1
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. Am J Hum Genet 2024; 111:2411-2426. [PMID: 39317201 PMCID: PMC11568761 DOI: 10.1016/j.ajhg.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology, and variant interpretation. This VCEP made specifications for the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines for the ataxia telangiectasia mutated (ATM) gene according to the ClinGen protocol. These gene-specific rules for ATM were modified from the ACMG/AMP guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar, and re-evaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic, and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 of the 33 pilot variants were not VUS, leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Schon
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Jenni R, Klaa H, Khamessi O, Chikhaoui A, Najjar D, Ghedira K, Kraoua I, Turki I, Yacoub-Youssef H. Clinical and genetic spectrum of Ataxia Telangiectasia Tunisian patients: Bioinformatic analysis unveil mechanisms of ATM variants pathogenicity. Int J Biol Macromol 2024; 278:134444. [PMID: 39098699 DOI: 10.1016/j.ijbiomac.2024.134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Ataxia Telangiectasia (AT) is a rare multisystemic neurodegenerative disease caused by biallelic mutations in the ATM gene. Few clinical studies on AT disease have been conducted in Tunisia, however, the mutational landscape is still undefined. Our aim is to determine the clinical and genetic spectrum of AT Tunisian patients and to explore the potential underlying mechanism of variant pathogenicity. Sanger sequencing was performed for nine AT patients. A comprehensive computational analysis was conducted to evaluate the possible pathogenic effect of ATM identified variants. Genetic screening of ATM gene has identified nine different variants from which six have not been previously reported. In silico analysis has predicted a pathogenic effect of identified mutations. This was corroborated by a structural bioinformatics study based on molecular modeling and docking for novel missense mutations. Our findings suggest a profound impact of identified mutations not only on the ATM protein stability, but also on the ATM-ligand interactions. Our study characterizes the mutational landscape of AT Tunisian patients which will allow to set up genetic counseling and prenatal diagnosis for families at risk and expand the spectrum of ATM variants worldwide. Furthermore, understanding the mechanism that underpin variant pathogenicity could provide further insights into disease pathogenesis.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Hedia Klaa
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia; Institut de Biotechnologie de Sidi Thabet, Université de la Manouba, Ariana BP-66, Manouba 2010, Tunisia.
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia.
| | - Ichraf Kraoua
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Ilhem Turki
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| |
Collapse
|
3
|
Lebedeva A, Veselovsky E, Kavun A, Belova E, Grigoreva T, Orlov P, Subbotovskaya A, Shipunov M, Mashkov O, Bilalov F, Shatalov P, Kaprin A, Shegai P, Diuzhev Z, Migiaev O, Vytnova N, Mileyko V, Ivanov M. Untapped Potential of Poly(ADP-Ribose) Polymerase Inhibitors: Lessons Learned From the Real-World Clinical Homologous Recombination Repair Mutation Testing. World J Oncol 2024; 15:562-578. [PMID: 38993246 PMCID: PMC11236374 DOI: 10.14740/wjon1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024] Open
Abstract
Background Testing for homologous recombination deficiency (HRD) mutations is pivotal to assess individual risk, to proact preventive measures in healthy carriers and to tailor treatments for cancer patients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) inhibitors with remarkable impact on molecular-selected patient survival across diverse nosologies, ingrains testing for BRCA genes and beyond in clinical practice. Nevertheless, testing strategies remain a question of debate. While several pathogenic BRCA1/2 gene variants have been described as founder pathogenic mutations frequently found in patients from Russia, other homologous recombination repair (HRR) genes have not been sufficiently explored. In this study, we present real-world data of routine HRR gene testing in Russia. Methods We evaluated clinical and sequencing data from cancer patients who had germline/somatic next-generation sequencing (NGS) HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR genes). The primary objectives of this study were to evaluate the frequency of BRCA1/2 and non-BRCA gene mutations in real-world unselected patients from Russia, and to determine whether testing beyond BRCA1/2 is feasible. Results Data of 2,032 patients were collected from February 2021 to February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We observed 586 variants of uncertain significance (VUS) and 372 deleterious variants (DVs) across 487 patients, with 17.6% HRR-mutation positivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 (16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-fixed paraffin-embedded (FFPE), testing for variant origin clarification was required in one case (0.4%). Most BRCA1/2 germline variants were DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous (53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR and 1.2% BRCA1/2/ATM/CHEK2 mutation patients. Conclusions Our study represents one of the first reports about the incidence of DV and VUS in HRR genes, including genes beyond BRCA1/2, identified in cancer patients from Russia, assessed by NGS. In silico predictions of the observed HRR gene variants suggest that non-BRCA gene testing is likely to result in higher frequency of patients who are candidates for PARP inhibitor therapy. Continuing sequencing efforts should clarify interpretation of frequently observed non-BRCA VUS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Orlov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Anna Subbotovskaya
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Maksim Shipunov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Oleg Mashkov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Fanil Bilalov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Peter Shatalov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Peter Shegai
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | | | | | - Vladislav Mileyko
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
4
|
Kuzmenko N, Alexenko M, Mukhina A, Rodina Y, Fadeeva M, Pershin D, Kieva A, Raykina E, Maschan M, Novichkova G, Shcherbina A. Genetic Characteristics of a Large Pediatric Cohort of Patients with Inborn Errors of Immunity: Single-Center Experience. J Clin Immunol 2024; 44:165. [PMID: 39052144 DOI: 10.1007/s10875-024-01767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
More than 450 genetic defects result in inborn errors of immunity (IEI). Their individual prevalence in specific cohorts is influenced by national characteristics and other factors. We present results of genetic testing conducted in 1809 Russian children with IEI. Genetic defects confirming IEI were found in 1112 out of 1809 (61.5%) probands. These defects included variants in 118 single genes (87.9% of patients) and aberrations in 6 chromosomes (11.8%). Notably, three patients harbored pathogenic variants in more than one IEI gene. Large deletions constituted 5% of all defects. Out of the 799 original variants, 350 (44%) have not been described previously. Rare genetic defects (10 or fewer patients per gene) were identified in 20% of the patients. Among 967 probands with germline variants, defects were inherited in an autosomal dominant manner in 29%, X-linked in 34%, and autosomal recessive in 37%. Four females with non-random X-inactivation exhibited symptoms of X-linked diseases (BTK, WAS, CYBB, IKBKG gene defects). Despite a relatively low rate of consanguinity in Russia, 47.9% of autosomal recessive gene defects were found in a homozygous state. Notably, 28% of these cases carried "Slavic" mutation of the NBN gene or known hot-spot mutations in other genes. The diversity of IEI genetic forms and the high frequency of newly described variants underscore the genetic heterogeneity within the Russian IEI group. The new variants identified in this extensive cohort will enrich genetic databases.
