1
|
Gruenbaum BF, Sandhu MRS, Bertasi RAO, Bertasi TGO, Schonwald A, Kurup A, Gruenbaum SE, Freedman IG, Funaro MC, Blumenfeld H, Sanacora G. Absence seizures and their relationship to depression and anxiety: Evidence for bidirectionality. Epilepsia 2021; 62:1041-1056. [PMID: 33751566 PMCID: PMC8443164 DOI: 10.1111/epi.16862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Absence seizures (AS), presenting as short losses of consciousness with staring spells, are a common manifestation of childhood epilepsy that is associated with behavioral, emotional, and social impairments. It has also been suggested that patients with AS are more likely to suffer from mood disorders such as depression and anxiety. This systematic review and meta-analysis synthesizes human and animal models that investigated mood disorders and AS. Of the 1019 scientific publications identified, 35 articles met the inclusion criteria for this review. We found that patients with AS had greater odds of developing depression and anxiety when compared to controls (odds ratio = 4.93, 95% confidence interval = 2.91-8.35, p < .01). The included studies further suggest a strong correlation between AS and depression and anxiety in the form of a bidirectional relationship. The current literature emphasizes that these conditions likely share underlying mechanisms, such as genetic predisposition, neurophysiology, and anatomical pathways. Further research will clarify this relationship and ensure more effective treatment for AS and mood disorders.
Collapse
Affiliation(s)
- Benjamin F Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Mani Ratnesh S Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Raphael A O Bertasi
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Tais G O Bertasi
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Antonia Schonwald
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anirudh Kurup
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Isaac G Freedman
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Crunelli V, Lőrincz ML, McCafferty C, Lambert RC, Leresche N, Di Giovanni G, David F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020; 143:2341-2368. [PMID: 32437558 PMCID: PMC7447525 DOI: 10.1093/brain/awaa072] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Absence seizures in children and teenagers are generally considered relatively benign because of their non-convulsive nature and the large incidence of remittance in early adulthood. Recent studies, however, show that 30% of children with absence seizures are pharmaco-resistant and 60% are affected by severe neuropsychiatric comorbid conditions, including impairments in attention, cognition, memory and mood. In particular, attention deficits can be detected before the epilepsy diagnosis, may persist even when seizures are pharmacologically controlled and are aggravated by valproic acid monotherapy. New functional MRI-magnetoencephalography and functional MRI-EEG studies provide conclusive evidence that changes in blood oxygenation level-dependent signal amplitude and frequency in children with absence seizures can be detected in specific cortical networks at least 1 min before the start of a seizure, spike-wave discharges are not generalized at seizure onset and abnormal cortical network states remain during interictal periods. From a neurobiological perspective, recent electrical recordings and imaging of large neuronal ensembles with single-cell resolution in non-anaesthetized models show that, in contrast to the predominant opinion, cortical mechanisms, rather than an exclusively thalamic rhythmogenesis, are key in driving seizure ictogenesis and determining spike-wave frequency. Though synchronous ictal firing characterizes cortical and thalamic activity at the population level, individual cortico-thalamic and thalamocortical neurons are sparsely recruited to successive seizures and consecutive paroxysmal cycles within a seizure. New evidence strengthens previous findings on the essential role for basal ganglia networks in absence seizures, in particular the ictal increase in firing of substantia nigra GABAergic neurons. Thus, a key feature of thalamic ictogenesis is the powerful increase in the inhibition of thalamocortical neurons that originates at least from two sources, substantia nigra and thalamic reticular nucleus. This undoubtedly provides a major contribution to the ictal decrease in total firing and the ictal increase of T-type calcium channel-mediated burst firing of thalamocortical neurons, though the latter is not essential for seizure expression. Moreover, in some children and animal models with absence seizures, the ictal increase in thalamic inhibition is enhanced by the loss-of-function of the astrocytic GABA transporter GAT-1 that does not necessarily derive from a mutation in its gene. Together, these novel clinical and experimental findings bring about paradigm-shifting views of our understanding of absence seizures and demand careful choice of initial monotherapy and continuous neuropsychiatric evaluation of affected children. These issues are discussed here to focus future clinical and experimental research and help to identify novel therapeutic targets for treating both absence seizures and their comorbidities.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - Magor L Lőrincz
