1
|
Hashim M, Badruddeen, Akhtar J, Khan MI, Ahmad M, Islam A, Ahmad A. Diabetic Neuropathy: An Overview of Molecular Pathways and Protective Mechanisms of Phytobioactives. Endocr Metab Immune Disord Drug Targets 2024; 24:758-776. [PMID: 37867264 DOI: 10.2174/0118715303266444231008143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Diabetic neuropathy (DN) is a common and debilitating complication of diabetes mellitus that affects the peripheral nerves and causes pain, numbness, and impaired function. The pathogenesis of DN involves multiple molecular mechanisms, such as oxidative stress, inflammation, and pathways of advanced glycation end products, polyol, hexosamine, and protein kinase C. Phytochemicals are natural compounds derived from plants that have various biological activities and therapeutic potential. Flavonoids, terpenes, alkaloids, stilbenes, and tannins are some of the phytochemicals that have been identified as having protective potential for diabetic neuropathy. These compounds can modulate various cellular pathways involved in the development and progression of neuropathy, including reducing oxidative stress and inflammation and promoting nerve growth and repair. In this review, the current evidence on the effects of phytochemicals on DN by focusing on five major classes, flavonoids, terpenes, alkaloids, stilbenes, and tannins, are summarized. This compilation also discusses the possible molecular targets of numerous pathways of DN that these phytochemicals modulate. These phytochemicals may offer a promising alternative or complementary approach to conventional drugs for DN management by modulating multiple pathological pathways and restoring nerve function.
Collapse
Affiliation(s)
- Mohd Hashim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Gao X, Ren C, Li L, Zhao H, Liu K, Zhuang M, Lv X, Zhi X, Jiang H, Chen Q, Zhao X, Li Y. Pharmacological action of Hedysarum polysaccharides: a review. Front Pharmacol 2023; 14:1119224. [PMID: 37701035 PMCID: PMC10494935 DOI: 10.3389/fphar.2023.1119224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/10/2023] [Indexed: 09/14/2023] Open
Abstract
Hedysarum, a traditional Chinese herbal medicine and food with a long history of clinical application, is used to improve health conditions and treat various diseases. Hedysarum polysaccharides (HPS), flavonoids, saponins, and alkaloids, are the primary components of Hedysarum. HPS is the most important natural active ingredient of Hedysarum, which has many pharmacological effects. Currently, HPS exhibits significant promise in drug development for various ailments such as tumors, diabetes, cardiovascular diseases, Alzheimer's disease, and fibrosis. This review paper discusses the extraction, separation, and content determination techniques of HPS, along with the investigation of its chemical constituents. More importantly, we reviewed the anti-inflammatory pharmacological effects of HPS, such as inhibition of inflammatory factors and NF-κB signaling pathway; antitumor activity through apoptosis induction in tumor cells and blocking tumor cell proliferation and metastasis; antioxidant effects; regulation of various cytokines and immune cells; regulation of blood sugar levels, such as in type I and type II diabetes and in diabetic complications; improvement in symptoms of Alzheimer disease; anti-aging and anti-fibrosis properties; and improvement in cerebral ischemia-reperfusion injury. This review paper establishes the theoretical foundation for future studies on the structure, mechanism, and clinical use of HPS.
Collapse
Affiliation(s)
- Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Linyu Li
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huilin Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Mengjie Zhuang
- Xinjiang Medical University School of Basic Medicine, Urumqi, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Patel S, Pangarkar A, Mahajan S, Majumdar A. Therapeutic potential of endoplasmic reticulum stress inhibitors in the treatment of diabetic peripheral neuropathy. Metab Brain Dis 2023; 38:1841-1856. [PMID: 37289403 DOI: 10.1007/s11011-023-01239-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Endoplasmic stress response, the unfolded protein response (UPR), is a homeostatic signaling pathway comprising transmembrane sensors that get activated upon alterations in ER luminal environment. Studies suggest a relation between activated UPR pathways and several disease states such as Parkinson, Alzheimer, inflammatory bowel disease, tumor growth, and metabolic syndrome. Diabetic peripheral neuropathy (DPN), a common microvascular complication of diabetes-related chronic hyperglycemia, causes chronic pain, loss of sensation, foot ulcers, amputations, allodynia, hyperalgesia, paresthesia, and spontaneous pain. Factors like disrupted calcium signaling, dyslipidemia, hyperglycemia, inflammation, insulin signaling, and oxidative stress disturb the UPR sensor levels manifesting as DPN. We discuss new effective therapeutic alternatives for DPN that can be developed by targeting UPR pathways like synthetic ER stress inhibitors like 4-PhenylButyric acid (4-PBA), Sephin 1, Salubrinal and natural ER stress inhibitors like Tauroursodeoxycholic acid (TUDCA), Cordycepin, Proanthocyanidins, Crocin, Purple Rice extract and cyanidin and Caffeic Acid Phenethyl Ester (CAPE).
Collapse
Affiliation(s)
- Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Mumbai, 400098, India
| | - Arnika Pangarkar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Mumbai, 400098, India
| | - Sakshi Mahajan
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Mumbai, 400098, India.
