) with connectivity measures and graph properties can better localize the EZ. We foresee graph theory analysis of interictal intracranial EEG data can help precise localization of EZ for cortical resection as well as in minimally invasive radiofrequency ablation of epileptogenic hubs. Further, prospective validation is required for clinical use.
Collapse
Affiliation(s)
- Rohith Devisetty
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Amsitha MB
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Sasi Jyothirmai
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Remya Ajai
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Ashok Pillai
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurosurgery, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Anand Kumar
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| | - Siby Gopinath
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| | - Harilal Parasuram
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| |
Collapse
|
8
|
Shakhatreh L, Janmohamed M, Baker AA, Willard A, Laing J, Rychkova M, Chen Z, Kwan P, O'Brien TJ, Perucca P. Interictal and seizure-onset EEG patterns in malformations of cortical development: A systematic review. Neurobiol Dis 2022; 174:105863. [PMID: 36165814 DOI: 10.1016/j.nbd.2022.105863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Malformations of cortical development (MCDs) are common causes of drug-resistant epilepsy. The mechanisms underlying the associated epileptogenesis and ictogenesis remain poorly elucidated. EEG can help in understanding these mechanisms. We systematically reviewed studies reporting scalp or intracranial EEG features of MCDs to characterise interictal and seizure-onset EEG patterns across different MCD types. METHODS We conducted a systematic review in accordance with PRISMA guidelines. MEDLINE, PubMed, and Cochrane databases were searched for studies describing interictal and seizure-onset EEG patterns in MCD patients. A classification framework was implemented to group EEG features into 20 predefined patterns, comprising nine interictal (five, scalp EEG; four, intracranial EEG) and 11 seizure-onset (five, scalp EEG; six, intracranial EEG) patterns. Logistic regression was used to estimate the odds ratios (OR) of each seizure-onset pattern being associated with specific MCD types. RESULTS Our search yielded 1682 studies, of which 27 comprising 936 MCD patients were included. Of the nine interictal EEG patterns, five (three, scalp EEG; two, intracranial EEG) were detected in ≥2 MCD types, while four (rhythmic epileptiform discharges type 1 and type 2 on scalp EEG; repetitive bursting spikes and sporadic spikes on intracranial EEG) were seen only in focal cortical dysplasia (FCD). Of the 11 seizure-onset patterns, eight (three, scalp EEG; five, intracranial EEG) were found in ≥2 MCD types, whereas three were observed only in FCD (suppression on scalp EEG; delta brush on intracranial EEG) or tuberous sclerosis complex (TSC; focal fast wave on scalp EEG). Among scalp EEG seizure-onset patterns, paroxysmal fast activity (OR = 0.13; 95% CI: 0.03-0.53; p = 0.024) and repetitive epileptiform discharges (OR = 0.18; 95% CI: 0.05-0.61; p = 0.036) were less likely to occur in TSC than FCD. Among intracranial EEG seizure-onset patterns, low-voltage fast activity was more likely to be detected in heterotopia (OR = 19.3; 95% CI: 6.22-60.1; p < 0.001), polymicrogyria (OR = 6.70; 95% CI: 2.25-20.0; p = 0.004) and TSC (OR = 4.27; 95% CI: 1.88-9.70; p = 0.005) than FCD. SIGNIFICANCE Different MCD types can share similar interictal or seizure-onset EEG patterns, reflecting common underlying biological mechanisms. However, selected EEG patterns appear to point to distinct MCD types, suggesting certain differences in their neuronal networks.
Collapse
Affiliation(s)
- Lubna Shakhatreh
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Neurology, Alfred Health, Melbourne, Australia.
| | - Mubeen Janmohamed
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Neurology, Alfred Health, Melbourne, Australia
| | - Ana Antonic Baker
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia
| | - Anna Willard
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Neurology, Alfred Health, Melbourne, Australia
| | - Joshua Laing
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, Alfred Health, Melbourne, Australia
| | - Maria Rychkova
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| | - Zhibin Chen
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Neurology, Alfred Health, Melbourne, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Neurology, Alfred Health, Melbourne, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Piero Perucca
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Neurology, Alfred Health, Melbourne, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Gentiletti D, de Curtis M, Gnatkovsky V, Suffczynski P. Focal seizures are organized by feedback between neural activity and ion concentration changes. eLife 2022; 11:68541. [PMID: 35916367 PMCID: PMC9377802 DOI: 10.7554/elife.68541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Human and animal EEG data demonstrate that focal seizures start with low-voltage fast activity, evolve into rhythmic burst discharges and are followed by a period of suppressed background activity. This suggests that processes with dynamics in the range of tens of seconds govern focal seizure evolution. We investigate the processes associated with seizure dynamics by complementing the Hodgkin-Huxley mathematical model with the physical laws that dictate ion movement and maintain ionic gradients. Our biophysically realistic computational model closely replicates the electrographic pattern of a typical human focal seizure characterized by low voltage fast activity onset, tonic phase, clonic phase and postictal suppression. Our study demonstrates, for the first time in silico, the potential mechanism of seizure initiation by inhibitory interneurons via the initial build-up of extracellular K+ due to intense interneuronal spiking. The model also identifies ionic mechanisms that may underlie a key feature in seizure dynamics, i.e., progressive slowing down of ictal discharges towards the end of seizure. Our model prediction of specific scaling of inter-burst intervals is confirmed by seizure data recorded in the whole guinea pig brain in vitro and in humans, suggesting that the observed termination pattern may hold across different species. Our results emphasize ionic dynamics as elementary processes behind seizure generation and indicate targets for new therapeutic strategies.
Collapse
|
10
|
Chen Z, Maturana MI, Burkitt AN, Cook MJ, Grayden DB. Seizure Forecasting by High-Frequency Activity (80-170 Hz) in Long-term Continuous Intracranial EEG Recordings. Neurology 2022; 99:e364-e375. [PMID: 35523589 DOI: 10.1212/wnl.0000000000200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Reliable seizure forecasting has important implications in epilepsy treatment and improving the quality of lives for people with epilepsy. High-frequency activity (HFA) is a biomarker that has received significant attention over the past 2 decades, but its predictive value in seizure forecasting remains uncertain. This work aimed to determine the utility of HFA in seizure forecasting. METHODS We used seizure data and HFA (80-170 Hz) data obtained from long-term, continuous intracranial EEG recordings of patients with drug-resistant epilepsy. Instantaneous rates and phases of HFA cycles were used as features for seizure forecasting. Seizure forecasts based on each individual HFA feature, and with the use of a combined approach, were generated pseudo-prospectively (causally). To compute the instantaneous phases for pseudo-prospective forecasting, real-time phase estimation based on an autoregressive model was used. Features were combined with a weighted average approach. The performance of seizure forecasting was primarily evaluated by the area under the curve (AUC). RESULTS Of 15 studied patients (median recording duration 557 days, median seizures 151), 12 patients with >10 seizures after 100 recording days were included in the pseudo-prospective analysis. The presented real-time phase estimation is feasible and can causally estimate the instantaneous phases of HFA cycles with high accuracy. Pseudo-prospective seizure forecasting based on HFA rates and phases performed significantly better than chance in 11 of 12 patients, although there were patient-specific differences. Combining rate and phase information improved forecasting performance compared to using either feature alone. The combined forecast using the best-performing channel yielded a median AUC of 0.70, a median sensitivity of 0.57, and a median specificity of 0.77. DISCUSSION These findings show that HFA could be useful for seizure forecasting and represent proof of concept for using prior information of patient-specific relationships between HFA and seizures in pseudo-prospective forecasting. Future seizure forecasting algorithms might benefit from the inclusion of HFA, and the real-time phase estimation approach can be extended to other biomarkers. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that HFA (80-170 Hz) in long-term continuous intracranial EEG can be useful to forecast seizures in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Zhuying Chen
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia.
| | - Matias I Maturana
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Anthony N Burkitt
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Mark J Cook
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - David B Grayden
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia
| |
Collapse
|
11
|
Hasegawa D, Saito M, Kitagawa M. Neurosurgery in canine epilepsy. Vet J 2022; 285:105852. [PMID: 35716888 DOI: 10.1016/j.tvjl.2022.105852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Epilepsy surgery is functional neurosurgery applied to drug-resistant epilepsy. Although epilepsy surgery has been established and achieves fair to good outcomes in human medicine, it is still an underdeveloped area in veterinary medicine. With the spread of advanced imaging and neurosurgical modalities, intracranial surgery has become commonplace in the veterinary field, and, therefore, it is natural that expectations for epilepsy surgery increase. This review summarizes current standards of intracranial epilepsy surgery in human medicine and describes its current status and expectation in veterinary medicine. Intracranial epilepsy surgery is classified generally into resection surgery, represented by cortical resection, lobectomy, and lesionectomy, and disconnection surgery, such as corpus callosotomy and multiple subpial transection. In dogs with drug-resistant epilepsy, corpus callosotomy is available as a disconnection surgery for generalized epilepsy. However, other types of disconnection and resection surgeries for focal epilepsy are limited to experimental studies in laboratory dogs and/or anecdotal case reports of lesionectomy, such as tumor or encephalocele removal, without epileptogenic evidence. Veterinary epilepsy surgery is a new and challenging neurosurgery field; with the development of presurgical evaluations such as advanced electroencephalography and neuroimaging, it may become more readily practiced.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, 1-7-1 Kyounancho, Musashino, Tokyo 180-8602, Japan; The Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyounancho, Musashino, Tokyo 180-8602, Japan.