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK.,Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Cian McCafferty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Régis C Lambert
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Nathalie Leresche
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - François David
- Cerebral dynamics, learning and plasticity, Integrative Neuroscience and Cognition Center - UMR 8002, Paris, France
| |
Collapse
|
3
|
Alese OO, Ngoupaye GT, Rakgantsho C, Mkhize NV, Zulu S, Mabandla MV. Glutamatergic pathway in depressive-like behavior associated with pentylenetetrazole rat model of epilepsy with history of prolonged febrile seizures. Life Sci 2020; 253:117692. [PMID: 32376271 DOI: 10.1016/j.lfs.2020.117692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Depression is the most significant cause of suicide among neuropsychiatric illnesses. Major depression further affects the quality of life in an individual with epilepsy. The treatment of depression in an epileptic patient could be very challenging because of drug selection or the fact that some antiepileptic drugs are known to cause depression. It has been shown that in addition to the known involvement of the serotonergic pathway in depression, the glutamatergic system is also involved in the evolution of the disease, but this knowledge is limited. This study assessed if induction of epilepsy in rats will cause depressive-like behavior, alters the concentrations of metabotropic receptor 5 (mGluR5), glutamate transport protein (GLAST), glutamate synthase (GS) and brain derived neurotrophic factor (BDNF). MATERIALS AND METHOD Epilepsy was induced in rats by injecting Pentylenetetrazole at 35 mg/kg every other day. At kindle, rats were subjected to sucrose preference test (SPT) and forced swim test (FST) and decapitated 4 h later. Hippocampal tissue was collected and the BDNF concentration was measured with ELISA; mGluR5 and GS protein expression was measured using western blot while amygdala tissue was used for GLAST expression with flow cytometry. RESULTS Our results showed that epilepsy leads to depressive-like behavior in rats and alters the glutamatergic system. CONCLUSION Therefore, we conclude that targeting the glutamate pathway may be a good strategy to alleviate depressive-like behavior associated with epilepsy.
Collapse
Affiliation(s)
- Oluwole Ojo Alese
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa.
| | - Gwladys Temkou Ngoupaye
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| | - Cleopatra Rakgantsho
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| | - Nombuso V Mkhize
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| | - Simo Zulu
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| | - Musa V Mabandla
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| |
Collapse
|
4
|
Barker-Haliski M, Steve White H. Validated animal models for antiseizure drug (ASD) discovery: Advantages and potential pitfalls in ASD screening. Neuropharmacology 2019; 167:107750. [PMID: 31469995 DOI: 10.1016/j.neuropharm.2019.107750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Since 1993, over 20 new anti-seizure drugs (ASDs) have been identified in well-established animal seizure and epilepsy models and subsequently demonstrated to be clinically effective in double-blinded, placebo-controlled clinical trials in patients with focal onset seizures. All clinically-available ASDs on the market today are effective in at least one of only three preclinical seizure and epilepsy models: the acute maximal electroshock (MES), the acute subcutaneous pentylenetetrazol (scPTZ) test, or the kindled rodent with chronic evoked seizures. Thus, it reasons that preclinical ASD discovery does not need significant revision to successfully identify ASDs for the symptomatic treatment of epilepsy. Unfortunately, a significant need still persists for more efficacious and better tolerated ASDs. This is particularly true for those patients whose seizures remain drug resistant. This review will focus on the continued utility of the acute MES and scPTZ tests, as well as the kindled rodent for current and future ASD discovery. These are the only "clinically validated" rodent models to date and been heavily used in the search for novel and more efficacious ASDs. This is to say that promising ASDs have been brought to the clinic on the basis of efficacy in these particular seizure and epilepsy models alone. This review also discusses some of the inherent advantages and limitations of these models relative to existing and emerging preclinical models. It then offers insight into future efforts to develop a preclinical model that will advance a truly transformative therapy for the symptomatic treatment of difficult to treat focal onset epilepsy. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Santos VR, Kobayashi I, Hammack R, Danko G, Forcelli PA. Impact of strain, sex, and estrous cycle on gamma butyrolactone-evoked absence seizures in rats. Epilepsy Res 2018; 147:62-70. [PMID: 30261353 PMCID: PMC6226012 DOI: 10.1016/j.eplepsyres.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Childhood absence epilepsy (CAE) is the most common pediatric epilepsy syndrome and is characterized by typical absence seizures (AS). AS are non-convulsive epileptic seizures characterized by a sudden loss of awareness and bilaterally generalized synchronous 2.5-4 Hz spike and slow-wave discharges (SWD). Gamma butyrolactone (GBL) is an acute pharmacological model of AS and induces bilaterally synchronous SWDs and behavioral arrest. Despite the long use of this model, little is known about its strain and sex-dependent features. We compared the dose-response profile of GBL-evoked SWDs in three rat strains (Long Evans, Sprague-Dawley, and Wistar), and examined the modulatory effects of estrous cycle on SWDs in female Wistar rats. We evaluated the number of seizures, the cumulative time seizing, and the average seizure duration as a function of dose, strain, and sex/estrous phase. Long Evans rats displayed the greatest sensitivity to GBL, followed by Wistar rats, and then by Sprague-Dawley rats. GBL-evoked SWDs were modulated by estrous cycle in female rats, with the lowest sensitivity to GBL occurring during metestrus. Wistar rats showed the greatest variability as a function of dose, and the least variability within dose; these features make this strain desirable for interventional studies. Moreover, our finding that the SWD response to GBL differs as a function of estrous cycle underscores the importance of cycle monitoring in studies examining female animals using this model. Together, these strain and sex-dependent findings provide guidance for future studies.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Ihori Kobayashi
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, United States
| | - Robert Hammack
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Gregory Danko
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States; Department of Neuroscience, Georgetown University School of Medicine, United States; Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, United States.
| |
Collapse
|
6
|
Kanda J, Izumo N, Kobayashi Y, Onodera K, Shimakura T, Yamamoto N, E Takahashi H, Wakabayashi H. Effects of the antiepileptic drugs topiramate and lamotrigine on bone metabolism in rats. Biomed Res 2018; 38:297-305. [PMID: 29070779 DOI: 10.2220/biomedres.38.297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-term treatment with antiepileptic drugs (AED) is associated with an elevated risk of bone fracture due to decreased bone mineral density (BMD). Phenytoin has been shown to affect bone metabolism adversely, whereas newly developed AEDs have not been studied. This study evaluated the effects of topiramate and lamotrigine on bone metabolism in rats. Five-week-old male Sprague-Dawley rats were treated orally with phenytoin (20 mg/kg), topiramate (5 or 20 mg/kg), or lamotrigine (2 or 10 mg/kg) daily for 12 weeks. Phenytoin reduced bone strength, measured by maximum load to failure of the femoral mid-diaphysis, along with reduced femur total BMD. Serum tartrate-resistant acid phosphatase-5b levels significantly increased after phenytoin treatment, while serum osteocalcin levels decreased after topiramate 20 mg/kg treatment. Furthermore, osteoblast surface and bone mineralizing surface were significantly lowered by topiramate. Lamotrigine treatment did not affect bone strength, BMD, or bone turnover. We demonstrated that phenytoin treatment significantly increased bone resorption and lowered BMD and bone strength. Since lamotrigine did not affect bone metabolism, it can be concluded that lamotrigine is safety medicine for bone health. Topiramate was associated with decreased bone formation, which may affect bone strength and BMD with chronic use. Thus, patients taking topiramate should be monitored for changes in BMD to avoid risk of fracture.
Collapse
Affiliation(s)
- Junkichi Kanda
- Department of Clinical Pharmacotherapy, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences
| | - Nobuo Izumo
- General Health Medical Center, Yokohama University of Pharmacy
| | | | - Kenji Onodera
- Department of Clinical Pharmacotherapy and Pharmacy, Bethel Epilepsy Centre
| | | | - Noriaki Yamamoto
- Niigata Bone Science Institute, Niigata Rehabilitation Hospital.,Division of Orthopedic Surgery, Niigata Rehabilitation Hospital
| | | | - Hiroyuki Wakabayashi
- Department of Clinical Pharmacotherapy, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences
| |
Collapse
|
7
|
Kadam SD, D'Ambrosio R, Duveau V, Roucard C, Garcia-Cairasco N, Ikeda A, de Curtis M, Galanopoulou AS, Kelly KM. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017; 58 Suppl 4:10-27. [PMID: 29105073 DOI: 10.1111/epi.13903] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 01/13/2023]
Abstract
In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns.