| |
Collapse
|
4
|
Kubis-Kubiak A, Wiatrak B, Piwowar A. Hyper-glycemia and insulinemia induce morphological changes and modulate secretion of S100B, S100A8, amyloid β 1–40 and amyloid β 1–42, in a model of human dopaminergic neurons. Biomed Pharmacother 2022; 156:113869. [DOI: 10.1016/j.biopha.2022.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
5
|
Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J, Feldman EL. A High-Fat Diet Disrupts Nerve Lipids and Mitochondrial Function in Murine Models of Neuropathy. Front Physiol 2022; 13:921942. [PMID: 36072849 PMCID: PMC9441493 DOI: 10.3389/fphys.2022.921942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Sivakumar PM, Prabhakar PK, Cetinel S, R N, Prabhawathi V. Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy. Mini Rev Med Chem 2022; 22:1828-1846. [PMID: 35264089 DOI: 10.2174/1389557522666220309140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
One of the common clinical complications of diabetes is diabetic neuropathy affecting the nervous system. Painful diabetic neuropathy is widespread and highly prevalent. At least 50% of diabetes patients develop diabetic neuropathy eventually. The four main types of diabetic neuropathy are peripheral neuropathy, autonomic neuropathy, proximal neuropathy (diabetic polyradiculopathy), and mononeuropathy (Focal neuropathy). Glucose control remains the common therapy for diabetic neuropathy due to limited knowledge on early biomarkers that are expressed during nerve damage, thereby limiting the cure through pharmacotherapy. Glucose control dramatically reduces the onset of neuropathy in type 1 diabetes but proves less effective in type 2 diabetes. Therefore, the focus is on various herbal remedies for prevention and treatment. There is numerous research on the use of anticonvulsants and antidepressants for the management of pain in diabetic neuropathy. Extensive research is being done on natural products including the isolation of pure compounds like flavonoids from plants and their effect on diabetic neuropathy. This review focuses on the use of an important of flavonoids such as flavanols (e.g., quercetin, rutin, kaempferol, and isorhamnetin), flavanones (e.g., hesperidin, naringenin and c,lass eriodictyol), and flavones (e.g., apigenin, luteolin, tangeretin, chrysin, and diosmin) for the prevention and treatment of diabetic neuropathy. The mechanisms of action of flavonoids against diabetic neuropathy by their antioxidant, anti-inflammation, anti-glycation properties, etc. are also covered in this review article.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | | | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Neelakandan R
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India
| | - Veluchamy Prabhawathi
- Multidisciplinary Research Unit, Coimbatore Medical College, Coimbatore - 641014, Tamil Nadu, India
| |
Collapse
|
7
|
Rumora AE, Guo K, Alakwaa FM, Andersen ST, Reynolds EL, Jørgensen ME, Witte DR, Tankisi H, Charles M, Savelieff MG, Callaghan BC, Jensen TS, Feldman EL. Plasma lipid metabolites associate with diabetic polyneuropathy in a cohort with type 2 diabetes. Ann Clin Transl Neurol 2021; 8:1292-1307. [PMID: 33955722 PMCID: PMC8164865 DOI: 10.1002/acn3.51367] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The global rise in type 2 diabetes is associated with a concomitant increase in diabetic complications. Diabetic polyneuropathy is the most frequent type 2 diabetes complication and is associated with poor outcomes. The metabolic syndrome has emerged as a major risk factor for diabetic polyneuropathy; however, the metabolites associated with the metabolic syndrome that correlate with diabetic polyneuropathy are unknown. METHODS We conducted a global metabolomics analysis on plasma samples from a subcohort of participants from the Danish arm of Anglo-Danish-Dutch study of Intensive Treatment of Diabetes in Primary Care (ADDITION-Denmark) with and without diabetic polyneuropathy versus lean control participants. RESULTS Compared to lean controls, type 2 diabetes participants had significantly higher HbA1c (p = 0.0028), BMI (p = 0.0004), and waist circumference (p = 0.0001), but lower total cholesterol (p = 0.0001). Out of 991 total metabolites, we identified 15 plasma metabolites that differed in type 2 diabetes participants by diabetic polyneuropathy status, including metabolites belonging to energy, lipid, and xenobiotic pathways, among others. Additionally, these metabolites correlated with alterations in plasma lipid metabolites in type 2 diabetes participants based on neuropathy status. Further evaluating all plasma lipid metabolites identified a shift in abundance, chain length, and saturation of free fatty acids in type 2 diabetes participants. Importantly, the presence of diabetic polyneuropathy impacted the abundance of plasma complex lipids, including acylcarnitines and sphingolipids. INTERPRETATION Our explorative study suggests that diabetic polyneuropathy in type 2 diabetes is associated with novel alterations in plasma metabolites related to lipid metabolism.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Kai Guo
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
- Department of Biomedical SciencesUniversity of North DakotaGrand ForksNorth Dakota
| | - Fadhl M. Alakwaa
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | | | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Marit E. Jørgensen
- Steno Diabetes Center CopenhagenGentofteDenmark
- University of Southern DenmarkOdenseDenmark
| | - Daniel R. Witte
- Department of Public HealthAarhus UniversityAarhusDenmark
- Danish Diabetes AcademyOdenseDenmark
| | - Hatice Tankisi
- Department of Clinical NeurophysiologyAarhus UniversityAarhusDenmark
| | - Morten Charles
- Department of Public HealthAarhus UniversityAarhusDenmark
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Brian C. Callaghan
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Troels S. Jensen
- Danish Pain Research CenterDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
8
|