| | - Miyoko Saito
- Laboratory of Small Animal Surgery (Neurology), School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Masato Kitagawa
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
12
|
Pathway-specific inhibition of critical projections from the mediodorsal thalamus to the frontal cortex controls kindled seizures. Prog Neurobiol 2022; 214:102286. [PMID: 35537572 DOI: 10.1016/j.pneurobio.2022.102286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
There is a large unmet need for improved treatment for temporal lobe epilepsy (TLE); circuit-specific manipulation that disrupts the initiation and propagation of seizures is promising in this regard. The midline thalamus, including the mediodorsal nucleus (MD) is a critical distributor of seizure activity, but its afferent and efferent pathways that mediate seizure activity are unknown. Here, we used chemogenetics to silence input and output projections of the MD to discrete regions of the frontal cortex in the kindling model of TLE in rats. Chemogenetic inhibition of the projection from the amygdala to the MD abolished seizures, an effect that was replicated using optogenetic inhibition. Chemogenetic inhibition of projections from the MD to the prelimbic cortex likewise abolished seizures. By contrast, inhibition of projections from the MD to other frontal regions produced partial (orbitofrontal cortex, infralimbic cortex) or no (cingulate, insular cortex) attenuation of behavioral or electrographic seizure activity. These results highlight the particular importance of projections from MD to prelimbic cortex in the propagation of amygdala-kindled seizures.
Collapse
|
13
|
Müller M, Dekkers M, Wiest R, Schindler K, Rummel C. More Than Spikes: On the Added Value of Non-linear Intracranial EEG Analysis for Surgery Planning in Temporal Lobe Epilepsy. Front Neurol 2022; 12:741450. [PMID: 35095712 PMCID: PMC8793863 DOI: 10.3389/fneur.2021.741450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy surgery can be a very effective therapy in medication refractory patients. During patient evaluation intracranial EEG is analyzed by clinical experts to identify the brain tissue generating epileptiform events. Quantitative EEG analysis increasingly complements this approach in research settings, but not yet in clinical routine. We investigate the correspondence between epileptiform events and a specific quantitative EEG marker. We analyzed 99 preictal epochs of multichannel intracranial EEG of 40 patients with mixed etiologies. Time and channel of occurrence of epileptiform events (spikes, slow waves, sharp waves, fast oscillations) were annotated by a human expert and non-linear excess interrelations were calculated as a quantitative EEG marker. We assessed whether the visually identified preictal events predicted channels that belonged to the seizure onset zone, that were later resected or that showed strong non-linear interrelations. We also investigated whether the seizure onset zone or the resection were predicted by channels with strong non-linear interrelations. In patients with temporal lobe epilepsy (32 of 40), epileptic spikes and the seizure onset zone predicted the resected brain tissue much better in patients with favorable seizure control after surgery than in unfavorable outcomes. Beyond that, our analysis did not reveal any significant associations with epileptiform EEG events. Specifically, none of the epileptiform event types did predict non-linear interrelations. In contrast, channels with strong non-linear excess EEG interrelations predicted the resected channels better in patients with temporal lobe epilepsy and favorable outcome. Also in the small number of patients with seizure onset in the frontal and parietal lobes, no association between epileptiform events and channels with strong non-linear excess EEG interrelations was detectable. In contrast to patients with temporal seizure onset, EEG channels with strong non-linear excess interrelations did neither predict the seizure onset zone nor the resection of these patients or allow separation between patients with favorable and unfavorable seizure control. Our study indicates that non-linear excess EEG interrelations are not strictly associated with epileptiform events, which are one key concept of current clinical EEG assessment. Rather, they may provide information relevant for surgery planning in temporal lobe epilepsy. Our study suggests to incorporate quantitative EEG analysis in the workup of clinical cases. We make the EEG epochs and expert annotations publicly available in anonymized form to foster similar analyses for other quantitative EEG methods.
Collapse
Affiliation(s)
- Michael Müller
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Martijn Dekkers
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| |
Collapse
|
14
|
Frazzini V, Cousyn L, Navarro V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:489-518. [PMID: 35964989 DOI: 10.1016/b978-0-12-823493-8.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. First descriptions of TLE date back in time and detailed portraits of epileptic seizures of temporal origin can be found in early medical reports as well as in the works of various artists and dramatists. Depending on the seizure onset zone, several subtypes of TLE have been identified, each one associated with peculiar ictal semiology. TLE can result from multiple etiological causes, ranging from genetic to lesional ones. While the diagnosis of TLE relies on detailed analysis of clinical as well as electroencephalographic (EEG) features, the lesions responsible for seizure generation can be highlighted by multiple brain imaging modalities or, in selected cases, by genetic investigations. TLE is the most common cause of refractory epilepsy and despite the great advances in diagnostic tools, no lesion is found in around one-third of patients. Surgical treatment is a safe and effective option, requiring presurgical investigations to accurately identify the seizure onset zone (SOZ). In selected cases, presurgical investigations need intracerebral investigations (such as stereoelectroencephalography) or dedicated metabolic imaging techniques (interictal PET and ictal SPECT) to correctly identify the brain structures to be removed.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Louis Cousyn
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Vincent Navarro
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France.
| |
Collapse
|
15
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. In vitro Oscillation Patterns Throughout the Hippocampal Formation in a Rodent Model of Epilepsy. Neuroscience 2021; 479:1-21. [PMID: 34710537 DOI: 10.1016/j.neuroscience.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Specific oscillatory patterns are considered biomarkers of pathological neuronal network in brain diseases, such as epilepsy. However, the dynamics of underlying oscillations during the epileptogenesis throughout the hippocampal formation in the temporal lobe epilepsy is not clear. Here, we characterized in vitro oscillatory patterns within the hippocampal formation of epileptic rats, under 4-aminopyridine (4-AP)-induced hyperexcitability and during the spontaneous network activity, at two periods of epileptogenesis. First, at the beginning of epileptic chronic phase, 30 days post-pilocarpine-induced Status Epilepticus (SE). Second, at the established epilepsy, 60 days post-SE. The 4-AP-bathed slices from epileptic rats had increased susceptibility to ictogenesis in CA1 at 30 days post-SE, and in entorhinal cortex and dentate gyrus at 60 days post-SE. Higher power and phase coherence were detected mainly for gamma and/or high frequency oscillations (HFOs), in a region- and stage-specific manner. Interestingly, under spontaneous network activity, even without 4-AP-induced hyperexcitability, slices from epileptic animals already exhibited higher power of gamma and HFOs in different areas of hippocampal formation at both periods of epileptogenesis, and higher phase coherence in fast ripples at 60 days post-SE. These findings reinforce the critical role of gamma and HFOs in each one of the hippocampal formation areas during ongoing neuropathological processes, tuning the neuronal network to epilepsy.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
| |
Collapse
|
16
|
Roy A, Han VZ, Bard AM, Wehle DT, Smith SEP, Ramirez JM, Kalume F, Millen KJ. Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy. Front Mol Neurosci 2021; 14:772847. [PMID: 34899181 PMCID: PMC8662737 DOI: 10.3389/fnmol.2021.772847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.