Collapse
Affiliation(s)
- Natalia Kuzmenko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.
| | - Maxim Alexenko
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anna Mukhina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Mariia Fadeeva
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Dmitrii Pershin
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Amina Kieva
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Raykina
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Miсhael Maschan
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- High School of Molecular and Experimental Medicine, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- High School of Molecular and Experimental Medicine, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
5
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.28.24307502. [PMID: 38854136 PMCID: PMC11160822 DOI: 10.1101/2024.05.28.24307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ClinGen Hereditary Breast, Ovarian and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology and variant interpretation. This VCEP made specifications for ACMG/AMP guidelines for the ataxia telangiectasia mutated (ATM) gene according to the Food and Drug Administration (FDA)-approved ClinGen protocol. These gene-specific rules for ATM were modified from the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar and reevaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 the 33 pilot variants were not VUS leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Katherine Schon
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
7
|
Czarny J, Andrzejewska M, Zając-Spychała O, Latos-Grażyńska E, Pastorczak A, Wypyszczak K, Szczawińska-Popłonyk A, Niewiadomska-Wojnałowicz I, Wziątek A, Marciniak-Stępak P, Dopierała M, Małdyk J, Jończyk-Potoczna K, Derwich K. Successful Treatment of Large B-Cell Lymphoma in a Child with Compound Heterozygous Mutation in the ATM Gene. Int J Mol Sci 2023; 24:ijms24021099. [PMID: 36674612 PMCID: PMC9866559 DOI: 10.3390/ijms24021099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Ataxia-telangiectasia (AT) is a multisystemic neurodegenerative inborn error of immunity (IEI) characterized by DNA repair defect, chromosomal instability, and hypersensitivity to ionizing radiation. Impaired DNA double-strand break repair determines a high risk of developing hematological malignancies, especially lymphoproliferative diseases. Poor response to treatment, excessive chemotherapy toxicities, and the need for avoiding exposure to ionizing radiation make the successful clinical management of patients with AT challenging for oncologists. We describe the favorable outcome of the LBCL with IRF4 rearrangement at stage III in a 7-year-old female patient diagnosed with AT. The patient was treated according to the B-HR arm of the INTER-B-NHL-COP 2010 protocol, including the administration of rituximab, cyclophosphamide, methotrexate, prednisone, etc. She presented excessive treatment toxicities despite individually reduced doses of methotrexate and cyclophosphamide. However, in the MRI there was no significant reduction in pathologic lymph nodes after three immunochemotherapy courses. Therefore, a lymph node biopsy was taken. Its subsequent histopathological examination revealed tuberculosis-like changes, though tuberculosis suspicion was excluded. After two following immunochemotherapy courses, PET-CT confirmed complete remission. From March 2022 onwards, the patient has remained in remission under the care of the outpatient children's oncology clinic.
Collapse
Affiliation(s)
- Jakub Czarny
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Marta Andrzejewska
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Olga Zając-Spychała
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Elżbieta Latos-Grażyńska
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Łódź, 91-738 Łódź, Poland
| | - Kamila Wypyszczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Łódź, 91-738 Łódź, Poland
| | - Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Izabela Niewiadomska-Wojnałowicz
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Agnieszka Wziątek
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Patrycja Marciniak-Stępak
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Michał Dopierała
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
- Department of Pathology and Clinical Immunology, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Jadwiga Małdyk
- Department of Pathology, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Katarzyna Jończyk-Potoczna
- Department of Pediatric Radiology, Institute of Pediatrics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
- Correspondence:
| |
Collapse
|
8
|
Bueno‐Martínez E, Sanoguera‐Miralles L, Valenzuela‐Palomo A, Esteban‐Sánchez A, Lorca V, Llinares‐Burguet I, Allen J, García‐Álvarez A, Pérez‐Segura P, Durán M, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco‐Sampedro EA. Minigene-based splicing analysis and ACMG/AMP-based tentative classification of 56 ATM variants. J Pathol 2022; 258:83-101. [PMID: 35716007 PMCID: PMC9541484 DOI: 10.1002/path.5979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 12/29/2022]
Abstract
The ataxia telangiectasia-mutated (ATM) protein is a major coordinator of the DNA damage response pathway. ATM loss-of-function variants are associated with 2-fold increased breast cancer risk. We aimed at identifying and classifying spliceogenic ATM variants detected in subjects of the large-scale sequencing project BRIDGES. A total of 381 variants at the intron-exon boundaries were identified, 128 of which were predicted to be spliceogenic. After further filtering, we ended up selecting 56 variants for splicing analysis. Four functional minigenes (mgATM) spanning exons 4-9, 11-17, 25-29, and 49-52 were constructed in the splicing plasmid pSAD. Selected variants were genetically engineered into the four constructs and assayed in MCF-7/HeLa cells. Forty-eight variants (85.7%) impaired splicing, 32 of which did not show any trace of the full-length (FL) transcript. A total of 43 transcripts were identified where the most prevalent event was exon/multi-exon skipping. Twenty-seven transcripts were predicted to truncate the ATM protein. A tentative ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme that integrates mgATM data allowed us to classify 29 ATM variants as pathogenic/likely pathogenic and seven variants as likely benign. Interestingly, the likely pathogenic variant c.1898+2T>G generated 13% of the minigene FL-transcript due to the use of a noncanonical GG-5'-splice-site (0.014% of human donor sites). Circumstantial evidence in three ATM variants (leakiness uncovered by our mgATM analysis together with clinical data) provides some support for a dosage-sensitive expression model in which variants producing ≥30% of FL-transcripts would be predicted benign, while variants producing ≤13% of FL-transcripts might be pathogenic. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Elena Bueno‐Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Lara Sanoguera‐Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Alberto Valenzuela‐Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Inés Llinares‐Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Alicia García‐Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Pedro Pérez‐Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Mercedes Durán
- Cancer Genetics, Instituto de Biología y Genética MolecularValladolidSpain
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Peter Devilee
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike PG Vreeswijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eladio A Velasco‐Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| |
Collapse
|
9
|
Pastorczak A, Attarbaschi A, Bomken S, Borkhardt A, van der Werff ten Bosch J, Elitzur S, Gennery AR, Hlavackova E, Kerekes A, Křenová Z, Mlynarski W, Szczepanski T, Wassenberg T, Loeffen J. Consensus Recommendations for the Clinical Management of Hematological Malignancies in Patients with DNA Double Stranded Break Disorders. Cancers (Basel) 2022; 14:2000. [PMID: 35454905 PMCID: PMC9029535 DOI: 10.3390/cancers14082000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Patients with double stranded DNA repair disorders (DNARDs) (Ataxia Telangiectasia (AT) and Nijmegen Breakage syndrome (NBS)) are at a very high risk for developing hematological malignancies in the first two decades of life. The most common neoplasms are T-cell lymphoblastic malignancies (T-cell ALL and T-cell LBL) and diffuse large B cell lymphoma (DLBCL). Treatment of these patients is challenging due to severe complications of the repair disorder itself (e.g., congenital defects, progressive movement disorders, immunological disturbances and progressive lung disease) and excessive toxicity resulting from chemotherapeutic treatment. Frequent complications during treatment for malignancies are deterioration of pre-existing lung disease, neurological complications, severe mucositis, life threating infections and feeding difficulties leading to significant malnutrition. These complications make modifications to commonly used treatment protocols necessary in almost all patients. Considering the rarity of DNARDs it is difficult for individual physicians to obtain sufficient experience in treating these vulnerable patients. Therefore, a team of experts assembled all available knowledge and translated this information into best available evidence-based treatment recommendations.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Andishe Attarbaschi
- Department of Pediatrics, Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Bomken
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Jutte van der Werff ten Bosch
- Department of Pediatric Hematology, Oncology and Immunology, University Hospital Brussels, 1090 Jette Brussels, Belgium;
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petach Tikvah 4920235, Israel;
| | - Andrew R. Gennery
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Eva Hlavackova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Arpád Kerekes
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Zdenka Křenová
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), 41-800 Zabrze, Poland;
| | - Tessa Wassenberg
- Department of Neurology and Child Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jan Loeffen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| |
Collapse
|
10
|
Petley E, Yule A, Alexander S, Ojha S, Whitehouse WP. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One 2022; 17:e0264177. [PMID: 35290391 PMCID: PMC9049793 DOI: 10.1371/journal.pone.0264177] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ataxia-telangiectasia is an autosomal recessive, multi-system, and life-shortening disease caused by mutations in the ataxia-telangiectasia mutated gene. Although widely reported, there are no studies that give a comprehensive picture of this intriguing condition. OBJECTIVES Understand the natural history of ataxia-telangiectasia (A-T), as reported in scientific literature. SEARCH METHODS 107 search terms were identified and divided into 17 searches. Each search was performed in PubMed, Ovid SP (MEDLINE) 1946-present, OVID EMBASE 1980 -present, Web of Science core collection, Elsevier Scopus, and Cochrane Library. SELECTION CRITERIA All human studies that report any aspect of A-T. DATA COLLECTION AND ANALYSIS Search results were de-duplicated, data extracted (including author, publication year, country of origin, study design, population, participant characteristics, and clinical features). Quality of case-control and cohort studies was assessed by the Newcastle-Ottawa tool. Findings are reported descriptively and where possible data collated to report median (interquartile range, range) of outcomes of interest. MAIN RESULTS 1314 cases reported 2134 presenting symptoms. The most common presenting symptom was abnormal gait (1160 cases; 188 studies) followed by recurrent infections in classical ataxia-telangiectasia and movement disorders in variant ataxia-telangiectasia. 687 cases reported 752 causes of death among which malignancy was the most frequently reported cause. Median (IQR, range) age of death (n = 294) was 14 years 0 months (10 years 0 months to 23 years 3 months, 1 year 3 months to 76 years 0 months). CONCLUSIONS This review demonstrates the multi-system involvement in A-T, confirms that neurological symptoms are the most frequent presenting features in classical A-T but variants have diverse manifestations. We found that most individuals with A-T have life limited to teenage or early adulthood. Predominance of case reports, and case series demonstrate the lack of robust evidence to determine the natural history of A-T. We recommend population-based studies to fill this evidence gap.