Jha MK, Ament XH, Yang F, Liu Y, Polydefkis MJ, Pellerin L, Morrison BM. Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy. Exp Neurol 2020; 333:113415. [PMID: 32717355 PMCID: PMC7502508 DOI: 10.1016/j.expneurol.2020.113415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications in diabetic patients. Though the exact mechanism for DPN is unknown, it clearly involves metabolic dysfunction and energy failure in multiple cells within the peripheral nervous system. Lactate is an alternate source of metabolic energy that is increasingly recognized for its role in supporting neurons. The primary transporter for lactate in the nervous system, monocarboxylate transporter-1 (MCT1), has been shown to be critical for peripheral nerve regeneration and metabolic support to neurons/axons. In this study, MCT1 was reduced in both sciatic nerve and dorsal root ganglia in wild-type mice treated with streptozotocin (STZ), a common model of type-1 diabetes. Heterozygous MCT1 null mice that developed hyperglycemia following STZ treatment developed a more severe DPN compared to wild-type mice, as measured by greater axonal demyelination, decreased peripheral nerve function, and increased numbness to innocuous low-threshold mechanical stimulation. Given that MCT1 inhibitors are being developed as both immunosuppressive and chemotherapeutic medications, our results suggest that clinical development in patients with diabetes should proceed with caution. Collectively, our findings uncover an important role for MCT1 in DPN and provide a potential lead toward developing novel treatments for this currently untreatable disease.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Xanthe H Ament
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Fang Yang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Ying Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Luc Pellerin
- Inserm U1082, Universite de Poitiers, Poitiers Cedex 86021, France; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
9
|
Garcia-Serrano AM, Duarte JMN. Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models? Front Neurosci 2020; 14:229. [PMID: 32265637 PMCID: PMC7101159 DOI: 10.3389/fnins.2020.00229] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with impact on brain function through mechanisms that include glucose toxicity, vascular damage and blood–brain barrier (BBB) impairments, mitochondrial dysfunction, oxidative stress, brain insulin resistance, synaptic failure, neuroinflammation, and gliosis. Rodent models have been developed for investigating T2D, and have contributed to our understanding of mechanisms involved in T2D-induced brain dysfunction. Namely, mice or rats exposed to diabetogenic diets that are rich in fat and/or sugar have been widely used since they develop memory impairment, especially in tasks that depend on hippocampal processing. Here we summarize main findings on brain energy metabolism alterations underlying dysfunction of neuronal and glial cells promoted by diet-induced metabolic syndrome that progresses to a T2D phenotype.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Araki T. Regulatory Mechanism of Peripheral Nerve Myelination by Glutamate-Induced Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:23-31. [PMID: 31760635 DOI: 10.1007/978-981-32-9636-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Regulation of differentiation and proliferation of Schwann cells is an essential part of the regulation of peripheral nerve development, degeneration, and regeneration. ZNRF1, a ubiquitin ligase, is expressed in undifferentiated/repair Schwann cells, directs glutamine synthetase to proteasomal degradation, and thereby increase glutamate levels in Schwann cell environment. Glutamate elicits subcellular signaling in Schwann cells via mGluR2 to modulate Neuregulin-1/ErbB2/3 signaling and thereby promote undifferentiated phenotype of Schwann cell.
Collapse
Affiliation(s)
- Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
11
|
Abd Elhameed MM, Elsawy NA, Mgalaa MHZ, El-Tawab SS, Elwafa RAA, Elfadeel MRA. Fas-mediated apoptosis and peripheral polyneuropathy in type 2 diabetes mellitus. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2019. [DOI: 10.4103/err.err_37_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Tang HY, Jiang AJ, Ma JL, Wang FJ, Shen GM. Understanding the Signaling Pathways Related to the Mechanism and Treatment of Diabetic Peripheral Neuropathy. Endocrinology 2019; 160:2119-2127. [PMID: 31318414 DOI: 10.1210/en.2019-00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Worldwide, the most prevalent metabolic disorder is diabetes mellitus (DM), an important condition that has been widely studied. Diabetic peripheral neuropathy (DPN), a complication that can occur with DM, is associated with pain and can result in foot ulcers and even amputation. DPN treatments are limited and mainly focus on pain management. There is a clear need to develop treatments for DPN at all stages. To make this progress, it is necessary to understand the molecular signaling pathways related to DPN. For this review, we aimed to concentrate on the main signaling cascades that contribute to DPN. In addition, we provide information with regard to treatments that are being explored.
Collapse
Affiliation(s)
- He-Yong Tang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ai-Juan Jiang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jun-Long Ma
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Fan-Jing Wang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Guo-Ming Shen
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
13
|
NADPH Oxidase 2-Mediated Insult in the Auditory Cortex of Zucker Diabetic Fatty Rats. Neural Plast 2019; 2019:3591605. [PMID: 31467521 PMCID: PMC6701372 DOI: 10.1155/2019/3591605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
Clinical data has confirmed that auditory impairment may be a secondary symptom of type 2 diabetes mellitus (T2DM). However, mechanisms underlying pathologic changes that occur in the auditory system, especially in the central auditory system (CAS), remain poorly understood. In this study, Zucker diabetic fatty (ZDF) rats were used as a T2DM rat model to observe ultrastructural alterations in the auditory cortex and investigate possible mechanisms underlying CAS damage in T2DM. The auditory brainstem response (ABR) of ZDF rats was found to be markedly elevated in low (8 kHz) and high (32 kHz) frequencies. Protein expression of NADPH oxidase 2 (NOX2) and its matching subunits P22phox, P47phox, and P67phox was increased in the auditory cortex of ZDF rats. Expression of 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker of DNA oxidative damage, was also increased in the neuronal mitochondria of the auditory cortex of ZDF rats. Additionally, decreases in the mitochondrial total antioxidant capabilities (T-AOC), adenosine triphosphate (ATP) production, and mitochondrial membrane potential (MMP) were detected in the auditory cortex of ZDF rats, suggesting mitochondrial dysfunction. Transmission electron microscopy results indicated that ultrastructural damage had occurred to neurovascular units and mitochondria in the auditory cortex of ZDF rats. Furthermore, cytochrome c (Cyt c) translocation from mitochondria to cytoplasm and caspase 3-dependent apoptosis were also detected in the auditory cortex of ZDF rats. Consequently, the study demonstrated that T2DM may cause morphological damage to the CAS and that NOX2-associated mitochondrial oxidative damage and apoptosis may be partly responsible for this insult.