Collapse
Affiliation(s)
- Achira Roy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | - Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Devin T Wehle
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Hasegawa D, Asada R, Hamamoto Y, Yu Y, Kuwabara T, Mizoguchi S, Chambers JK, Uchida K. Focal Cortical Resection and Hippocampectomy in a Cat With Drug-Resistant Structural Epilepsy. Front Vet Sci 2021; 8:719455. [PMID: 34355038 PMCID: PMC8329420 DOI: 10.3389/fvets.2021.719455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy surgery is a common therapeutic option in humans with drug-resistant epilepsy. However, there are few reports of intracranial epilepsy surgery for naturally occurring epilepsy in veterinary medicine. A 12-year-old neutered male domestic shorthair cat with presumed congenital cortical abnormalities (atrophy) in the right temporo-occipital cortex and hippocampus had been affected with epilepsy from 3 months of age. In addition to recurrent epileptic seizures, the cat exhibited cognitive dysfunction, bilateral blindness, and right forebrain signs. Seizures had been partially controlled (approximately 0.3–0.7 seizures per month) by phenobarbital, zonisamide, diazepam, and gabapentin until 10 years of age; however, they gradually became uncontrollable (approximately 2–3 seizures per month). In order to plan epilepsy surgery, presurgical evaluations including advanced structural magnetic resonance imaging and long-term intracranial video-electroencephalography monitoring were conducted to identify the epileptogenic zone. The epileptogenic zone was suspected in the right atrophied temporo-occipital cortex and hippocampus. Two-step surgery was planned, and a focal cortical resection of that area was performed initially. After the first surgery, seizures were not observed for 2 months, but they then recurred. The second surgery was performed to remove the right atrophic hippocampus and extended area of the right cortex, which showed spikes on intraoperative electrocorticography. After the second operation, although epileptogenic spikes remained in the contralateral occipital lobe, which was suspected as the second epileptogenic focus, seizure frequency decreased to <0.3 seizure per month under treatment with antiseizure drugs at 1.5 years after surgery. There were no apparent complications associated with either operation, although the original neurological signs were unchanged. This is the first exploratory study of intracranial epilepsy surgery for naturally occurring epilepsy, with modern electroclinical and imaging evidence, in veterinary medicine. Along with the spread of advanced diagnostic modalities and neurosurgical devices in veterinary medicine, epilepsy surgery may be an alternative treatment option for drug-resistant epilepsy in cats.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan.,The Research Center of Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Rikako Asada
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yuji Hamamoto
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yoshihiko Yu
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Takayuki Kuwabara
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Shunta Mizoguchi
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
18
|
Zhang H, Shen Z, Zhao Q, Yan L, Du L, Deng Z. Dynamic Transitions of Epilepsy Waveforms Induced by Astrocyte Dysfunction and Electrical Stimulation. Neural Plast 2020; 2020:8867509. [PMID: 33281896 PMCID: PMC7685866 DOI: 10.1155/2020/8867509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Experimental studies have shown that astrocytes participate in epilepsy through inducing the release of glutamate. Meanwhile, considering the disinhibition circuit among inhibitory neuronal populations with different time scales and the feedforward inhibition connection from thalamic relay nucleus to cortical inhibitory neuronal population, here, we propose a modified thalamocortical field model to systematically investigate the mechanism of epilepsy. Firstly, our results show that rich firing activities can be induced by astrocyte dysfunction, including high or low saturated state, high- or low-frequency clonic, spike-wave discharge (SWD), and tonic. More importantly, with the enhancement of feedforward inhibition connection, SWD and tonic oscillations will disappear. In other words, all these pathological waveforms can be suppressed or eliminated. Then, we explore the control effects after different external stimulations applying to thalamic neuronal population. We find that single-pulse stimulation can not only suppress but also induce pathological firing patterns, such as SWD, tonic, and clonic oscillations. And we further verify that deep brain stimulation can control absence epilepsy by regulating the amplitude and pulse width of stimulation. In addition, based on our modified model, 3 : 2 coordinated reset stimulation strategies with different intensities are compared and a more effective and safer stimulation mode is proposed. Our conclusions are expected to give more theoretical insights into the treatment of epilepsy.
Collapse
Affiliation(s)
- Honghui Zhang
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhuan Shen
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiangui Zhao
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luyao Yan
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Du
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zichen Deng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
19
|
Zaher N, Urban A, Antony A, Plummer C, Bagić A, Richardson RM, Kokkinos V. Ictal Onset Signatures Predict Favorable Outcomes of Laser Thermal Ablation for Mesial Temporal Lobe Epilepsy. Front Neurol 2020; 11:595454. [PMID: 33178129 PMCID: PMC7593673 DOI: 10.3389/fneur.2020.595454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Laser interstitial thermal therapy (LiTT) has emerged as a minimally invasive option for surgical treatment of refractory epilepsy. However, LiTT of the mesial temporal (MT) structures is still inferior to anterior temporal lobectomy (ATL) in terms of postoperative outcome. In this pilot study, we identify intracranial EEG (iEEG) biomarkers that distinguish patients with favorable outcome from those with poor outcome after MT LiTT. Methods: We performed a retrospective review of 9 adult refractory epilepsy patients who underwent stereotactic electroencephalography (sEEG) followed by LiTT of MT structures. Their iEEG was retrospectively reviewed in both time and frequency domains. Results: In the time-domain, the presence of sustained 14–30 Hz in MT electrodes coupled with its absence from extra-MT electrodes at ictal onset was highly correlated with favorable outcomes, whereas the appearance of sustained 14–30 Hz or >30 Hz activity in extra-MT sites was negatively correlated to favorable outcomes. In the frequency domain, a declining spectral phase, beginning at the high frequency range (>14 Hz) at ictal onset and following a smooth progressive decline toward lower frequencies as the seizure further evolved, was positively correlated with improved outcomes. On the contrary, low frequency (<14 Hz) patterns and “crescendo-decrescendo” patterns with an early increasing frequency component at ictal onset that reaches the high-beta and low gamma bands before decreasing smoothly, were both correlated with poor surgical outcomes. Conclusions: This pilot study demonstrates the first evidence that iEEG analysis can provide neurophysiological markers for successful MT LiTT and therefore we strongly advocate for systematic sEEG investigations before offering MT LiTT to TLE and MTLE patients.
Collapse
Affiliation(s)
- Naoir Zaher
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, United States
| | - Alexandra Urban
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, United States
| | - Arun Antony
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, United States
| | - Cheryl Plummer
- University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, United States
| | - Anto Bagić
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, United States
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Botterill JJ, Lu YL, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, Leary P, Scharfman HE. An Excitatory and Epileptogenic Effect of Dentate Gyrus Mossy Cells in a Mouse Model of Epilepsy. Cell Rep 2020; 29:2875-2889.e6. [PMID: 31775052 PMCID: PMC6905501 DOI: 10.1016/j.celrep.2019.10.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
The sparse activity of hippocampal dentate gyrus (DG) granule cells (GCs) is thought to be critical for cognition and behavior, whereas excessive DG activity may contribute to disorders such as temporal lobe epilepsy (TLE). Glutamatergic mossy cells (MCs) of the DG are potentially critical to normal and pathological functions of the DG because they can regulate GC activity through innervation of GCs or indirectly through GABAergic neurons. Here, we test the hypothesis that MC excitation of GCs is normally weak, but under pathological conditions, MC excitation of GCs is dramatically strengthened. We show that selectively inhibiting MCs during severe seizures reduced manifestations of those seizures, hippocampal injury, and chronic epilepsy. In contrast, selectively activating MCs was pro-convulsant. Mechanistic in vitro studies using optogenetics further demonstrated the unanticipated ability of MC axons to excite GCs under pathological conditions. These results demonstrate an excitatory and epileptogenic effect of MCs in the DG.
Collapse
Affiliation(s)
- Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Yi-Ling Lu
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Hannah L Bernstein
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
21
|
Villasana-Salazar B, Hernández-Soto R, Guerrero-Gómez ME, Ordaz B, Manrique-Maldonado G, Salgado-Puga K, Peña-Ortega F. Chronic intermittent hypoxia transiently increases hippocampal network activity in the gamma frequency band and 4-Aminopyridine-induced hyperexcitability in vitro. Epilepsy Res 2020; 166:106375. [PMID: 32745888 DOI: 10.1016/j.eplepsyres.2020.106375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Chronic intermittent hypoxia (CIH) is the most distinct feature of obstructive sleep apnea (OSA), a common breathing and sleep disorder that leads to several neuropathological consequences, including alterations in the hippocampal network and in seizure susceptibility. However, it is currently unknown whether these alterations are permanent or remit upon normal oxygenation. Here, we investigated the effects of CIH on hippocampal spontaneous network activity and hyperexcitability in vitro and explored whether these alterations endure or fade after normal oxygenation. Results showed that applying CIH for 21 days to adult rats increases gamma-band hippocampal network activity and aggravates 4-Aminopyridine-induced epileptiform activity in vitro. Interestingly, these CIH-induced alterations remit after 30 days of normal oxygenation. Our findings indicate that hippocampal network alterations and increased seizure susceptibility induced by CIH are not permanent and can be spontaneously reverted, suggesting that therapeutic interventions against OSA in patients with epilepsy, such as surgery or continuous positive airway pressure (CPAP), could be favorable for seizure control.
Collapse
Affiliation(s)
- Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - María Estefanía Guerrero-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Guadalupe Manrique-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
22
|
Nasseri M, Nurse E, Glasstetter M, Böttcher S, Gregg NM, Laks Nandakumar A, Joseph B, Pal Attia T, Viana PF, Bruno E, Biondi A, Cook M, Worrell GA, Schulze-Bonhage A, Dümpelmann M, Freestone DR, Richardson MP, Brinkmann BH. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia 2020; 61 Suppl 1:S25-S35. [PMID: 32497269 DOI: 10.1111/epi.16527] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023]
Abstract
Noninvasive wearable devices have great potential to aid the management of epilepsy, but these devices must have robust signal quality, and patients must be willing to wear them for long periods of time. Automated machine learning classification of wearable biosensor signals requires quantitative measures of signal quality to automatically reject poor-quality or corrupt data segments. In this study, commercially available wearable sensors were placed on patients with epilepsy undergoing in-hospital or in-home electroencephalographic (EEG) monitoring, and healthy volunteers. Empatica E4 and Biovotion Everion were used to record accelerometry (ACC), photoplethysmography (PPG), and electrodermal activity (EDA). Byteflies Sensor Dots were used to record ACC and PPG, the Activinsights GENEActiv watch to record ACC, and Epitel Epilog to record EEG data. PPG and EDA signals were recorded for multiple days, then epochs of high-quality, marginal-quality, or poor-quality data were visually identified by reviewers, and reviewer annotations were compared to automated signal quality measures. For ACC, the ratio of spectral power from 0.8 to 5 Hz to broadband power was used to separate good-quality signals from noise. For EDA, the rate of amplitude change and prevalence of sharp peaks significantly differentiated between good-quality data and noise. Spectral entropy was used to assess PPG and showed significant differences between good-, marginal-, and poor-quality signals. EEG data were evaluated using methods to identify a spectral noise cutoff frequency. Patients were asked to rate the usability and comfort of each device in several categories. Patients showed a significant preference for the wrist-worn devices, and the Empatica E4 device was preferred most often. Current wearable devices can provide high-quality data and are acceptable for routine use, but continued development is needed to improve data quality, consistency, and management, as well as acceptability to patients.