Collapse
Affiliation(s)
- Shilpa D Kadam
- Department of Neurology, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery and Regional Epilepsy Center, University of Washington, Seattle, Washington, U.S.A
| | | | | | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Marco de Curtis
- Epileptology and Experimental Neurophysiology Unit, Institutes of Hospitality and Care of a Scientific Nature (IRCCS) Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Kevin M Kelly
- Brain Injury and Epilepsy Research Laboratory, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
8
|
Goody SMG, Cannon KE, Liu M, Kallman MJ, Martinolle JP, Mazelin-Winum L, Giarola A, Ardayfio P, Moyer JA, Teuns G, Hudzik TJ. Considerations on nonclinical approaches to modeling risk factors of suicidal ideation and behavior. Regul Toxicol Pharmacol 2017; 89:288-301. [PMID: 28757322 DOI: 10.1016/j.yrtph.2017.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
Abstract
Given the serious nature of suicidal ideation and behavior (SIB) and the possibility of treatment-emergent SIB, pharmaceutical companies are now applying more proactive approaches in clinical trials and are considering the value of nonclinical models to predict SIB. The current review summarizes nonclinical approaches to modeling three common risk factors associated with SIB: aggression, impulsivity, and anhedonia. For each risk factor, a general description, advantages and disadvantages, species considerations, nonclinical to clinical translation, and pharmacological validation with respect to treatments associated with SIB are summarized. From this review, several gaps were identified that need to be addressed before use of these nonclinical models can be considered a viable option to predict the relative risk for SIB. Other future directions that may compliment these nonclinical approaches, including the use of selectively-bred or genetically-modified rodent models, transgenic models, gene expression profiling, and biomarker analysis, are discussed. This article was developed with the support of the DruSafe Leadership Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ, www.iqconsortium.org).
Collapse
Affiliation(s)
- S M G Goody
- Pfizer Drug Safety Research & Development, Groton, CT, USA.
| | | | - M Liu
- Drinker, Biddle and IQ Consortium, Washington, DC, USA
| | - M J Kallman
- Kallman Preclinical Consulting, Greenfield, IN, USA
| | | | | | - A Giarola
- GlaxoSmithKline Safety Pharmacology Department, Ware, UK
| | - P Ardayfio
- Eli Lilly and Company, Indianapolis, IN, USA
| | - J A Moyer
- Janssen Research & Development, Titusville, NJ, USA
| | - G Teuns
- Janssen Research & Development, Beerse, Belgium
| | - T J Hudzik
- ALA BioPharm Consulting, Gurnee, IL, USA
| |
Collapse
|
9
|
Barrera-Bailón B, Oliveira JAC, López DE, Muñoz LJ, Garcia-Cairasco N, Sancho C. Pharmacological and neuroethological study of the acute and chronic effects of lamotrigine in the genetic audiogenic seizure hamster (GASH:Sal). Epilepsy Behav 2017; 71:207-217. [PMID: 26876275 DOI: 10.1016/j.yebeh.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 01/12/2023]
Abstract
The present study aimed to investigate the behavioral and anticonvulsant effects of lamotrigine (LTG) on the genetic audiogenic seizure hamster (GASH:Sal), an animal model of audiogenic seizure that is in the validation process. To evaluate the efficiency of acute and chronic treatments with LTG, GASH:Sals were treated with LTG either acutely via intraperitoneal injection (5-20mg/kg) or chronically via oral administration (20-25mg/kg/day). Their behavior was assessed via neuroethological analysis, and the anticonvulsant effect of LTG was evaluated based on the appearance and the severity of seizures. The results showed that acute administration of LTG exerts an anticonvulsant effect at the lowest dose tested (5mg/kg) and that chronic oral LTG treatment exerts an anticonvulsant effect at a dose of 20-25mg/kg/day. Furthermore, LTG treatment induced a low rate of secondary adverse effects. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- B Barrera-Bailón
- Institute of Neurosciences of Castilla and León/IBSAL, University of Salamanca, Salamanca, Spain
| | - J A C Oliveira
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - D E López
- Institute of Neurosciences of Castilla and León/IBSAL, University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - L J Muñoz
- Animal Research Service, University of Salamanca, Salamanca, Spain
| | - N Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - C Sancho
- Institute of Neurosciences of Castilla and León/IBSAL, University of Salamanca, Salamanca, Spain; Department of Physiology and Pharmacology, School of Medicine, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
10
|
Zhang B, Zhang JW, Wang WP, Dong RF, Tian S, Zhang C. Effect of lamotrigine on epilepsy-induced cognitive impairment and hippocampal neuronal apoptosis in pentylenetetrazole-kindled animal model. Synapse 2016; 71. [PMID: 27733018 DOI: 10.1002/syn.21945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Bing Zhang