Collapse
|
14
|
Mitchell R, Campbell G, Mikolajczak M, McGill K, Mahad D, Fleetwood-Walker SM. A Targeted Mutation Disrupting Mitochondrial Complex IV Function in Primary Afferent Neurons Leads to Pain Hypersensitivity Through P2Y 1 Receptor Activation. Mol Neurobiol 2019; 56:5917-5933. [PMID: 30689196 DOI: 10.1007/s12035-018-1455-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 01/20/2023]
Abstract
As mitochondrial dysfunction is evident in neurodegenerative disorders that are accompanied by pain, we generated inducible mutant mice with disruption of mitochondrial respiratory chain complex IV, by COX10 deletion limited to sensory afferent neurons through the use of an Advillin Cre-reporter. COX10 deletion results in a selective energy-deficiency phenotype with minimal production of reactive oxygen species. Mutant mice showed reduced activity of mitochondrial respiratory chain complex IV in many sensory neurons, increased ADP/ATP ratios in dorsal root ganglia and dorsal spinal cord synaptoneurosomes, as well as impaired mitochondrial membrane potential, in these synaptoneurosome preparations. These changes were accompanied by marked pain hypersensitivity in mechanical and thermal (hot and cold) tests without altered motor function. To address the underlying basis, we measured Ca2+ fluorescence responses of dorsal spinal cord synaptoneurosomes to activation of the GluK1 (kainate) receptor, which we showed to be widely expressed in small but not large nociceptive afferents, and is minimally expressed elsewhere in the spinal cord. Synaptoneurosomes from mutant mice showed greatly increased responses to GluK1 agonist. To explore whether altered nucleotide levels may play a part in this hypersensitivity, we pharmacologically interrogated potential roles of AMP-kinase and ADP-sensitive purinergic receptors. The ADP-sensitive P2Y1 receptor was clearly implicated. Its expression in small nociceptive afferents was increased in mutants, whose in vivo pain hypersensitivity, in mechanical, thermal and cold tests, was reversed by a selective P2Y1 antagonist. Energy depletion and ADP elevation in sensory afferents, due to mitochondrial respiratory chain complex IV deficiency, appear sufficient to induce pain hypersensitivity, by ADP activation of P2Y1 receptors.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Monophosphate/metabolism
- Alkyl and Aryl Transferases/metabolism
- Animals
- Behavior, Animal
- Calcium/metabolism
- Cells, Cultured
- Electron Transport Complex IV/genetics
- Electron Transport Complex IV/metabolism
- Fluorescence
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hypersensitivity/complications
- Hypersensitivity/pathology
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mutation/genetics
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Nociception/drug effects
- Pain/complications
- Pain/pathology
- Phenotype
- Purinergic P2Y Receptor Antagonists/pharmacology
- Receptors, Kainic Acid/metabolism
- Receptors, Purinergic P2Y1/metabolism
- Spinal Cord/pathology
- Synapses/drug effects
- Synapses/metabolism
Collapse
Affiliation(s)
- Rory Mitchell
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Graham Campbell
- Centre for Clinical Brain Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Chancellor's Building, Little France, Edinburgh, Edinburgh, EH16 4SB, UK
| | - Marta Mikolajczak
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Katie McGill
- Centre for Clinical Brain Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Chancellor's Building, Little France, Edinburgh, Edinburgh, EH16 4SB, UK
| | - Don Mahad
- Centre for Clinical Brain Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Chancellor's Building, Little France, Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sue M Fleetwood-Walker
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
15
|
Rumora AE, LoGrasso G, Haidar JA, Dolkowski JJ, Lentz SI, Feldman EL. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res 2018; 60:58-70. [PMID: 30442656 DOI: 10.1194/jlr.m086843] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Dyslipidemia associated with T2D leads to diabetic neuropathy, a complication characterized by sensory neuronal dysfunction and peripheral nerve damage. Sensory dorsal root ganglion (DRG) neurons are dependent on axonal mitochondrial energy production facilitated by mitochondrial transport mechanisms that distribute mitochondria throughout the axon. Because long-chain saturated FAs (SFAs) damage DRG neurons and medium-chain SFAs are reported to improve neuronal function, we evaluated the impact of SFA chain length on mitochondrial trafficking, mitochondrial function, and apoptosis. DRG neurons were exposed to SFAs with C12:0-C18:0 chain lengths and evaluated for changes in mitochondrial trafficking, mitochondrial polarization, and apoptosis. DRG neurons treated with C16:0 and C18:0 SFAs showed a significant decrease in the percentage of motile mitochondria and velocity of mitochondrial trafficking, whereas C12:0 and C14:0 SFAs had no impact on motility. Treatment with C16:0 and C18:0 SFAs exhibited mitochondrial depolarization correlating with impaired mitochondrial motility; the C12:0- and C14:0-treated neurons retained mitochondrial polarization. The reduction in mitochondrial trafficking and function in C16:0- and C18:0-treated DRG neurons correlated with apoptosis that was blocked in C12:0 and C14:0 SFA treatments. These results suggest that SFA chain length plays an important role in regulating axonal mitochondrial trafficking and function in DRG neurons.
Collapse
Affiliation(s)
- Amy E Rumora
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Giovanni LoGrasso
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Julia A Haidar
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Justin J Dolkowski
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Stephen I Lentz
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Eva L Feldman
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Tiwari R, Siddiqui MH, Mahmood T, Bagga P, Ahsan F, Shamim A. Herbal Remedies: A Boon for Diabetic Neuropathy. J Diet Suppl 2018; 16:470-490. [PMID: 29580105 DOI: 10.1080/19390211.2018.1441203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic neuropathy is a chronic complication of diabetes mellitus affecting about 50% of patients. Its symptoms include decreased motility and severe pain in peripheral parts. The pathogenesis involved is an abnormality in blood vessels that supply the peripheral nerves, metabolic disorders such as myo-inositol depletion, and increased nonenzymatic glycation. Moreover, oxidative stress in neurons results in activation of multiple biochemical pathways, which results in the generation of free radicals. Apart from available marketed formulations, extensive research is being carried out on herbal-based natural products to control hyperglycemia and its associated complications. This review is focused to provide a summary on diabetic neuropathy covering its etiology, types, and existing work on herbal-based therapies, which include pure compounds isolated from plant materials, plant extracts, and Ayurvedic preparations.