Collapse
Affiliation(s)
- Mona Nasseri
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ewan Nurse
- Seer Medical, Melbourne, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Glasstetter
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sebastian Böttcher
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicholas M Gregg
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Boney Joseph
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tal Pal Attia
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pedro F Viana
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.,Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Elisa Bruno
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Andrea Biondi
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Mark Cook
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory A Worrell
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas Schulze-Bonhage
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Dümpelmann
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | | | - Mark P Richardson
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Abstract
During the presurgical evaluation of patients with focal refractory epilepsies, the spatial mapping of the seizure onset zone (SOZ) and seizure propagation networks critically depends on the use of different features extracted from the intracranial electroencephalogram (IEEG). The identification of the SOZ is usually based on visual inspection by highly qualified neurophysiologists. However, quantitative IEEG analyses have recently been developed by exploiting signal and image characteristics in order to improve and expedite the SOZ detection. Here, the authors briefly review some of the latest methods proposed by different research groups and then present the recent implementation in Brainstorm software.
Collapse
|
24
|
Aeed F, Shnitzer T, Talmon R, Schiller Y. Layer- and Cell-Specific Recruitment Dynamics during Epileptic Seizures In Vivo. Ann Neurol 2019; 87:97-115. [PMID: 31657482 DOI: 10.1002/ana.25628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the network dynamics mechanisms underlying differential initiation of epileptic interictal spikes and seizures. METHODS We performed combined in vivo 2-photon calcium imaging from different targeted neuronal subpopulations and extracellular electrophysiological recordings during 4-aminopyridine-induced neocortical spikes and seizures. RESULTS Both spikes and seizures were associated with intense synchronized activation of excitatory layer 2/3 pyramidal neurons (PNs) and to a lesser degree layer 4 neurons, as well as inhibitory parvalbumin-expressing interneurons (INs). In sharp contrast, layer 5 PNs and somatostatin-expressing INs were gradually and asynchronously recruited into the ictal activity during the course of seizures. Within layer 2/3, the main difference between onset of spikes and seizures lay in the relative recruitment dynamics of excitatory PNs compared to parvalbumin- and somatostatin-expressing inhibitory INs. Whereas spikes exhibited balanced recruitment of PNs and parvalbumin-expressing INs, during seizures IN responses were reduced and less synchronized than in layer 2/3 PNs. Similar imbalance was not observed in layers 4 or 5 of the neocortex. Machine learning-based algorithms we developed were able to distinguish spikes from seizures based solely on activation dynamics of layer 2/3 PNs at discharge onset. INTERPRETATION During onset of seizures, the recruitment dynamics markedly differed between neuronal subpopulations, with rapid synchronous recruitment of layer 2/3 PNs, layer 4 neurons, and parvalbumin-expressing INs and gradual asynchronous recruitment of layer 5 PNs and somatostatin-expressing INs. Seizures initiated in layer 2/3 due to a dynamic mismatch between local PNs and inhibitory INs, and only later spread to layer 5 by gradually and asynchronously recruiting PNs in this layer. ANN NEUROL 2020;87:97-115.
Collapse
Affiliation(s)
- Fadi Aeed
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Shnitzer
- Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Talmon
- Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
25
|
de Curtis M, Uva L, Lévesque M, Biella G, Avoli M. Piriform cortex ictogenicity in vitro. Exp Neurol 2019; 321:113014. [DOI: 10.1016/j.expneurol.2019.113014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 02/05/2023]
|
26
|
Bandarabadi M, Gast H, Rummel C, Bassetti C, Adamantidis A, Schindler K, Zubler F. Assessing Epileptogenicity Using Phase-Locked High Frequency Oscillations: A Systematic Comparison of Methods. Front Neurol 2019; 10:1132. [PMID: 31749757 PMCID: PMC6842969 DOI: 10.3389/fneur.2019.01132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/10/2019] [Indexed: 01/21/2023] Open
Abstract
High frequency oscillations (HFOs) are traditional biomarkers to identify the epileptogenic tissue during presurgical evaluation in pharmacoresistant epileptic patients. Recently, the resection of brain tissue exhibiting coupling between the amplitude of HFOs and the phase of low frequencies demonstrated a more favorable surgical outcome. Here we compare the predictive value of ictal HFOs and four methods for quantifying the ictal phase-amplitude coupling, namely mean vector length, phase-locked high gamma, phase locking value, and modulation index (MI). We analyzed 32 seizures from 16 patients to identify the channels that exhibit HFOs and phase-locked HFOs during seizures. We compared the resection ratio, defined as the percentage of channels exhibiting coupling located in the resected tissue, with the postsurgical outcome. We found that the MI is the only method to show a significant difference between the resection ratios of patients with good and poor outcomes. We further show that the whole seizure, not only the onset, is critical to assess epileptogenicity using the phase-locked HFOs. We postulate that the superiority of MI stems from its capacity to assess coupling of discrete HFO events and its independence from the HFO power. These results confirm that quantitative analysis of HFOs can boost presurgical evaluation and indicate the paramount importance of algorithm selection for clinical applications.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Neurology, Center for Experimental Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Heidemarie Gast
- Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Neurology, Center for Experimental Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Neurology, Center for Experimental Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Frederic Zubler
- Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Sharopov S, Winkler P, Uehara R, Lombardi A, Halbhuber L, Okabe A, Luhmann HJ, Kilb W. Allopregnanolone augments epileptiform activity of an in-vitro mouse hippocampal preparation in the first postnatal week. Epilepsy Res 2019; 157:106196. [PMID: 31499340 DOI: 10.1016/j.eplepsyres.2019.106196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
In the immature brain the neurotransmitter γ-amino butyric acid (GABA) mediates a membrane depolarization and can contribute to both, inhibition and excitation. Therefore the consequences of a positive modulation of GABA(A) receptors by neurosteroids on epileptiform activity are hard to predict. In order to analyze whether neurosteroids attenuate or exaggerate epileptiform activity in the immature brain, we investigated the effect of the neurosteroid allopregnanolone on epileptiform activity in an in-toto hippocampus preparation of early postnatal mice (postnatal days 4-7) using field potential recordings. These in-vitro experiments revealed that 0.5 μmol/L allopregnanolone had no effect on ictal-like epileptiform activity, but increased the occurrence of interictal epileptiform events. The allopregnanolone-induced enhancement of interictal epileptiform activity could be blocked by a selective inhibition of synaptic GABAA receptors. In contrast, allopregnanolone had no effect on interictal epileptiform activity upon enhanced extrasynaptic GABAergic activity. Patch-clamp experiments demonstrated that allopregnanolone prolonged the decay of GABAergic postsynaptic currents, but had no effect on tonic GABAergic currents. We conclude from these results that allopregnanolone can enhance excitability in the immature hippocampus viaprolonged synaptic GABAergic currents. This potential effect of neurosteroids on brain excitability should be considered if they are applied as anticonvulsants to premature or early postnatal babies.
Collapse
Affiliation(s)
- Salim Sharopov
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120, Mainz, Germany
| | - Paula Winkler
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120, Mainz, Germany
| | - Rie Uehara
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Aniello Lombardi
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120, Mainz, Germany
| | - Lisa Halbhuber
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120, Mainz, Germany
| | - Akihito Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan; Department of Nutritional Sciences, Faculty of Health and Welfare, Seinan Jo Gakuin University, 1-3-5 Ibori, Kokurakita-ku, Kitakyushu, Fukuoka, 803-0835, Japan
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120, Mainz, Germany.
| |
Collapse
|
28
|
Kassiri H, Chen FD, Salam MT, Chang M, Vatankhahghadim B, Carlen P, Valiante TA, Genov R. Arbitrary-Waveform Electro-Optical Intracranial Neurostimulator With Load-Adaptive High-Voltage Compliance. IEEE Trans Neural Syst Rehabil Eng 2019; 27:582-593. [PMID: 30802868 DOI: 10.1109/tnsre.2019.2900455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A hybrid 16-channel current-mode and the 8-channel optical implantable neurostimulating system is presented. The system generates arbitrary-waveform charge-balanced current-mode electrical pulses with an amplitude ranging from 50 [Formula: see text] to 10 mA. An impedance monitoring feedback loop is employed to automatically adjust the supply voltage, yielding a load-optimized power dissipation. The 8-channel optical stimulator drives an array of LEDs, each with a maximum of 25 mA current amplitude, and reuses the arbitrary-waveform generation function of the electrical stimulator. The LEDs are assembled within a custom-made 4×4 ECoG grid electrode array, enabling precise optical stimulation of neurons with a 300 [Formula: see text] pitch between the LEDs and simultaneous monitoring of the neural response by the ECoG electrode, at different distances of the stimulation site. The hybrid stimulation system is implemented on a mini-PCB, and receives power and stimulation commands inductively through a second board and a coil stacked on top of it. The entire system is sized at 3×2 . 5×1 cm3 and weighs 7 grams. The system efficacy for electrical and optical stimulation is validated in-vivo using separate chronic and acute experiments.