Collapse
Affiliation(s)
- Emily Petley
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Alexander Yule
- United Lincolnshire Hospitals NHS Trust, Lincoln, United
Kingdom
| | - Shaun Alexander
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Children’s Hospital, University Hospitals of Derby and Burton, NHS
Foundation Trust, Derby, United Kingdom
| | - William P. Whitehouse
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Nottingham Children’s Hospital, Nottingham University Hospital NHS Trust,
Nottingham, United Kingdom
| |
Collapse
|
11
|
Ganguly J, Bernaola MT, Goobie S, Prasad A, Jog M. Myoclonus‐Dystonia Presentation of
ATM
Gene Mutation in a Canadian Mennonite. Mov Disord Clin Pract 2021; 9:264-267. [DOI: 10.1002/mdc3.13369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jacky Ganguly
- Movement Disorder Centre, London Health Sciences Centre The University of Western Ontario London Ontario Canada
| | - Mellany Tuesta Bernaola
- Movement Disorder Centre, London Health Sciences Centre The University of Western Ontario London Ontario Canada
| | - Sharan Goobie
- Division of Medical Genetics Dalhousie University Halifax Nova Scotia Canada
| | - Asuri Prasad
- Department of Pediatrics, London Health Sciences Centre The University of Western Ontario London Ontario Canada
| | | |
Collapse
|
12
|
Al-Muhaizea MA, Aldeeb H, Almass R, Jaber H, Binhumaid F, Alquait L, Abukhalid M, Aldhalaan H, Alsagob M, Al-Bakheet A, Aldosary M, Alkofide H, Alrasheed MM, Colak D, Kaya N. Genetics of ataxia telangiectasia in a highly consanguineous population. Ann Hum Genet 2021; 86:34-44. [PMID: 34582042 DOI: 10.1111/ahg.12445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Ataxia telangiectasia (AT) is a rare autosomal recessive multisystemic disorder. It usually presents in toddler years with progressive ataxia and oculomotor apraxia, or less commonly, in the late-first or early-second decade of life with mixed movement disorders. Biallelic mutations in ataxia telangiectasia mutated gene (ATM) cause AT phenotype, a disease not well documented in Saudi Arabia, a highly consanguineous society. We studied several Saudi AT patients, identified ATM variants, and investigated associated clinical features. We included 17 patients from 12 consanguineous families. All patients had comprehensive clinical and radiological assessment, and most were examined through whole-exome sequencing (WES). Selected individuals were analyzed using various genetic approaches. We identified five different ATM variants in our patients: three previously reported mutations, and two novel variants. Nearly all patients had classical AT presentation except for two patients with a milder phenotype. Among the three known variants, a deletion causing truncation (c.381delA resulting in p.(Val128Ter)) was identified in 13 patients. Two patients harboured the other two truncating variants, (c.9001_9002delAG resulting in p.Ser3001Phefs*6) and (c.9066delA resulting in p.Glu3023Alafs*10) and two patients had novel compound heterozygous variants (NM_000051.3:Paternal Allele:c.8762C > G;p.Thr2921Arg and Maternal Allele:c.1057T > C;p.Cys353Arg). We speculate that c.381delA is a founder mutation in our population. This study provides a genotype-phenotype relationship in a previously unstudied consanguineous population. Our findings contribute to improve local clinical care, therapy, and genetic counseling.
Collapse
Affiliation(s)
- Mohammed A Al-Muhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hanouf Aldeeb
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hadeel Jaber
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Felwa Binhumaid
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Laila Alquait
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Musaad Abukhalid
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hesham Aldhalaan
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Albandary Al-Bakheet
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hadeel Alkofide
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maha M Alrasheed
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Namik Kaya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Shalash AS, Rösler TW, Salama M, Pendziwiat M, Müller SH, Hopfner F, Höglinger GU, Kuhlenbäumer G. Evidence for pathogenicity of variant ATM Val1729Leu in a family with ataxia telangiectasia. Neurogenetics 2021; 22:143-147. [PMID: 33779842 PMCID: PMC8119284 DOI: 10.1007/s10048-021-00639-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Ataxia telangiectasia is a rare autosomal recessive multisystem disorder caused by mutations in the gene of ATM serine/threonine kinase. It is characterized by neurodegeneration, leading to severe ataxia, immunodeficiency, increased cancer susceptibility, and telangiectasia. Here, we discovered a co-segregation of two ATM gene variants with ataxia telangiectasia in an Egyptian family. While one of these variants (NM_000051.4(ATM_i001):p.(Val128*)) has previously been reported as pathogenic, the other one (NM_000051.4(ATM_i001):p.(Val1729Leu)) is regarded as a variant of uncertain significance. Our findings in this family provide additional evidence for causality of the second variant and argue that its status should be changed to pathogenic.