Collapse
Affiliation(s)
- Reshu Tiwari
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Mohd Haris Siddiqui
- b Associate Professor & Head, Department of Bioengineering , Integral University , Dasauli, Lucknow , India
| | - Tarique Mahmood
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Paramdeep Bagga
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Farogh Ahsan
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Arshiya Shamim
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| |
Collapse
|
17
|
Akbar M, Bhandari U, Habib A, Ahmad R. Potential Association of Triglyceride Glucose Index with Cardiac Autonomic Neuropathy in Type 2 Diabetes Mellitus Patients. J Korean Med Sci 2017; 32:1131-1138. [PMID: 28581270 PMCID: PMC5461317 DOI: 10.3346/jkms.2017.32.7.1131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/19/2017] [Indexed: 12/24/2022] Open
Abstract
Cardiac autonomic neuropathy (CAN) is a common and most neglected complication of diabetes, estimated to be roughly 8% in recently diagnosed patients and greater than 50% in patients with chronic disease history. The insulin resistance (IR) itself is bidirectionally associated with increased risk of type 2 diabetes mellitus (T2DM) and CAN is a predisposing factor. The primary objective of the present study was aimed to find a correlation of triglyceride glucose index (TyG index) in CAN patients along with the prevalence of CAN in T2DM patients as a secondary objective. This prevalence study was conducted on 202 patients visiting the diabetic clinic of Hamdard Institute of Medical Sciences and Research, Jamia Hamdard (HIMSR) teaching hospital in New Delhi, India who fulfilled the inclusion criteria. The Ewings autonomic function test was used for diagnosis of CAN. TyG index was calculated for patients based on fasting levels of glucose and triglyceride. The CAN was diagnosed in 62 participants out of 202 T2DM patients (overall prevalence 30.7%). The mean ± standard deviation (SD) for TyG index was 10.3 ± 0.2 and 9.5 ± 0.2 in CAN positive, T2DM patients, respectively. The difference of TyG index, in CAN positive and T2DM patients, was highly significant (P < 0.001). Further correlation analysis was performed to find an association of TyG index, duration, and age with patient groups. TyG index showed a positive correlation with heart rate during deep breathing (HRD), heart rate variation during standing (HRS), blood pressure (BP) response to handgrip and BP response to standing. Our finding highlights the TyG index, low-cost IR index, might be useful as an alternative tool for the early screening of patients at a high risk of diabetic neuropathy.
Collapse
Affiliation(s)
- Md Akbar
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Uma Bhandari
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India.
| | - Anwar Habib
- Department of Medicine, Hamdard Institute of Medical Sciences and Research, Hamdard University, New Delhi, India
| | - Razi Ahmad
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Hamdard University, New Delhi, India
| |
Collapse
|
18
|
Areti A, Yerra VG, Komirishetty P, Kumar A. Potential Therapeutic Benefits of Maintaining Mitochondrial Health in Peripheral Neuropathies. Curr Neuropharmacol 2017; 14:593-609. [PMID: 26818748 PMCID: PMC4981743 DOI: 10.2174/1570159x14666151126215358] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/31/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Peripheral neuropathies are a group of diseases characterized by malfunctioning of peripheral nervous system. Neuropathic pain, one of the core manifestations of peripheral neuropathy remains as the most severe disabling condition affecting the social and daily routine life of patients suffering from peripheral neuropathy. Method: The current review is aimed at unfolding the possible role of mitochondrial dysfunction in peripheral nerve damage and to discuss on the probable therapeutic strategies against neuronal mitotoxicity. The article also highlights the therapeutic significance of maintaining a healthy mitochondrial environment in neuronal cells via pharmacological management in context of peripheral neuropathies. Results: Aberrant cellular signaling coupled with changes in neurotransmission, peripheral and central sensitization are found to be responsible for the pathogenesis of variant toxic neuropathies. Current research reports have indicated the possible involvement of mitochondria mediated redox imbalance as one of the principal causes of neuropathy aetiologies. In addition to imbalance in redox homeostasis, mitochondrial dysfunction is also responsible for alterations in physiological bioenergetic metabolism, apoptosis and autophagy pathways. Conclusions: In spite of various etiological factors, mitochondrial dysfunction has been found to be a major pathomechanism underlying the neuronal dysfunction associated with peripheral neuropathies. Pharmacological modulation of mitochondria either directly or indirectly is expected to yield therapeutic relief from various primary and secondary mitochondrial diseases.
Collapse
Affiliation(s)
| | | | | | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, TG-500037.
| |
Collapse
|
19
|
Tang-Luo-Ning Improves Mitochondrial Antioxidase Activity in Dorsal Root Ganglia of Diabetic Rats: A Proteomics Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8176089. [PMID: 28133612 PMCID: PMC5241458 DOI: 10.1155/2017/8176089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Tang-luo-ning (TLN) is a traditional Chinese herbal recipe for treating diabetic peripheral neuropathy (DPN). In this study, we investigated mitochondrial protein profiles in a diabetic rat model and explored the potential protective effect of TLN. Diabetic rats were established by injection of streptozocin (STZ) and divided into model, alpha lipoic acid (ALA), and TLN groups. Mitochondrial proteins were isolated from dorsal root ganglia and proteomic analysis was used to quantify the differentially expressed proteins. Tang-luo-ning mitigated STZ-induced diabetic symptoms and blood glucose level, including response time to cold or hot stimulation and nerve conductive velocity. As compared to the normal, there were 388 differentially expressed proteins in the TLN group, 445 in ALA group, and 451 in model group. As compared to the model group, there were 275 differential proteins in TLN group and 251 in ALA group. As compared to model group, mitochondrial complex III was significantly decreased, while glutathione peroxidase and peroxidase were increased in TLN group. When compared with ALA group, the mitochondrial complex III was increased, and mitochondrial complex IV was decreased in TLN group. Together, TLN should have a strong antioxidative activity, which appears to be modulated through regulation of respiratory complexes and antioxidases.