Collapse
|
29
|
Long-Term, Targeted Delivery of GDNF from Encapsulated Cells Is Neuroprotective and Reduces Seizures in the Pilocarpine Model of Epilepsy. J Neurosci 2019; 39:2144-2156. [PMID: 30665947 DOI: 10.1523/jneurosci.0435-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the desired brain region. We have developed an encapsulated cell technology that overcomes these obstacles by providing a targeted, continuous, de novo synthesized source of high levels of neurotrophic molecules from human clonal ARPE-19 cells encapsulated into hollow fiber membranes. Here we illustrate the potential of this approach for delivering glial cell line-derived neurotrophic factor (GDNF) directly to the hippocampus of epileptic rats. In vivo studies demonstrated that bilateral intrahippocampal implants continued to secrete GDNF that produced high hippocampal GDNF tissue levels in a long-term manner. Identical implants robustly reduced seizure frequency in the pilocarpine model. Seizures were reduced rapidly, and this effect increased in magnitude over 3 months, ultimately leading to a reduction of seizures by 93%. This effect persisted even after device removal, suggesting potential disease-modifying benefits. Importantly, seizure reduction was associated with normalized changes in anxiety and improved cognitive performance. Immunohistochemical analyses revealed that the neurological benefits of GDNF were associated with the normalization of anatomical alterations accompanying chronic epilepsy, including hippocampal atrophy, cell degeneration, loss of parvalbumin-positive interneurons, and abnormal neurogenesis. These effects were associated with the activation of GDNF receptors. All in all, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner, paving the way for continuing preclinical evaluation and eventual clinical translation of this approach for epilepsy.SIGNIFICANCE STATEMENT Epilepsy is one of the most common neurological conditions, affecting millions of individuals of all ages. These patients experience debilitating seizures that frequently increase over time and can associate with significant cognitive decline and psychiatric disorders that are generally poorly controlled by pharmacotherapy. We have developed a clinically validated, implantable cell encapsulation system that delivers high and consistent levels of GDNF directly to the brain. In epileptic animals, this system produced a progressive and permanent reduction (>90%) in seizure frequency. These benefits were accompanied by improvements in cognitive and anxiolytic behavior and the normalization of changes in CNS anatomy that underlie chronic epilepsy. Together, these data suggest a novel means of tackling the frequently intractable neurological consequences of this devastating disorder.
Collapse
|
30
|
Lévesque M, Avoli M. High-frequency oscillations and focal seizures in epileptic rodents. Neurobiol Dis 2018; 124:396-407. [PMID: 30590178 DOI: 10.1016/j.nbd.2018.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 01/09/2023] Open
Abstract
High-pass filtering (> 80 Hz) of EEG signals has enabled neuroscientists to analyze high-frequency oscillations (HFOs; i.e., ripples: 80-200 Hz and fast ripples: 250-500 Hz) in epileptic patients presenting with focal seizures and in animal models mimicking this condition. Evidence obtained from these studies indicate that HFOs mirror pathological network activity that may initiate and sustain ictogenesis and epileptogenesis. HFOs are observed in temporal lobe regions of epileptic animals during interictal periods but they also occur before seizure onset and during the ictal period, suggesting that they can pinpoint to the mechanisms of seizure generation. Accordingly, ripples and fast ripples predominate during two specific seizure onset patterns termed low-voltage fast and hypersynchronous, respectively. In this review we will: (i) summarize these experimental studies; (ii) consider the evolution of HFOs over time during epileptogenesis; (iii) address data obtained with optogenetic stimulating procedures both in vitro and in vivo, and (iv) take into account the impact of anti-epileptic drugs on HFOs. We expect these findings to contribute to understanding the neuronal mechanisms leading to ictogenesis and epileptogenesis thus leading to the development of mechanistically targeted anti-epileptic strategies.
Collapse
Affiliation(s)
| | - Massimo Avoli
- Montreal Neurological Institute, Canada; Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada; Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
31
|
Adkinson JA, Karumuri B, Hutson TN, Liu R, Alamoudi O, Vlachos I, Iasemidis L. Connectivity and Centrality Characteristics of the Epileptogenic Focus Using Directed Network Analysis. IEEE Trans Neural Syst Rehabil Eng 2018; 27:22-30. [PMID: 30561346 DOI: 10.1109/tnsre.2018.2886211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate epileptogenic focus localization is required prior to surgical resection of brain tissue for the treatment of patients with antiepileptic drug-resistant (intractable) epilepsy. This clinical need is only partially fulfilled through a subjective, and at times inconclusive, the evaluation of the recorded electroencephalogram (EEG) at seizures' onset (the so-called gold standard for focus localization in epilepsy). We herein present a novel method of multivariate analysis of the EEG that appears to be very promising for an objective and robust localization of the epileptogenic focus at seizures' onset. Using the measure of generalized partial directed coherence, combined with surrogate data analysis, we first estimated from multichannel intracranial EEG the statistically significant causal interactions between brain regions at the onset of 92 clinical seizures from nine patients with temporal lobe intractable epilepsy. From the networks that were formed based on the thus derived interactions, a set of centrality metrics was estimated per network node (brain site). Brain sites located anatomically within the epileptogenic focus were shown to be associated with greater inward centrality values than non-focal brain regions at high frequencies ( γ band), and particular inward centrality metrics accurately localized the focus in all nine patients. In addition to focus localization from seizure (ictal) onset, the developed novel framework for analysis of EEG could be employed to identify the changes of the focal network over time, peri-ictally and interictally, and thus shed light onto the dynamics of ictogenesis, which could then have a significant impact on automated prediction and closed-loop control of seizures by neuromodulation.
Collapse
|
32
|
Abstract
PURPOSE It has been challenging to detect early changes preceding seizure onset in patients with epilepsy. This study investigated the preictal discharges (PIDs) by intracranial electroencephalogram of 11 seizures from 7 patients with mesial temporal lobe epilepsy. METHODS The EEG segments consisting of 30 seconds before ictal onset and 5 seconds after ictal onset were selected for analysis. After PID detection, the amplitude and interval were measured. According to the timing of PID onset, the 30-second period preceding seizure onset was divided into two stages: before PID stage and PID stage. The autocorrelation coefficients during the two stages were calculated and compared. RESULTS Preictal discharge amplitude progressively increased, while PID interval gradually decreased toward seizure onset. The autocorrelation coefficients of PID channels were significantly higher during PID stage than before PID stage. There was an overlap between channels with PIDs and seizure onset channels (80.77%). CONCLUSIONS Preictal discharges emerge prior to ictal event, with a dynamic change and a spatial correlation with seizure onset zone. These findings deepen our understanding of seizure generation and help early prediction and localization of seizure onset zone.