Collapse
Affiliation(s)
- Ali S Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Thomas W Rösler
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, American University in Cairo (AUC), Cairo, Egypt.,Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manuela Pendziwiat
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany.,Department of Neuropediatrics, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany
| | | | | | - Günter U Höglinger
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
14
|
Podralska M, Dzikiewicz-Krawczyk A, Mosor M, Żurawek M, Iżykowska K, Słomski R, Rydzanicz M, Gabryel P, Dyszkiewicz W, Ziółkowska-Suchanek I. The most frequent Polish ATM mutations are not susceptibility factors for tobacco-related cancers. Arch Med Sci 2021; 17:1158-1163. [PMID: 34522244 PMCID: PMC8425226 DOI: 10.5114/aoms.2020.94155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The inactivation of both alleles of the ATM gene leads to ataxia-telangiectasia syndrome, whereas carriers of monoallelic mutations in the ATM gene are associated with increased risk of different types of cancer. Three substitutions in the ATM gene (c.6095G>A, c.7630-2A>C, c.5932G>T) are the most common mutations causing ataxia-telangiectasia among Polish patients. The aim of this study was to determine whether these ATM mutations are associated with increased risk of tobacco-related cancers. MATERIAL AND METHODS 783 Polish patients with tobacco-related cancers were included in the study (468 with lung cancer, 153 with a single laryngeal cancer, 86 with multiple primary tumors localized in the larynx and 76 multiple primary tumors localized in the head or neck). The control group consisted of 464 healthy subjects from the Polish population. Three ATM mutations - c.5932G>T, c.6095G>A, c.7630-2A>C - were tested among selected patients. Molecular analyses were performed using high resolution melting analysis and restriction fragment length polymorphism. RESULTS In the present study, we detected only one mutation, c.7630-2A>C, and no carriers of c.5932G>T, c.6095G>A mutations in the ATM gene among Polish patients with tobacco-related cancers. A patient with c.7630-2A>C mutation was diagnosed with lung adenocarcinoma, the most common type of lung cancer. One carrier of c.6095G>A mutation was found in the control group. CONCLUSIONS The results indicate that the studied ATM variants do not seem to be associated with tobacco-related cancers in Poland.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Piotr Gabryel
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
15
|
Amirifar P, Yazdani R, Moeini Shad T, Ghanadan A, Abolhassani H, Lavin M, Sotoudeh S, Aghamohammadi A. Cutaneous Granulomatosis and Class Switching Defect as a Presenting Sign in Ataxia-Telangiectasia: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest 2019; 49:597-610. [DOI: 10.1080/08820139.2019.1692864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Parisa Amirifar
- Medical genetics department, School of Medicine, Tehran University of medical sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Alireza Ghanadan
- Department of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Lavin
- Centre for Clinical Research (UQCCR), University of Queensland, Brisbane, Australia
| | - Soheila Sotoudeh
- Department of Dermatology, Children’s Medical Center, Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| |
Collapse
|
16
|
Paucar M, Schechtmann G, Taylor AM, Svenningsson P. Variant ataxia-telangiectasia with prominent camptocormia. Parkinsonism Relat Disord 2019; 62:253-255. [PMID: 30579816 DOI: 10.1016/j.parkreldis.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Gaston Schechtmann
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Alexander Mr Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Suspitsin E, Sokolenko A, Bizin I, Tumakova A, Guseva M, Sokolova N, Vakhlyarskaya S, Kondratenko I, Imyanitov E. ATM mutation spectrum in Russian children with ataxia-telangiectasia. Eur J Med Genet 2019; 63:103630. [PMID: 30772474 DOI: 10.1016/j.ejmg.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/11/2019] [Accepted: 02/10/2019] [Indexed: 11/25/2022]
Abstract
Ataxia-telangiectasia (AT) is a severe autosomal recessive orphan disease characterized by a number of peculiar clinical manifestations. Genetic diagnosis of AT is complicated due to a large size of the causative gene, ATM. We used next-generation sequencing (NGS) technology for the ATM analysis in 17 children with the clinical diagnosis of AT. Biallelic mutations in the ATM gene were identified in all studied subjects; these lesions included one large gene rearrangement, which was reliably detected by NGS and validated by multiplex ligation-dependent probe amplification (MLPA). There was a pronounced founder effect, as 17 of 30 (57%) pathogenic ATM alleles in the patients of Slavic origin were represented by three recurrent mutations (c.5932G > T, c.450_453delTTCT, and c.1564_1565delGA). These data have to be taken into account while considering the genetic diagnosis and screening for ataxia-telangiectasia syndrome.
Collapse
Affiliation(s)
- Evgeny Suspitsin
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia; N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.
| | - Anna Sokolenko
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia; N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Ilya Bizin
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | | | - Marina Guseva
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | | | - Svetlana Vakhlyarskaya
- Russian Children Clinical Hospital, N.N. Pirogov National Research Medical University, Moscow, Russia
| | - Irina Kondratenko
- Russian Children Clinical Hospital, N.N. Pirogov National Research Medical University, Moscow, Russia
| | - Evgeny Imyanitov
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia; N.N. Petrov Institute of Oncology, St.-Petersburg, Russia; I.I. Mechnikov North-Western Medical University, St.-Petersburg, Russia; St.-Petersburg State University, St.-Petersburg, Russia
| |
Collapse
|
18
|
Ye F, Chai W, Yang M, Xie M, Yang L. Ataxia-telangiectasia with a novel ATM gene mutation and Burkitt leukemia: A case report. Mol Clin Oncol 2018; 9:493-498. [PMID: 30402232 PMCID: PMC6200993 DOI: 10.3892/mco.2018.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/17/2018] [Indexed: 01/22/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is an infrequent autosomal recessive disorder that involves multiple systems and is characterized by progressive cerebellar ataxia, oculocutaneous telangiectasias, radiosensitivity, immune deficiency with recurrent respiratory infections, and a tendency to develop lymphoid malignancies. A-T is caused by mutations in the ATM gene, with >1,000 mutations reported to date and gradually increasing in number. Patients with A-T have an increased incidence of cancers. The aim of the present study was to retrospectively review the case of a patient who presented at the age of 5 years with cerebellar ataxia without telangiectasia, and was diagnosed with Burkitt leukemia by bone marrow biopsy and molecular testing at the age of 7 years at the Xiangya Hospital of Central South University (Changsha, China). The patient received chemotherapy with the pediatric CCCG-BNHL-2015 regimen (R4 group) and achieved a complete remission after 2 courses. However, recurrent respiratory infections and thrombosis occurred during chemotherapy. The diagnosis of A-T was confirmed by uncovering two variants of the ATM gene, including c.742C>T (p.R248X; rs730881336) in exon 7 and c.6067-c.6068 ins GAGGGAAGAT in exon 41 by whole-exome sequencing. Unfortunately, the patient's parents refused follow-up treatment and he succumbed to recurrent severe infections 4 months after the diagnosis of Burkitt leukemia. The diagnosis of A-T may be challenging, as its phenotype can be incomplete early in the course of the disease. Detailed medical history, characteristic clinical manifestations and increasingly developed exome sequencing techniques may be helpful in diagnosing this rare disease. Management should be based on multidisciplinary guidance and other treatment options must be investigated in the future.