Collapse
|
20
|
Zhao J, Wang H, Song T, Yang Y, Gu K, Ma P, Zhang Z, Shen L, Liu J, Wang W. Thalidomide Promotes Morphine Efficacy and Prevents Morphine-Induced Tolerance in Rats with Diabetic Neuropathy. Neurochem Res 2016; 41:3171-3180. [DOI: 10.1007/s11064-016-2041-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/13/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022]
|
21
|
Yan H, Zhang E, Feng C, Zhao X. Role of A3 adenosine receptor in diabetic neuropathy. J Neurosci Res 2016; 94:936-46. [PMID: 27319979 DOI: 10.1002/jnr.23774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Heng Yan
- Department of Anesthesiology; The Second Hospital of Shandong University; Jinan Shandong China
| | - Enshui Zhang
- Department of Orthopedics; Jinan Central Hospital Affiliated to Shandong University; Jinan Shandong China
| | - Chang Feng
- Department of Anesthesiology; The Second Hospital of Shandong University; Jinan Shandong China
| | - Xin Zhao
- Department of Anesthesiology; The Second Hospital of Shandong University; Jinan Shandong China
| |
Collapse
|
22
|
Erbaş O, Oltulu F, Yılmaz M, Yavaşoğlu A, Taşkıran D. Neuroprotective effects of chronic administration of levetiracetam in a rat model of diabetic neuropathy. Diabetes Res Clin Pract 2016; 114:106-16. [PMID: 26795972 DOI: 10.1016/j.diabres.2015.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/04/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Diabetic neuropathy (DNP) is a frequent and serious complication of diabetes mellitus (DM) that leads to progressive and length-dependent loss of peripheral nerve axons. The purpose of the present study is to assess the neuroprotective effects of levetiracetam (LEV) on DNP in a streptozotocin (STZ)-induced DM model in rats. METHODS Adult Sprague-Dawley rats were administered with STZ (60mg/kg) to induce diabetes. DNP was confirmed by electromyography (EMG) and motor function test on 21st day following STZ injection. Study groups were assigned as follows; Group 1: Naïve control (n=8), Group 2: DM+1mL/kg saline (n=12), Group 3: DM+300mg/kg LEV (n=10), Group 4: DM+600mg/kg LEV (n=10). LEV was administered i.p. for 30 consecutive days. Then, EMG, motor function test, biochemical analysis (plasma lipid peroxides and total anti-oxidant capacity), histological and immunohistochemical analysis of sciatic nerves (TUNEL assay, bax, caspase 3, caspase 8 and NGF) were performed to evaluate the efficacy of LEV. RESULTS Treatment of diabetic rats with LEV significantly attenuated the inflammation and fibrosis in sciatic nerves and prevented electrophysiological alterations. Immunohistochemistry of sciatic nerves showed a considerable increase in bax, caspase 3 and caspase 8 and a decrease in NGF expression in saline-treated rats whereas LEV significantly suppressed apoptosis markers and prevented the reduction in NGF expression. Besides, LEV considerably reduced plasma lipid peroxides and increased total anti-oxidant capacity in diabetic rats. CONCLUSIONS The results of the present study suggest that LEV may have therapeutic effects in DNP through modulation of anti-oxidant and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Oytun Erbaş
- Istanbul Bilim University School of Medicine, Department of Physiology, Istanbul, Turkey
| | - Fatih Oltulu
- Ege University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Mustafa Yılmaz
- Mugla University School of Medicine, Department of Neurology, Mugla, Turkey
| | - Altuğ Yavaşoğlu
- Ege University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Dilek Taşkıran
- Ege University School of Medicine, Department of Physiology, Izmir, Turkey.
| |
Collapse
|
23
|
Yerra VG, Gundu C, Bachewal P, Kumar A. Autophagy: The missing link in diabetic neuropathy? Med Hypotheses 2016; 86:120-8. [DOI: 10.1016/j.mehy.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
|
24
|
Abstract
Hearing impairment (HI) and type 2 diabetes are both highly prevalent disabling conditions. Type 2 diabetes has been modestly associated with a higher likelihood of HI in many, but not all, population-based studies, with stronger associations found in studies that included younger age groups. Pathophysiologic studies suggest that persons with diabetes are predisposed to HI in the higher frequencies. Proposed mechanisms underlying the association between diabetes and HI include the combined contributions of hyperglycemia and oxidative stress to cochlear microangiopathy and auditory neuropathy. In this review, we highlight recent population-based studies of type 2 diabetes and HI and examine evidence for diabetes-induced pathophysiologic changes that may result in damage to the auditory system.
Collapse
Affiliation(s)
- Elizabeth Purchase Helzner
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, 450 Clarkson Avenue, Mail Stop 43, Brooklyn, NY, 11203, USA.
| | | |
Collapse
|
25
|
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies.