Collapse
|
33
|
Gnatkovsky V, Pelliccia V, de Curtis M, Tassi L. Two main focal seizure patterns revealed by intracerebral electroencephalographic biomarker analysis. Epilepsia 2018; 60:96-106. [DOI: 10.1111/epi.14610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Vadym Gnatkovsky
- Epilepsy Unit; Institute of Cure, Recovery, and Scientific Research (IRCCS) Foundation Carlo Besta Neurological Institute; Milan Italy
| | | | - Marco de Curtis
- Epilepsy Unit; Institute of Cure, Recovery, and Scientific Research (IRCCS) Foundation Carlo Besta Neurological Institute; Milan Italy
| | - Laura Tassi
- Claudio Munari Epilepsy Surgery Center; Niguarda Hospital; Milan Italy
| |
Collapse
|
34
|
Weiss SA, Staba R, Bragin A, Moxon K, Sperling M, Avoli M, Engel J. "Interneurons and principal cell firing in human limbic areas at focal seizure onset". Neurobiol Dis 2018; 124:183-188. [PMID: 30471414 DOI: 10.1016/j.nbd.2018.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shennan A Weiss
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Richard Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anatol Bragin
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen Moxon
- Dept. of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Michael Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Avoli
- Montreal Neurological Institute, Depts. of Neurology & Neurosurgery and of Physiology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Dept. of Neurobiology, Dept. of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Dulla CG, Janigro D, Jiruska P, Raimondo JV, Ikeda A, Lin CCK, Goodkin HP, Galanopoulou AS, Bernard C, de Curtis M. How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK1-WG4 group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:460-473. [PMID: 30525115 PMCID: PMC6276782 DOI: 10.1002/epi4.12277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
In vitro brain tissue preparations allow the convenient and affordable study of brain networks and have allowed us to garner molecular, cellular, and electrophysiologic insights into brain function with a detail not achievable in vivo. Preparations from both rodent and human postsurgical tissue have been utilized to generate in vitro electrical activity similar to electrographic activity seen in patients with epilepsy. A great deal of knowledge about how brain networks generate various forms of epileptiform activity has been gained, but due to the multiple in vitro models and manipulations used, there is a need for a standardization across studies. Here, we describe epileptiform patterns generated using in vitro brain preparations, focusing on issues and best practices pertaining to recording, reporting, and interpretation of the electrophysiologic patterns observed. We also discuss criteria for defining in vitro seizure‐like patterns (i.e., ictal) and interictal discharges. Unifying terminologies and definitions are proposed. We suggest a set of best practices for reporting in vitro studies to favor both efficient across‐lab comparisons and translation to in vivo models and human studies.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience Tufts University School of Medicine Boston Massachusetts U.S.A
| | - Damir Janigro
- Flocel Inc. and Case Western Reserve University Cleveland Ohio U.S.A
| | - Premysl Jiruska
- Department of Developmental Epileptology Institute of Physiology of the Czech Academy of Sciences Prague Czechia
| | - Joseph V Raimondo
- Division of Cell Biology and Neuroscience Institute Department of Human Biology Faculty of Health Sciences University of Cape Town Cape Town South Africa
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Chou-Ching K Lin
- Department of Neurology National Cheng Kung University Hospital College of Medicine National Cheng Kung University Tainan Taiwan
| | - Howard P Goodkin
- The Departments of Neurology and Pediatrics University of Virginia Charlottesville Virginia U.S.A
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, and Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| | | | - Marco de Curtis
- Epilepsy Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milano Italy
| |
Collapse
|
36
|
Elahian B, Lado NE, Mankin E, Vangala S, Misra A, Moxon K, Fried I, Sharan A, Yeasin M, Staba R, Bragin A, Avoli M, Sperling MR, Engel J, Weiss SA. Low-voltage fast seizures in humans begin with increased interneuron firing. Ann Neurol 2018; 84:588-600. [PMID: 30179277 DOI: 10.1002/ana.25325] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Intracellular recordings from cells in entorhinal cortex tissue slices show that low-voltage fast (LVF) onset seizures are generated by inhibitory events. Here, we determined whether increased firing of interneurons occurs at the onset of spontaneous mesial-temporal LVF seizures recorded in patients. METHODS The seizure onset zone (SOZ) was identified using visual inspection of the intracranial electroencephalogram. We used wavelet clustering and temporal autocorrelations to characterize changes in single-unit activity during the onset of LVF seizures recorded from microelectrodes in mesial-temporal structures. Action potentials generated by principal neurons and interneurons (ie, putative excitatory and inhibitory neurons) were distinguished using waveform morphology and K-means clustering. RESULTS From a total of 200 implanted microelectrodes in 9 patients during 13 seizures, we isolated 202 single units; 140 (69.3%) of these units were located in the SOZ, and 40 (28.57%) of them were classified as inhibitory. The waveforms of both excitatory and inhibitory units remained stable during the LVF epoch (p > > 0.05). In the mesial-temporal SOZ, inhibitory interneurons increased their firing rate during LVF seizure onset (p < 0.01). Excitatory neuron firing rates peaked 10 seconds after the inhibitory neurons (p < 0.01). During LVF spread to the contralateral mesial temporal lobe, an increase in inhibitory neuron firing rate was also observed (p < 0.01). INTERPRETATION Our results suggest that seizure generation and spread during spontaneous mesial-temporal LVF onset events in humans may result from increased inhibitory neuron firing that spawns a subsequent increase in excitatory neuron firing and seizure evolution. Ann Neurol 2018;84:588-600.
Collapse
Affiliation(s)
- Bahareh Elahian
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA.,Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN
| | - Nathan E Lado
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Emily Mankin
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sitaram Vangala
- Department of Medicine, Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amrit Misra
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Karen Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Jerome Engel
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Shennan A Weiss
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
37
|
A Blind Module Identification Approach for Predicting Effective Connectivity Within Brain Dynamical Subnetworks. Brain Topogr 2018; 32:28-65. [PMID: 30076488 DOI: 10.1007/s10548-018-0666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
Model-based network discovery measures, such as the brain effective connectivity, require fitting of generative process models to measurements obtained from key areas across the network. For distributed dynamic phenomena, such as generalized seizures and slow-wave sleep, studying effective connectivity from real-time recordings is significantly complicated since (i) outputs from only a subnetwork can be practically measured, and (ii) exogenous subnetwork inputs are unobservable. Model fitting, therefore, constitutes a challenging blind module identification or model inversion problem for finding both the parameters and the many unknown inputs of the subnetwork. We herein propose a novel estimation framework for identifying nonlinear dynamic subnetworks in the case of slowly-varying, otherwise unknown local inputs. Starting with approximate predictions obtained using Cubature Kalman filtering, residuals of local output predictions are utilized to improve upon local input estimates. The algorithm performance is tested on both simulated and clinical EEG of induced seizures under electroconvulsive therapy (ECT). For the simulated network, the algorithm significantly boosted the estimation accuracy for inputs and connections from noisy EEG. For the clinical data, the algorithm predicted increased subnetwork inputs during the pre-stimulus anesthesia condition. Importantly, it predicted an increased frontocentral connectivity during the generalized seizure that is commensurate with electrode placement and that corroborates the clinical hypothesis of increased frontal focality of therapeutic ECT seizures. The proposed framework can be extended to account for several input configurations and can in principle be applied to study effective connectivity within brain subnetworks defined at the microscale (cortical lamina interaction) or at the macroscale (sensory integration).
Collapse
|
38
|
Ginatempo F, De Carli F, Todesco S, Mercante B, Sechi GP, Deriu F. Effects of acute trigeminal nerve stimulation on rest EEG activity in healthy adults. Exp Brain Res 2018; 236:2839-2845. [PMID: 30039458 DOI: 10.1007/s00221-018-5338-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Trigeminal nerve stimulation (TNS) is a non-invasive neuromodulation method which is increasingly used for its beneficial effects on symptoms of several neuropsychiatric disorders such as drug-resistant epilepsy. Sites and mechanisms of its action are still unknown. The present study was aimed at investigating the physiological effects of acute TNS on rest electroencephalographic (EEG) activity. EEG was recorded with a 19-channel EEG system from 18 healthy adults who underwent 20 min of sham- and real-TNS (cycles of 30 s ON and 30 s OFF) in two separate sessions. EEG was continuously acquired in the 10-min preceding TNS, during TNS in the "OFF" period and throughout 10 min after TNS. Mean frequency, total power over the 0.5-48 Hz frequency range and absolute power for delta, theta, alpha, beta and gamma bands were analyzed by a discrete Fast Fourier Transform algorithm. Interhemispheric and intrahemispheric coherences were also analyzed for each band at different time points. Intra- and interhemispheric coherences were significantly reduced for the beta frequencies only during real-TNS (p = 0.002 and p = 0.006, respectively). No TNS effect on the power spectra of any band was detected. A trend of increase in the mean EEG frequency total power during real-TNS (p = 0.03) and of decrease in interhemispheric gamma coherence after real-TNS (p = 0.01) was observed. Acute TNS may induce a spatially diffuse desynchronization of fast EEG rhythms in healthy adults, this desynchronization may underpin the antiepileptic effect of TNS described by clinical studies.
Collapse
Affiliation(s)
- Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Fabrizio De Carli
- Genoa Section, Institute of Bioimaging and Molecular Physiology, National Research Council, Genoa, Italy
| | - Sara Todesco
- Neurology Unit, «A. Segni» Hospital, ASL n. 1, Sassari, Italy
| | - Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Gian Pietro Sechi
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| |
Collapse
|
39
|
Aracri P, de Curtis M, Forcaia G, Uva L. Enhanced thalamo-hippocampal synchronization during focal limbic seizures. Epilepsia 2018; 59:1774-1784. [DOI: 10.1111/epi.14521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Patrizia Aracri
- Epilepsy Unit; Fondazione Istituto Neurologico Carlo Besta; Milano Italy
| | - Marco de Curtis
- Epilepsy Unit; Fondazione Istituto Neurologico Carlo Besta; Milano Italy
| | - Greta Forcaia
- Epilepsy Unit; Fondazione Istituto Neurologico Carlo Besta; Milano Italy
| | - Laura Uva
- Epilepsy Unit; Fondazione Istituto Neurologico Carlo Besta; Milano Italy
| |
Collapse
|
40
|
Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res 2018; 143:50-59. [DOI: 10.1016/j.eplepsyres.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
|
41
|
Lévesque M, Chen LY, Hamidi S, Avoli M. Dynamic interneuron-principal cell interplay leads to a specific pattern of in vitro ictogenesis. Neurobiol Dis 2018; 115:92-100. [PMID: 29635022 DOI: 10.1016/j.nbd.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 01/20/2023] Open
Abstract
Ictal discharges induced by 4-aminopyridine in the in vitro rodent entorhinal cortex present with either low-voltage fast or sudden onset patterns. The role of interneurons in initiating low-voltage fast onset ictal discharges is well established but the processes leading to sudden onset ictal discharges remain unclear. We analysed here the participation of interneurons (n = 75) and principal cells (n = 13) in the sudden onset pattern by employing in vitro tetrode wire recordings in the entorhinal cortex of brain slices from Sprague-Dawley rats. Ictal discharges emerged from a background of frequently occurring interictal spikes that were associated to a specific interneuron/principal cell interplay. High rates of interneuron firing occurred 12 ms before interictal spike onset while principal cells fired later during low interneuron firing. In contrast, the onset of sudden ictal discharges was characterized by increased firing from principal cells 627 ms before ictal onset whereas interneurons increased their firing rates 161 ms before ictal onset. Our data show that sudden onset ictogenesis is associated with frequently occurring interictal spikes resting on the interplay between interneurons and principal cells while ictal discharges stem from enhanced principal cell firing leading to increased interneuron activity. These findings indicate that specific patterns of interactions between interneurons and principal cells shape interictal and ictal discharges with sudden onset in the rodent entorhinal cortex. We propose that specific neuronal interactions lead to the generation of distinct onset patterns in focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, H3A 2B4, Qc, Canada
| | - Li-Yuan Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, H3A 2B4, Qc, Canada
| | - Shabnam Hamidi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, H3A 2B4, Qc, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery and Department of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, Qc, Canada.