Collapse
Affiliation(s)
- Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenwen Chai
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
19
|
Podralska M, Ziółkowska-Suchanek I, Żurawek M, Dzikiewicz-Krawczyk A, Słomski R, Nowak J, Stembalska A, Pesz K, Mosor M. Genetic variants in ATM, H2AFX and MRE11 genes and susceptibility to breast cancer in the polish population. BMC Cancer 2018; 18:452. [PMID: 29678143 PMCID: PMC5910560 DOI: 10.1186/s12885-018-4360-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background DNA damage repair is a complex process, which can trigger the development of cancer if disturbed. In this study, we hypothesize a role of variants in the ATM, H2AFX and MRE11 genes in determining breast cancer (BC) susceptibility. Methods We examined the whole sequence of the ATM kinase domain and estimated the frequency of founder mutations in the ATM gene (c.5932G > T, c.6095G > A, and c.7630-2A > C) and single nucleotide polymorphisms (SNPs) in H2AFX (rs643788, rs8551, rs7759, and rs2509049) and MRE11 (rs1061956 and rs2155209) among 315 breast cancer patients and 515 controls. The analysis was performed using high-resolution melting for new variants and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for recurrent ATM mutations. H2AFX and MRE11 polymorphisms were analyzed using TaqMan assays. The cumulative genetic risk scores (CGRS) were calculated using unweighted and weighted approaches. Results We identified four mutations (c.6067G > A, c.8314G > A, c.8187A > T, and c.6095G > A) in the ATM gene in three BC cases and two control subjects. We observed a statistically significant association of H2AFX variants with BC. Risk alleles (the G of rs7759 and the T of rs8551 and rs2509049) were observed more frequently in BC cases compared to the control group, with P values, odds ratios (OR) and 95% confidence intervals (CIs) of 0.0018, 1.47 (1.19 to 1.82); 0.018, 1.33 (1.09 to 1.64); and 0.024, 1.3 (1.06 to 1.59), respectively. Haplotype-based tests identified a significant association of the H2AFX CACT haplotype with BC (P < 0.0001, OR = 27.29, 95% CI 3.56 to 209.5). The risk of BC increased with the growing number of risk alleles. The OR (95% CI) for carriers of ≥ four risk alleles was 1.71 (1.11 to 2.62) for the CGRS. Conclusions This study confirms that H2AFX variants are associated with an increased risk of BC. The above-reported sequence variants of MRE11 genes may not constitute a risk factor of breast cancer in the Polish population. The contribution of mutations detected in the ATM gene to the development of breast cancer needs further detailed study.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | | | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,University of Life Sciences of Poznan, Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Karolina Pesz
- Department of Genetics, Wrocław Medical University, Wroclaw, Poland
| | - Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
20
|
ATM Gene Mutation Detection Techniques and Functional Analysis. Methods Mol Biol 2017. [PMID: 28477109 DOI: 10.1007/978-1-4939-6955-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ataxia Telangiectasia (A-T) is caused by biallelic inactivation of the Ataxia Telangiectasia Mutated (ATM) gene, due to nonsense or missense mutations, small insertions/deletions (indels), splicing alterations, and large genomic rearrangements. After establishing A-T clinical diagnosis, a molecular confirmation is needed, based on the detection of one of these loss-of-function mutations in at least one allele. In most cases, the pathogenicity of the detected mutations is sufficient to make a definitive diagnosis. More rarely, mutations of unknown consequences are identified and direct biological analyses are required to establish their pathogenic characters. In such cases, complementary analyses of ATM expression, localization, and activity allow fine characterization of these mutations and facilitate A-T diagnosis. Here, we present genetic and biochemical protocols currently used in the laboratory that have proven to be highly accurate, reproducible, and quantitative. We also provide additional discussion on the critical points of the techniques presented here.