- Key Laboratory of Neurology of Hebei Province; The Second Hospital of Hebei Medical University; Shijiazhuang 050000 China
| | - Jia-Wei Zhang
- Key Laboratory of Neurology of Hebei Province; The Second Hospital of Hebei Medical University; Shijiazhuang 050000 China
| | - Wei-Ping Wang
- Key Laboratory of Neurology of Hebei Province; The Second Hospital of Hebei Medical University; Shijiazhuang 050000 China
| | - Rui-Fang Dong
- Department of Neurology; Cangzhou central Hospital; Cangzhou 061000 China
| | - Shuang Tian
- Department of Neurology; the First Hospital of Shijiazhuang; Shijiazhuang 050000 China
| | - Chao Zhang
- Department of Neurology; the First Hospital of Shijiazhuang; Shijiazhuang 050000 China
| |
Collapse
|
11
|
Chen SD, Wang YL, Liang SF, Shaw FZ. Rapid Amygdala Kindling Causes Motor Seizure and Comorbidity of Anxiety- and Depression-Like Behaviors in Rats. Front Behav Neurosci 2016; 10:129. [PMID: 27445726 PMCID: PMC4916743 DOI: 10.3389/fnbeh.2016.00129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022] Open
Abstract
Amygdala kindling is a model of temporal lobe epilepsy (TLE) with convulsion. The rapid amygdala kindling has an advantage on quick development of motor seizures and for antiepileptic drugs screening. The rapid amygdala kindling causes epileptogenesis accompanied by an anxiolytic response in early isolation of rat pups or depressive behavior in immature rats. However, the effect of rapid amygdala kindling on comorbidity of anxiety- and depression-like behaviors is unexplored in adult rats with normal breeding. In the present study, 40 amygdala stimulations given within 2 days were applied in adult Wistar rats. Afterdischarge (AD) and seizure stage were recorded throughout the amygdala kindling. Anxiety-like behaviors were evaluated by the elevated plus maze (EPM) test and open field (OF) test, whereas depression-like behaviors were assessed by the forced swim (FS) and sucrose consumption (SC) tests. A tonic-clonic convulsion was provoked in the kindle group. Rapid amygdala kindling resulted in a significantly lower frequency entering an open area of either open arms of the EPM or the central zone of an OF, lower sucrose intake, and longer immobility of the FS test in the kindle group. Our results suggest that rapid amygdala kindling elicited severe motor seizures comorbid with anxiety- and depression-like behaviors.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung, Taiwan; Center for Translational Research in Biomedical Science, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Yu-Lin Wang
- Department of Computer Science and Information Engineering, National Cheng Kung University Tainan, Taiwan
| | - Sheng-Fu Liang
- Department of Computer Science and Information Engineering, National Cheng Kung UniversityTainan, Taiwan; Institute of Medical Informatics, National Cheng Kung UniversityTainan, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University Tainan, Taiwan
| |
Collapse
|
12
|
Peng WF, Ding J, Li X, Fan F, Zhang QQ, Wang X. N-methyl-D-aspartate receptor NR2B subunit involved in depression-like behaviours in lithium chloride-pilocarpine chronic rat epilepsy model. Epilepsy Res 2015; 119:77-85. [PMID: 26688426 DOI: 10.1016/j.eplepsyres.2015.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/25/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022]
Abstract
Depression is a common comorbidity in patients with epilepsy with unclear mechanisms. This study is to explore the role of glutamate N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunits in epilepsy-associated depression. Lithium chloride (Licl)-pilocarpine chronic rat epilepsy model was established and rats were divided into epilepsy with depression (EWD) and epilepsy without depression (EWND) subgroups based on forced swim test. Expression of NMDA receptor NR1, NR2A and NR2B subunits was measured by western blot and immunofluorescence methods. The immobility time (IMT) was significantly greater in Licl-pilocarpine model group than in Control group, which was also greater in EWD group than in EWND group. No differences of spontaneous recurrent seizure (SRS) counts over two weeks and latency were found between EWD and EWND groups. The number of NeuN positive cells was significantly less in Licl-pilocarpine model group than in Control group, but had no difference between EWD and EWND groups. The ratios of phosphorylated NR1 (p-NR1)/NR1 and p-NR2B/NR2B were significantly greater in the hippocampus in EWD group than in EWND group. Moreover, the expression of p-NR1 and p-NR2B in the CA1 subfield of hippocampus were both greater in Licl-pilocarpine model group than Control group. Selective blockage of NR2B subunit with ifenprodil could alleviate depression-like behaviours of Licl-pilocarpine rat epilepsy model. In conclusion, glutamate NMDA receptor NR2B subunit was involved in promoting depression-like behaviours in the Licl-pilocarpine chronic rat epilepsy model and might be a target for treating epilepsy-associated depression.