| |
Collapse
|
42
|
Janca R, Krsek P, Jezdik P, Cmejla R, Tomasek M, Komarek V, Marusic P, Jiruska P. The Sub-Regional Functional Organization of Neocortical Irritative Epileptic Networks in Pediatric Epilepsy. Front Neurol 2018; 9:184. [PMID: 29628910 PMCID: PMC5876241 DOI: 10.3389/fneur.2018.00184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Between seizures, irritative network generates frequent brief synchronous activity, which manifests on the EEG as interictal epileptiform discharges (IEDs). Recent insights into the mechanism of IEDs at the microscopic level have demonstrated a high variance in the recruitment of neuronal populations generating IEDs and a high variability in the trajectories through which IEDs propagate across the brain. These phenomena represent one of the major constraints for precise characterization of network organization and for the utilization of IEDs during presurgical evaluations. We have developed a new approach to dissect human neocortical irritative networks and quantify their properties. We have demonstrated that irritative network has modular nature and it is composed of multiple independent sub-regions, each with specific IED propagation trajectories and differing in the extent of IED activity generated. The global activity of the irritative network is determined by long-term and circadian fluctuations in sub-region spatiotemporal properties. Also, the most active sub-region co-localizes with the seizure onset zone in 12/14 cases. This study demonstrates that principles of recruitment variability and propagation are conserved at the macroscopic level and that they determine irritative network properties in humans. Functional stratification of the irritative network increases the diagnostic yield of intracranial investigations with the potential to improve the outcomes of surgical treatment of neocortical epilepsy.
Collapse
Affiliation(s)
- Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Pavel Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czechia
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Roman Cmejla
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Martin Tomasek
- Department of Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czechia
| | - Vladimir Komarek
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czechia
| | - Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
43
|
Fan X, Gaspard N, Legros B, Lucchetti F, Ercek R, Nonclercq A. Dynamics underlying interictal to ictal transition in temporal lobe epilepsy: insights from a neural mass model. Eur J Neurosci 2018; 47:258-268. [PMID: 29282779 DOI: 10.1111/ejn.13812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Abstract
We propose an approach that combines a neural mass model and clinical intracranial electroencephalographic (iEEG) recordings to explore the potential pathophysiological mechanisms (at the neuronal population level) of ictogenesis. Thirty iEEG recordings from 10 temporal lobe epilepsy (TLE) patients around seizure onset were investigated. Physiologically meaningful parameters [average excitatory (Ae ), slow (B), and fast (G) inhibitory synaptic gain] were identified during interictal to ictal transition. Four ratios (Ae /G, Ae /B, Ae /(B + G), and B/G) were derived from these parameters, and their evolution over time was analyzed. The excitation/inhibition ratio increased around seizure onset and decreased before seizure offset, indicating the impairment and re-emergence of excitation/inhibition balance around seizure onset and before seizure offset, respectively. Moreover, the slow inhibition may have an earlier effect on excitation/inhibition imbalance. We confirm the decrease in excitation/inhibition ratio upon seizure termination in human temporal lobe epilepsy, as revealed by optogenetic approaches both in vivo in animal models and in vitro. The increase in excitation/inhibition ratio around seizure occurrence could be an indicator to detect seizures.
Collapse
Affiliation(s)
- Xiaoya Fan
- Bio, Electro And Mechanical Systems (BEAMS), Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 CP165/56, 1050, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Benjamin Legros
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Federico Lucchetti
- Bio, Electro And Mechanical Systems (BEAMS), Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 CP165/56, 1050, Brussels, Belgium.,Laboratoire de Neurophysiologie Sensorielle et Cognitive, Hôpital Brugmann, Brussels, Belgium
| | - Rudy Ercek
- Laboratories of Image, Signal processing and Acoustics (LISA), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antoine Nonclercq
- Bio, Electro And Mechanical Systems (BEAMS), Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 CP165/56, 1050, Brussels, Belgium
| |
Collapse
|
44
|
Heers M, Helias M, Hedrich T, Dümpelmann M, Schulze-Bonhage A, Ball T. Spectral bandwidth of interictal fast epileptic activity characterizes the seizure onset zone. NEUROIMAGE-CLINICAL 2017. [PMID: 29527491 PMCID: PMC5842664 DOI: 10.1016/j.nicl.2017.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The foremost aim of presurgical epilepsy evaluation is the delineation of the seizure onset zone (SOZ). There is increasing evidence that fast epileptic activity (FEA, 14–250 Hz) occurring interictally, i.e. between seizures, is predominantly localized within the SOZ. Currently it is unknown, which frequency band of FEA performs best in identifying the SOZ, although prior studies suggest highest concordance of spectral changes with the SOZ for high frequency changes. We suspected that FEA reflects dampened oscillations in local cortical excitatory-inhibitory neural networks, and that interictal FEA in the SOZ is a consequence of reduced oscillatory damping. We therefore predict a narrowing of the spectral bandwidth alongside increased amplitudes of spectral peaks during interictal FEA events. To test this hypothesis, we evaluated spectral changes during interictal FEA in invasive EEG (iEEG) recordings of 13 patients with focal epilepsy. In relative spectra of beta and gamma band changes (14–250 Hz) during FEA, we found that spectral peaks within the SOZ indeed were significantly more narrow-banded and their power changes were significantly higher than outside the SOZ. In contrast, the peak frequency did not differ within and outside the SOZ. Our results show that bandwidth and power changes of spectral modulations during FEA both help localizing the SOZ. We propose the spectral bandwidth as new source of information for the evaluation of EEG data. Invasive EEG spectral bandwidth changes differ in and outside seizure onset zone. Peak frequency of invasive EEG spectral changes was not informative. Model of dampened oscillator explains the observed spectral bandwidth changes. Spectral bandwidth changes are a novel diagnostic feature.
Collapse
Affiliation(s)
- Marcel Heers
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany.
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulations (IAS-6), Jülich Research Centre and JARA, Jülich, Germany
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| | - Tonio Ball
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| |
Collapse
|
45
|
Chang M, Dian JA, Dufour S, Wang L, Moradi Chameh H, Ramani M, Zhang L, Carlen PL, Womelsdorf T, Valiante TA. Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation. Neurobiol Dis 2017; 109:102-116. [PMID: 29024712 DOI: 10.1016/j.nbd.2017.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 09/12/2017] [Accepted: 10/08/2017] [Indexed: 12/14/2022] Open
Abstract
Activation of γ-aminobutyric acid (GABAA) receptors have been associated with the onset of epileptiform events. To investigate if a causal relationship exists between GABAA receptor activation and ictal event onset, we activated inhibitory GABAergic networks in the superficial layer (2/3) of the somatosensory cortex during hyperexcitable conditions using optogenetic techniques in mice expressing channelrhodopsin-2 in all GABAergic interneurons. We found that a brief 30ms light pulse reliably triggered either an interictal-like event (IIE) or ictal-like ("ictal") event in the in vitro cortical 4-Aminopyridine (4-AP) slice model. The link between light pulse and epileptiform event onset was lost following blockade of GABAA receptors with bicuculline methiodide. Additionally, recording the chronological sequence of events following a light pulse in a variety of configurations (whole-cell, gramicidin-perforated patch, and multi-electrode array) demonstrated an initial hyperpolarization followed by post-inhibitory rebound spiking and a subsequent slow depolarization at the transition to epileptiform activity. Furthermore, the light-triggered ictal events were independent of the duration or intensity of the initiating light pulse, suggesting an underlying regenerative mechanism. Moreover, we demonstrated that brief GABAA receptor activation can initiate ictal events in the in vivo 4-AP mouse model, in another common in vitro model of epileptiform activity, and in neocortical tissue resected from epilepsy patients. Our findings reveal that the synchronous activation of GABAergic interneurons is a robust trigger for ictal event onset in hyperexcitable cortical networks.