Collapse
|
26
|
Fawzy OA, Arafa AI, El Wakeel MA, Abdul Kareem SH. Plantar pressure as a risk assessment tool for diabetic foot ulceration in egyptian patients with diabetes. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2014; 7:31-9. [PMID: 25520564 PMCID: PMC4257475 DOI: 10.4137/cmed.s17088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Diabetic foot ulceration is a preventable long-term complication of diabetes. In the present study, peak plantar pressures (PPP) and other characteristics were assessed in a group of 100 Egyptian patients with diabetes with or without neuropathy and foot ulcers. The aim was to study the relationship between plantar pressure (PP) and neuropathy with or without ulceration and trying to clarify the utility of pedobarography as an ulceration risk assessment tool in patients with diabetes. SUBJECTS AND METHODS A total of 100 patients having diabetes were selected. All patients had a comprehensive foot evaluation, including assessment for neuropathy using modified neuropathy disability score (MNDS), for peripheral vascular disease using ankle brachial index, and for dynamic foot pressures using the MAT system (Tekscan). The studied patients were grouped into: (1) diabetic control group (DC), which included 37 patients who had diabetes without neuropathy or ulceration and MNDS ≤2; (2) diabetic neuropathy group (DN), which included 33 patients who had diabetes with neuropathy and MNDS >2, without current or a history of ulceration; and (3) diabetic ulcer group (DU), which included 30 patients who had diabetes and current ulceration, seven of those patients also gave a history of ulceration. RESULTS PP parameters were significantly different between the studied groups, namely, forefoot peak plantar pressure (FFPPP), rearfoot peak plantar pressure (RFPPP), forefoot/rearfoot ratio (F/R), forefoot peak pressure gradient (FFPPG) rearfoot peak pressure gradient (RFPPG), and forefoot peak pressure gradient/rearfoot peak pressure gradient (FFPPG/RFPPG) (P < 0.05). FFPPP and F/R were significantly higher in the DU group compared to the DN and DC groups (P < 0.05), with no significant difference between DN and DC. FFPPG was significantly higher in the DU and DN groups compared to the DC group (P < 0.05). RFPPP and FFPPG/RFPPG were significantly higher in the DU and DN groups compared to the DC group (P < 0.05) with no significant difference between the DN and DU groups (P > 0.05). FFPPP, F/R ratio, FFPPG, and FFPPG/RFPPG correlated significantly with the severity of neuropathy according to MNDS (P < 0.05). These same variables as well as MNDS were also significantly higher in patients with foot deformity compared to those without deformity (P < 0.05). Using the receiver operating characteristic analysis, the optimal cut-point of PPP for ulceration risk, as determined by a balance of sensitivity, specificity, and accuracy was 335 kPa and was found at the forefoot. Multivariate logistical regression analysis for ulceration risk was statistically significant for duration of diabetes (odds ratio [OR] = 0.8), smoking (OR = 9.7), foot deformity (OR = 8.7), MNDS (OR = 1.5), 2-h postprandial plasma glucose (2 h-PPG) (OR = 0.9), glycated hemoglobin (HbA1c) (OR = 2.1), FFPPP (OR = 1.0), and FFPPG (OR = 1.0). CONCLUSION In conclusion, persons with diabetes having neuropathy and/or ulcers have elevated PPP. Risk of ulceration was highly associated with duration of diabetes, smoking, severity of neuropathy, glycemic control, and high PP variables especially the FFPPP, F/R, and FFPPG. We suggest a cut-point of 355 kPa for FFPPP to denote high risk for ulceration that would be more valid when used in conjunction with other contributory risk factors, namely, duration of diabetes, smoking, glycemic load, foot deformity, and severity of neuropathy.
Collapse
Affiliation(s)
- Olfat A Fawzy
- Department of Endocrinology & Metabolism, AL Azhar Faculty of Medicine for Girls, Cairo, Egypt
| | - Asmaa I Arafa
- Department of Endocrinology & Metabolism, AL Azhar Faculty of Medicine for Girls, Cairo, Egypt
| | - Mervat A El Wakeel
- Department of Endocrinology & Metabolism, AL Azhar Faculty of Medicine for Girls, Cairo, Egypt
| | - Shaimaa H Abdul Kareem
- Department of Endocrinology & Metabolism, AL Azhar Faculty of Medicine for Girls, Cairo, Egypt
| |
Collapse
|
27
|
O'Brien PD, Hinder LM, Sakowski SA, Feldman EL. ER stress in diabetic peripheral neuropathy: A new therapeutic target. Antioxid Redox Signal 2014; 21:621-33. [PMID: 24382087 DOI: 10.1089/ars.2013.5807] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Diabetes and other diseases that comprise the metabolic syndrome have reached epidemic proportions. Diabetic peripheral neuropathy (DPN) is the most prevalent complication of diabetes, affecting ~50% of diabetic patients. Characterized by chronic pain or loss of sensation, recurrent foot ulcerations, and risk for amputation, DPN is associated with significant morbidity and mortality. Mechanisms underlying DPN pathogenesis are complex and not well understood, and no effective treatments are available. Thus, an improved understanding of DPN pathogenesis is critical for the development of successful therapeutic options. RECENT ADVANCES Recent research implicates endoplasmic reticulum (ER) stress as a novel mechanism in the onset and progression of DPN. ER stress activates the unfolded protein response (UPR), a well-orchestrated signaling cascade responsible for relieving stress and restoring normal ER function. CRITICAL ISSUES During times of extreme or chronic stress, such as that associated with diabetes, the UPR may be insufficient to alleviate ER stress, resulting in apoptosis. Here, we discuss the potential role of ER stress in DPN, as well as evidence demonstrating how ER stress intersects with pathways involved in DPN development and progression. An improved understanding of how ER stress contributes to peripheral nerve dysfunction in diabetes will provide important insight into DPN pathogenesis. FUTURE DIRECTIONS Future studies aimed at gaining the necessary insight into ER stress in DPN pathogenesis will ultimately facilitate the development of novel therapies.