Collapse
Affiliation(s)
- Wei-Feng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Fan Fan
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qian-Qian Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Rodgers KM, Dudek FE, Barth DS. Progressive, Seizure-Like, Spike-Wave Discharges Are Common in Both Injured and Uninjured Sprague-Dawley Rats: Implications for the Fluid Percussion Injury Model of Post-Traumatic Epilepsy. J Neurosci 2015; 35:9194-204. [PMID: 26085641 PMCID: PMC6605152 DOI: 10.1523/jneurosci.0919-15.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/19/2015] [Accepted: 05/10/2015] [Indexed: 01/05/2023] Open
Abstract
Variable-duration oscillations and repetitive, high-voltage spikes have been recorded in the electrocorticogram (ECoG) of rats weeks and months after fluid percussion injury (FPI), a model of traumatic brain injury. These ECoG events, which have many similarities to spike-wave-discharges (SWDs) and absence seizures, have been proposed to represent nonconvulsive seizures characteristic of post-traumatic epilepsy (PTE). The present study quantified features of SWD episodes in rats at different time points after moderate to severe FPI, and compared them with age-matched control rats. Control and FPI-injured rats at 1 year of age displayed large-amplitude and frequent SWD events at frontal and parietal recording sites. At 3-6 months, SWDs were shorter in duration and less frequent; extremely brief SWDs (i.e., "larval") were detected as early as 1 month. The onset of the SWDs was nearly always synchronous across electrodes and of larger amplitude in frontal regions. A sensory stimulus, such as a click, immediately and consistently stopped the occurrence of the SWDs. SWDs were consistently accompanied by behavioral arrest. All features of SWDs in control and experimental (FPI) rats were indistinguishable. None of the FPI-treated rats developed nonconvulsive or convulsive seizures that could be distinguished electrographically or behaviorally from SWDs. Because SWDs have features similar to genetic absence seizures, these results challenge the hypothesis that SWDs after FPI reflect PTE.
Collapse
Affiliation(s)
- Krista M Rodgers
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309, and
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309, and
| |
Collapse
|
14
|
Guiard BP, Di Giovanni G. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front Pharmacol 2015; 6:46. [PMID: 25852551 PMCID: PMC4362472 DOI: 10.3389/fphar.2015.00046] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022] Open
Abstract
5-Hydroxytryptamine 2A receptors (5-HT2A-Rs) are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses.