Collapse
Affiliation(s)
- Michael Chang
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Joshua A Dian
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Suzie Dufour
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Lihua Wang
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Homeira Moradi Chameh
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Meera Ramani
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Liang Zhang
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter L Carlen
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Taufik A Valiante
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Interneuronal Network Activity at the Onset of Seizure-Like Events in Entorhinal Cortex Slices. J Neurosci 2017; 37:10398-10407. [PMID: 28947576 DOI: 10.1523/jneurosci.3906-16.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 12/19/2022] Open
Abstract
The onset of focal seizures in humans and in different animal models of focal epilepsy correlates with reduction of neuronal firing and enhanced interneuronal network activity. Whether this phenomenon contributes to seizure generation is still unclear. We used the in vitro entorhinal cortex slices bathed in 4-aminopirydine (4-AP) as an experimental paradigm model to evaluate the correlation between interneuronal GABAergic network activity and seizure-like events. Epileptiform discharges were recorded in layer V-VI pyramidal neurons and fast-spiking interneurons in slices from male and female mice and in the isolated female guinea pig brain preparation during perfusion with 4-AP. We observed that 90% of seizure-like events recorded in principal cells were preceded by outward currents coupled with extracellular potassium shifts, abolished by pharmacological blockade of GABAA receptors. Potassium elevations associated to GABAA receptor-mediated population events were confirmed in the entorhinal cortex of the in vitro isolated whole guinea pig brain. Fast-rising and sustained extracellular potassium increases associated to interneuronal network activity consistently preceded the initiation of seizure-like events. We conclude that in the 4-AP seizure model, interneuronal network activity occurs before 4-AP-induced seizures and therefore supports a role of interneuron activity in focal seizure generation.SIGNIFICANCE STATEMENT The paper focuses on the mechanisms of ictogenesis, a topic that requires a step beyond the simplistic view that seizures, and epilepsy, are due to an increase of excitatory network activity. Focal temporal lobe seizures in humans and in several experimental epilepsies likely correlate with a prevalent activation of interneurons. The potassium channel blocker 4-aminopyridine reliably induces seizure-like events in temporal lobe structures. Herein, we show that a majority of seizures in the entorhinal cortex starts with interneuronal network activity accompanied by a fast and sustained increase in extracellular potassium. Our new findings reinforce and add a new piece of evidence to the proposal that limbic seizures can be supported by GABAergic hyperactivity.
Collapse
|
47
|
Sato Y, Wong SM, Iimura Y, Ochi A, Doesburg SM, Otsubo H. Spatiotemporal changes in regularity of gamma oscillations contribute to focal ictogenesis. Sci Rep 2017; 7:9362. [PMID: 28839247 PMCID: PMC5570997 DOI: 10.1038/s41598-017-09931-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/02/2017] [Indexed: 01/10/2023] Open
Abstract
In focal ictogenesis, gamma oscillations (30–70 Hz) recorded by electroencephalography (EEG) are related to the epileptiform synchronization of interneurons that links the seizure onset zone (SOZ) to the surrounding epileptogenic zone. We hypothesized that the synchronization of interneurons could be detected as changes in the regularity of gamma oscillation rhythmicity. We used multiscale entropy (MSE) analysis, which can quantify the regularity of EEG rhythmicity, to investigate how the regularity of gamma oscillations changes over the course of a seizure event. We analyzed intracranial EEG data from 13 pediatric patients with focal cortical dysplasia. The MSE analysis revealed the following characteristic changes of MSE score (gamma oscillations): (1) during the interictal periods, the lowest MSE score (the most regular gamma oscillations) was always found in the SOZ; (2) during the preictal periods, the SOZ became more similar to the epileptogenic zone as the MSE score increased in the SOZ (gamma oscillations became less regular in the SOZ); and (3) during the ictal periods, a decreasing MSE score (highly regular gamma oscillations) propagated over the epileptogenic zone. These spatiotemporal changes in regularity of gamma oscillations constitute an important demonstration that focal ictogenesis is caused by dynamic changes in interneuron synchronization.
Collapse
Affiliation(s)
- Yosuke Sato
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan.
| | - Simeon M Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yasushi Iimura
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Shirozu H, Hashizume A, Masuda H, Ito Y, Nakayama Y, Higashijima T, Fukuda M, Kameyama S. Analysis of ictal magnetoencephalography using gradient magnetic-field topography (GMFT) in patients with neocortical epilepsy. Clin Neurophysiol 2017. [PMID: 28646743 DOI: 10.1016/j.clinph.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE We aimed to validate the usefulness of gradient magnetic-field topography (GMFT) for analysis of ictal magnetoencephalography (MEG) in patients with neocortical epilepsy. METHODS We identified 13 patients presenting with an ictal event during preoperative MEG. We applied equivalent current dipole (ECD) estimation and GMFT to detect and localize the ictal MEG onset, and compared these methods with the ictal onset zone (IOZ) derived from chronic intracranial electroencephalography. The surgical resection areas and outcomes were also evaluated. RESULTS GMFT detected and localized the ictal MEG onset in all patients, whereas ECD estimation showed localized ECDs in only 2. The delineation of GMFT was concordant with the IOZ at the gyral-unit level in 10 of 12 patients (83.3%). The detectability and precision of delineation of ictal MEG activity by GMFT were significantly superior to those of ECD (p<0.05 and p<0.01, respectively). Complete resection of the IOZ in the concordant group provided seizure freedom in 3 patients, whereas seizures remained in 9 patients who had incomplete resections. CONCLUSIONS Because of its higher spatial resolution, GMFT of ictal MEG is superior to conventional ECD estimation in patients with neocortical epilepsy. SIGNIFICANCE Ictal MEG study is a useful tool to estimate the seizure onset in patients with neocortical epilepsy.
Collapse
Affiliation(s)
- Hiroshi Shirozu
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, 1-14-1, Masago, Nishi-ku, Niigata 950-2085, Japan.
| | - Akira Hashizume
- Department of Neurosurgery, Takanobashi Central Hospital, 2-4-16, Kokutaiji-chou, Naka-ku, Hiroshima 730-0042, Japan
| | - Hiroshi Masuda
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, 1-14-1, Masago, Nishi-ku, Niigata 950-2085, Japan
| | - Yosuke Ito
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, 1-14-1, Masago, Nishi-ku, Niigata 950-2085, Japan
| | - Yoko Nakayama
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, 1-14-1, Masago, Nishi-ku, Niigata 950-2085, Japan
| | - Takefumi Higashijima
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, 1-14-1, Masago, Nishi-ku, Niigata 950-2085, Japan
| | - Masafumi Fukuda
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, 1-14-1, Masago, Nishi-ku, Niigata 950-2085, Japan
| | - Shigeki Kameyama
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, 1-14-1, Masago, Nishi-ku, Niigata 950-2085, Japan
| |
Collapse
|
49
|
Jozwiak S, Becker A, Cepeda C, Engel J, Gnatkovsky V, Huberfeld G, Kaya M, Kobow K, Simonato M, Loeb JA. WONOEP appraisal: Development of epilepsy biomarkers-What we can learn from our patients? Epilepsia 2017; 58:951-961. [PMID: 28387933 PMCID: PMC5806696 DOI: 10.1111/epi.13728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Current medications for patients with epilepsy work in only two of three patients. For those medications that do work, they only suppress seizures. They treat the symptoms, but do not modify the underlying disease, forcing patients to take these drugs with significant side effects, often for the rest of their lives. A major limitation in our ability to advance new therapeutics that permanently prevent, reduce the frequency of, or cure epilepsy comes from a lack of understanding of the disease coupled with a lack of reliable biomarkers that can predict who has or who will get epilepsy. METHODS The main goal of this report is to present a number of approaches for identifying reliable biomarkers from observing patients with brain disorders that have a high probability of producing epilepsy. RESULTS A given biomarker, or more likely a profile of biomarkers, will have both a quantity and a time course during epileptogenesis that can be used to predict who will get the disease, to confirm epilepsy as a diagnosis, to identify coexisting pathologies, and to monitor the course of treatments. SIGNIFICANCE Additional studies in patients and animal models could identify common and clinically valuable biomarkers to successfully translate animal studies into new and effective clinical trials.
Collapse
Affiliation(s)
- Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Poland
- Department of Child Neurology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Albert Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Carlos Cepeda
- IDDRC, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Jerome Engel
- Departments of Neurology, Neurobiology, and Psychiatry & Biobehavioral Sciences and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Vadym Gnatkovsky
- Unit of Epilepsy and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gilles Huberfeld
- Sorbonne and UPMC University, AP-HP, Department of Neurophysiology, UPMC and La Pitié-Salpêtrière Hospital, Paris, France
- INSERM U1129, Paris Descartes University, PRES Sorbonne Paris, Cité, Paris, CEA, France
| | - Mehmet Kaya
- Department of Physiology, Koc University School of Medicine, Rumelifeneri Yolu, Sariver, Istanbul, Turkey
| | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Michele Simonato
- Department of Medical Sciences, University of Ferrara and Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, The University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
50
|
Gentiletti D, Suffczynski P, Gnatkovsky V, de Curtis M. Changes of Ionic Concentrations During Seizure Transitions - A Modeling Study. Int J Neural Syst 2017; 27:1750004. [PMID: 27802792 DOI: 10.1142/s0129065717500046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditionally, it is considered that neuronal synchronization in epilepsy is caused by a chain reaction of synaptic excitation. However, it has been shown that synchronous epileptiform activity may also arise without synaptic transmission. In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] ions, glial uptake and extracellular diffusion mechanisms. We show that the network behavior with fixed ionic concentrations may be quite different from the neurons' behavior when more detailed modeling of ionic dynamics is included. In particular, we show that in the extended model strong discharge of inhibitory interneurons may result in long lasting accumulation of extracellular [Formula: see text], which sustains the depolarization of the principal cells and causes their pathological discharges. This effect is not present in a reduced, purely synaptic network. These results point to the importance of nonsynaptic mechanisms in the transition to seizure.
Collapse
Affiliation(s)
- Damiano Gentiletti
- 1 Department of Biomedical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, Poland
| | - Piotr Suffczynski
- 1 Department of Biomedical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, Poland
| | - Vadym Gnatkovsky
- 2 Unit of Epileptology and Experimental Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, Milan, Italy
| | - Marco de Curtis
- 2 Unit of Epileptology and Experimental Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, Milan, Italy
| |
Collapse
|