Collapse
|
21
|
Navratil M, Đuranović V, Nogalo B, Švigir A, Dumbović Dubravčić I, Turkalj M. Ataxia-Telangiectasia Presenting as Cerebral Palsy and Recurrent Wheezing: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2015; 16:631-6. [PMID: 26380989 PMCID: PMC4578644 DOI: 10.12659/ajcr.893995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Patient: Male, 8 Final Diagnosis: Ataxia-telangiectasia Symptoms: Ataxia • sinopulmonary infection • telangiectasiae • wheezing Medication: — Clinical Procedure: IVIG supstitution Specialty: Pediatrics and Neonatology
Collapse
Affiliation(s)
- Marta Navratil
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | - Vlasta Đuranović
- Department of Neurology, Zagreb Children's Hospital, Zagreb, Croatia
| | - Boro Nogalo
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | - Alen Švigir
- Department of Allergy and Pulmonology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | | | - Mirjana Turkalj
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| |
Collapse
|
22
|
Podralska MJ, Stembalska A, Ślęzak R, Lewandowicz-Uszyńska A, Pietrucha B, Kołtan S, Wigowska-Sowińska J, Pilch J, Mosor M, Ziółkowska-Suchanek I, Dzikiewicz-Krawczyk A, Słomski R. Ten new ATM alterations in Polish patients with ataxia-telangiectasia. Mol Genet Genomic Med 2014; 2:504-11. [PMID: 25614872 PMCID: PMC4303220 DOI: 10.1002/mgg3.98] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 11/23/2022] Open
Abstract
Inherited biallelic mutations of the ATM gene are responsible for the
development of ataxia telangiectasia (AT). The objective of the present study was to conduct
molecular analysis of the ATM gene in a cohort of 24 Polish patients with
ataxia-telangiectasia with aim being to provide an updated mutational spectrum in Polish AT
patients. As a result of molecular analysis, the status of recurrent mutation was confirmed and ten
new ATM variants were detected. Application of MLPA analysis allowed the detection of large genomic
deletion. Previously, this type of mutation had never been seen in our population. Finally, in
silico analysis was carried out for newly detected ATM alterations. In addition, functional analysis
was performed to evaluate the effects of intronic variants:
c.3402+30_3402+32delATC.
Collapse
Affiliation(s)
| | | | - Ryszard Ślęzak
- Department of Genetics, Wroclaw Medical University Wroclaw, Poland
| | - Aleksandra Lewandowicz-Uszyńska
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University Wroclaw, Poland
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute Warsaw, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology, Institute of Pediatrics, Medical Academy Bydgoszcz, Poland
| | | | - Jacek Pilch
- Department of Child Neurology, Medical University of Silesia Katowice, Poland
| | - Maria Mosor
- Institute of Human Genetics of the Polish Academy of Sciences Poznań, Poland
| | | | | | - Ryszard Słomski
- Institute of Human Genetics of the Polish Academy of Sciences Poznań, Poland
| |
Collapse
|
23
|
Nakamura K, Fike F, Haghayegh S, Saunders-Pullman R, Dawson AJ, Dörk T, Gatti RA. A-TWinnipeg: Pathogenesis of rare ATM missense mutation c.6200C>A with decreased protein expression and downstream signaling, early-onset dystonia, cancer, and life-threatening radiotoxicity. Mol Genet Genomic Med 2014; 2:332-40. [PMID: 25077176 PMCID: PMC4113274 DOI: 10.1002/mgg3.72] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 12/16/2022] Open
Abstract
We studied 10 Mennonite patients who carry the c.6200C>A missense mutation (p.A2067D) in the ATM gene, all of whom exhibited a phenotypic variant of ataxia-telangiectasia (A-T) that is characterized by early-onset dystonia and late-onset mild ataxia, as previously described. This report provides the pathogenetic evidence for this mutation on cellular functions. Several patients have developed cancer and subsequently experienced life-threatening adverse reactions to radiation (radiotoxicity) and/or chemotherapy. As the c.6200C>A mutation is, thus far, unique to the Mennonite population and is always associated with the same haplotype or haplovariant, it was important to rule out any possible confounding DNA variant on the same haplotype. Lymphoblastoid cells derived from Mennonite patients expressed small amounts of ATM protein, which had no autophosphorylation activity at ATM Ser1981, and trace-to-absent transphosphorylation of downstream ATM targets. A-T lymphoblastoid cells stably transfected with ATM cDNA which had been mutated for c.6200C>A did not show a detectable amount of ATM protein. The same stable cell line with mutated ATM cDNA also showed a trace-to-absent transphosphorylation of downstream ATM targets SMC1pSer966 and KAP1pSer824. From these results, we conclude that c.6200A is the disease-causing ATM mutation on this haplotype. The presence of at least trace amounts of ATM kinase activity on some immunoblots may account for the late-onset, mild ataxia of these patients. The cause of the dystonia remains unclear. Because this dystonia-ataxia phenotype is often encountered in the Mennonite population in association with cancer and adverse reactions to chemotherapy, an early diagnosis is important.
Collapse
Affiliation(s)
- Kotoka Nakamura
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine Los Angeles, California
| | - Francesca Fike
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine Los Angeles, California
| | - Sara Haghayegh
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine Los Angeles, California
| | | | - Angelika J Dawson
- Cytogenetics Laboratory, Division of Laboratory Medicine & Pathology, Departments of Biochemistry & Medical Genetics and Pediatrics & Child Health, Diagnostic Services of Manitoba, University of Manitoba Winnipeg, Manitoba, Canada
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School Hannover, Germany
| | - Richard A Gatti
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine Los Angeles, California ; Department of Human Genetics, UCLA School of Medicine Los Angeles, California ; Molecular Biology Institute, UCLA Los Angeles, California
| |
Collapse
|
24
|
Bordeira-Carriço R, Ferreira D, Mateus DD, Pinheiro H, Pêgo AP, Santos MAS, Oliveira C. Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. Eur J Hum Genet 2014; 22:1085-92. [PMID: 24424122 DOI: 10.1038/ejhg.2013.292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) syndrome, although rare, is highly penetrant at an early age, and is severe and incurable because of ineffective screening tools and therapy. Approximately 45% of HDGC families carry germline CDH1/E-cadherin alterations, 20% of which are nonsense leading to premature protein truncation. Prophylactic gastrectomy is the only recommended approach for all asymptomatic CDH1 mutation carriers. Suppressor-tRNAs can replace premature stop codons (PTCs) with a cognate amino acid, inducing readthrough and generating full-length proteins. The use of suppressor-tRNAs in HDGC patients could therefore constitute a less invasive therapeutic option for nonsense mutation carriers, delaying the development of gastric cancer. Our analysis revealed that 23/108 (21.3%) of E-cadherin-mutant families carried nonsense mutations that could be potentially corrected by eight suppressor-tRNAs, and arginine was the most frequently affected amino acid. Using site-directed mutagenesis, we developed an arginine suppressor-tRNA vector to correct one HDGC nonsense mutation. E-cadherin- deficient cell lines were transfected with plasmids carrying simultaneously the suppressor-tRNA and wild-type or mutant CDH1 mini-genes. RT-PCR, western blot, immunofluorescence, flow cytometry and proximity ligation assay (PLA) were used to establish the model, and monitor mRNA and protein expression and function recovery from CDH1 vectors. Cells expressing a CDH1 mini-gene, carrying a nonsense mutation and the suppressor-tRNA, recovered full-length E-cadherin expression and its correct localization and incorporation into the adhesion complex. This is the first demonstration of functional recovery of a mutated causative gene in hereditary cancer by cognate amino acid replacement with suppressor-tRNAs. Of the HDGC families, 21.3% are candidates for correction with suppressor-tRNAs to potentially delay cancer onset.