Collapse
Affiliation(s)
- Bruno P Guiard
- CNRS, Centre de Recherches sur la Cognition Animale, UMR 5169, Toulouse France ; CNRS, Centre de Recherches sur la Cognition Animale Université de Toulouse 3, UMR 5169, Toulouse, France ; INSERM U1178 Team ≪Depression and Antidepressants≫ Faculté de Pharmacie Paris Sud, Châtenay-Malabry, France
| | - Giuseppe Di Giovanni
- Neurophysiology Unit, Laboratory for the Study of Neurological Disorders, Department of Physiology and Biochemistry, University of Malta, Msida Malta ; School of Biosciences, University of Cardiff, Cardiff UK
| |
Collapse
|
15
|
Liu YT, Shao YW, Yen CT, Shaw FZ. Acid-induced hyperalgesia and anxio-depressive comorbidity in rats. Physiol Behav 2014; 131:105-10. [DOI: 10.1016/j.physbeh.2014.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/23/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023]
|
16
|
Kovács Z, Dobolyi Á, Juhász G, Kékesi KA. Lipopolysaccharide induced increase in seizure activity in two animal models of absence epilepsy WAG/Rij and GAERS rats and Long Evans rats. Brain Res Bull 2014; 104:7-18. [DOI: 10.1016/j.brainresbull.2014.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 02/04/2023]
|
17
|
Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, Yu-Taeger L, Pichler B, Bauer P, Riess O, Nguyen HP. A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 2013; 33:9068-81. [PMID: 23699518 PMCID: PMC6705027 DOI: 10.1523/jneurosci.5622-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 02/05/2023] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) is an autosomal-dominant, late-onset neurodegenerative disorder caused by an expanded polyglutamine (polyQ) repeat in the TATA-box-binding protein (TBP). To further investigate this devastating disease, we sought to create a first transgenic rat model for SCA17 that carries a full human cDNA fragment of the TBP gene with 64 CAA/CAG repeats (TBPQ64). In line with previous observations in mouse models for SCA17, TBPQ64 rats show a severe neurological phenotype including ataxia, impairment of postural reflexes, and hyperactivity in early stages followed by reduced activity, loss of body weight, and early death. Neuropathologically, the severe phenotype of SCA17 rats was associated with neuronal loss, particularly in the cerebellum. Degeneration of Purkinje, basket, and stellate cells, changes in the morphology of the dendrites, nuclear TBP-positive immunoreactivity, and axonal torpedos were readily found by light and electron microscopy. While some of these changes are well recapitulated in existing mouse models for SCA17, we provide evidence that some crucial characteristics of SCA17 are better mirrored in TBPQ64 rats. Thus, this SCA17 model represents a valuable tool to pursue experimentation and therapeutic approaches that may be difficult or impossible to perform with SCA17 transgenic mice. We show for the first time positron emission tomography (PET) and diffusion tensor imaging (DTI) data of a SCA animal model that replicate recent PET studies in human SCA17 patients. Our results also confirm that DTI are potentially useful correlates of neuropathological changes in TBPQ64 rats and raise hope that DTI imaging could provide a biomarker for SCA17 patients.
Collapse
Affiliation(s)
- Alexandra Kelp
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Arnulf H. Koeppen
- Department of Neuropathology and Neurology, Albany, New York 12208, and
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, 44787 Bochum, Germany
| | - Carsten Calaminus
- Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, and
| | - Claudia Bauer
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Esteban Portal
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Bernd Pichler
- Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, and
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Shaw FZ, Liao YF, Chen RF, Huang YH, Lin RCS. The zona incerta modulates spontaneous spike-wave discharges in the rat. J Neurophysiol 2013; 109:2505-16. [PMID: 23446687 DOI: 10.1152/jn.00750.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The contribution of the zona incerta (ZI) of the thalamus on spike-wave discharges (SWDs) was investigated. Chronic recordings of bilateral cortices, bilateral vibrissa muscle, and unilateral ZI were performed in Long-Evans rats to examine the functional role of SWDs. Rhythmic ZI activity appeared at the beginning of SWD and was accompanied by higher-oscillation frequencies and larger spike magnitudes. Bilateral lidocaine injections into the mystacial pads led to a decreased oscillation frequency of SWDs, but the phenomenon of ZI-related spike magnitude enhancement was preserved. Moreover, 800-Hz ZI microstimulation terminates most of the SWDs and whisker twitching (WT; >80%). In contrast, 200-Hz ZI microstimulation selectively stops WTs but not SWDs. Stimulation of the thalamic ventroposteriomedial nucleus showed no obvious effect on terminating SWDs. A unilateral ZI lesion resulted in a significant reduction of 7- to 12-Hz power of both the ipsilateral cortical and contralateral vibrissae muscle activities during SWDs. Intraincertal microinfusion of muscimol showed a significant inhibition on SWDs. Our present data suggest that the ZI actively modulates the SWD magnitude and WT behavior.
Collapse
Affiliation(s)
- Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | |
Collapse
|