Collapse
|
28
|
Dunn TN, Adams SH. Relations between metabolic homeostasis, diet, and peripheral afferent neuron biology. Adv Nutr 2014; 5:386-93. [PMID: 25022988 PMCID: PMC4085187 DOI: 10.3945/an.113.005439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is well established that food intake behavior and energy balance are regulated by crosstalk between peripheral organ systems and the central nervous system (CNS), for instance, through the actions of peripherally derived leptin on hindbrain and hypothalamic loci. Diet- or obesity-associated disturbances in metabolic and hormonal signals to the CNS can perturb metabolic homeostasis bodywide. Although interrelations between metabolic status and diet with CNS biology are well characterized, afferent networks (those sending information to the CNS from the periphery) have received far less attention. It is increasingly appreciated that afferent neurons in adipose tissue, the intestines, liver, and other tissues are important controllers of energy balance and feeding behavior. Disruption in their signaling may have consequences for cardiovascular, pancreatic, adipose, and immune function. This review discusses the diverse ways that afferent neurons participate in metabolic homeostasis and highlights how changes in their function associate with dysmetabolic states, such as obesity and insulin resistance.
Collapse
Affiliation(s)
- Tamara N. Dunn
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, CA; and
| | - Sean H. Adams
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, CA; and,Obesity and Metabolism Research Unit, USDA–Agricultural Research Service Western Human Nutrition Research Center, Davis, CA,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Abstract
Chronic distal symmetrical sensory peripheral neuropathy is a common neurological complication of cancer chemotherapy, HIV treatment and diabetes. Although aetiology-specific differences in presentation are evident, the clinical signs and symptoms of these neuropathies are clearly similar. Data from animal models of neuropathic pain suggest that the similarities have a common cause: mitochondrial dysfunction in primary afferent sensory neurons. Mitochondrial dysfunction is caused by mitotoxic effects of cancer chemotherapeutic drugs of several chemical classes, HIV-associated viral proteins, and nucleoside reverse transcriptase inhibitor treatment, as well as the (possibly both direct and indirect) effects of excess glucose. The mitochondrial injury results in a chronic neuronal energy deficit, which gives rise to spontaneous nerve impulses and a compartmental neuronal degeneration that is first apparent in the terminal receptor arbor--that is, intraepidermal nerve fibres--of cutaneous afferent neurons. Preliminary data suggest that drugs that prevent mitochondrial injury or improve mitochondrial function could be useful in the treatment of these conditions.
Collapse
|
30
|
Callaghan B, Feldman E. The metabolic syndrome and neuropathy: therapeutic challenges and opportunities. Ann Neurol 2013; 74:397-403. [PMID: 23929529 DOI: 10.1002/ana.23986] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
The metabolic syndrome and neuropathy are common conditions, especially in the elderly, that are associated with significant morbidity. Furthermore, the metabolic syndrome is reaching epidemic proportions across the world. Current evidence supports the association of the metabolic syndrome and its individual components with neuropathy. Several clinical trials have demonstrated that treating hyperglycemia, a component of the metabolic syndrome, has a significant effect on reducing the incidence of neuropathy in those with type 1 diabetes. However, glucose control has only a marginal effect on preventing neuropathy in those with type 2 diabetes, suggesting that other factors may be driving nerve injury in these patients. Emerging evidence supports the metabolic syndrome as including risk factors for neuropathy. Interventions exist for treatment of all of the metabolic syndrome components, but only glucose control has strong evidence to support its use and is widely employed. Our understanding of the biology of metabolic nerve injury has rapidly expanded over the past several years. Mechanisms of injury include fatty deposition in nerves, extracellular protein glycation, mitochondrial dysfunction, and oxidative stress. Additionally, the activation of counter-regulatory signaling pathways leads to chronic metabolic inflammation. Medications that target these signaling pathways are being used for a variety of diseases and are intriguing therapeutic agents for future neuropathy clinical trials. As we move forward, we need to expand our understanding of the association between the metabolic syndrome and neuropathy by addressing limitations of previous studies. Just as importantly, we must continue to investigate the pathophysiology of metabolically induced nerve injury.
Collapse
Affiliation(s)
- Brian Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
31
|
Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:259187. [PMID: 24319678 PMCID: PMC3844199 DOI: 10.1155/2013/259187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/11/2013] [Indexed: 11/23/2022]
Abstract
Background. Although pathological involvements of diabetic polyneuropathy (DPN) have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs) ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs) into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.
Collapse
|
32
|
Akinpelu OV, Mujica-Mota M, Daniel SJ. Is type 2 diabetes mellitus associated with alterations in hearing? A systematic review and meta-analysis. Laryngoscope 2013; 124:767-76. [DOI: 10.1002/lary.24354] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | - Mario Mujica-Mota
- Department of Otolaryngology-Head and Neck Surgery; The Montreal Children's Hospital; Montreal QC Canada
| | - Sam J. Daniel
- McGill Auditory Sciences Laboratory; McGill University; Montreal QC Canada
- Department of Otolaryngology-Head and Neck Surgery; The Montreal Children's Hospital; Montreal QC Canada
| |
Collapse
|
33
|
Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 2013; 36:439-49. [PMID: 23725712 DOI: 10.1016/j.tins.2013.04.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/20/2013] [Accepted: 04/24/2013] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication affecting more than one third of diabetes mellitus (DM) patients. Although all cellular components participating in peripheral nerve function are exposed to and affected by the metabolic consequences of DM, nodal regions, areas of intense interactions between Schwann cells and axons, may be particularly sensitive to DM-induced alterations. Nodes are enriched in insulin receptors, glucose transporters, Na(+) and K(+) channels, and mitochondria, all implicated in the development and progression of DPN. Latest results particularly reinforce the idea that changes in ion-channel function and energy metabolism, both of which depend on axon-glia crosstalk, are among the important contributors to DPN. These insights provide a basis for new therapeutic approaches aimed at delaying or reversing DPN.
Collapse
Affiliation(s)
- Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | |
Collapse
|
34
|
|