Collapse
Affiliation(s)
- Renata Bordeira-Carriço
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Daniel Ferreira
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Denisa D Mateus
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Hugo Pinheiro
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Paula Pêgo
- 1] INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal [2] Universidade do Porto-Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal [3] Universidade do Porto-Faculdade de Engenharia, Porto, Portugal
| | - Manuel A S Santos
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- 1] Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal [2] Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Perlman SL, Boder Deceased E, Sedgewick RP, Gatti RA. Ataxia-telangiectasia. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:307-32. [PMID: 21827897 DOI: 10.1016/b978-0-444-51892-7.00019-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California at Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
26
|
Sequeiros J, Martins S, Silveira I. Epidemiology and population genetics of degenerative ataxias. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:227-51. [PMID: 21827892 DOI: 10.1016/b978-0-444-51892-7.00014-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jorge Sequeiros
- Institute of Molecular and Cell Biology, University of Porto, Portugal.
| | | | | |
Collapse
|
27
|
Nakamura K, Du L, Tunuguntla R, Fike F, Cavalieri S, Morio T, Mizutani S, Brusco A, Gatti RA. Functional characterization and targeted correction of ATM mutations identified in Japanese patients with ataxia-telangiectasia. Hum Mutat 2011; 33:198-208. [PMID: 22006793 DOI: 10.1002/humu.21632] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/15/2011] [Indexed: 01/12/2023]
Abstract
A recent challenge for investigators studying the progressive neurological disease ataxia-telangiectasia (A-T) is to identify mutations whose effects might be alleviated by mutation-targeted therapies. We studied ATM mutations in eight families of Japanese A-T patients (JPAT) and were able to identify all 16 mutations. The probands were compound heterozygotes in seven families, and one (JPAT2) was homozygous for a frameshift mutation. All mutations--four frameshift, two nonsense, four large genomic deletions, and six affecting splicing--were novel except for c.748C>T found in family JPAT6 and c.2639-384A>G found in family JPAT11/12. Using an established lymphoblastoid cell line (LCL) of patient JPAT11, ATM protein was restored to levels approaching wild type by exposure to an antisense morpholino oligonucleotide designed to correct a pseudoexon splicing mutation. In addition, in an LCL from patient JPAT8/9, a heterozygous carrier of a nonsense mutation, ATM levels could also be partially restored by exposure to readthrough compounds (RTCs): an aminoglycoside, G418, and a novel small molecule identified in our laboratory, RTC13. Taken together, our results suggest that screening and functional characterization of the various sorts of mutations affecting the ATM gene can lead to better identification of A-T patients who are most likely to benefit from rapidly developing mutation-targeted therapeutic technologies.
Collapse
Affiliation(s)
- Kotoka Nakamura
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California 90095-1732, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Ataxia-telangiectasia is an autosomal recessive disorder caused by mutation in the ATM gene. Hallmarks of the disease comprise progressive cerebellar ataxia, oculocutaneous telangiectasiae, cancer susceptibility, and variable humoral and cellular immunodeficiency. We report a patient who, because of the pattern of her immunodeficiency, was primarily diagnosed as an autosomal recessive hyper-IgM syndrome. Only a mild cerebellar ataxia was present at the age of 7 years then she developed a Wilms tumor (nephroblastoma). Conventional radiotherapy for the malignancy led to fatal consequences. Postmortem studies confirmed diagnosis of ataxia-telangiectasia.
Collapse
|
29
|
Chessa L, Piane M, Magliozzi M, Torrente I, Savio C, Lulli P, De Luca A, Dallapiccola B. Founder effects for ATM gene mutations in Italian Ataxia Telangiectasia families. Ann Hum Genet 2009; 73:532-9. [PMID: 19691550 DOI: 10.1111/j.1469-1809.2009.00535.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We screened ATM gene mutations in 104 Italian Ataxia-Telangiectasia patients from 91 unrelated families (detection rate 90%) and found 21 recurrent mutations in 63 families. The majority (67%) of patients were compound heterozygotes, while 33% were homozygotes. To determine the existence of common haplotypes and potential founder effects, we analyzed five microsatellite markers within and flanking the ATM gene. Haplotype analysis was carried out in 48/63 families harbouring 16 of the 21 recurrent mutations. Forty different haplotypes were detected in the 48 A-T families studied. We found that the majority of patients with the same recurrent mutation originated from the same geographical area. All but one recurrent mutation analyzed displayed a common haplotype suggesting a single origin that then spread to different geographical areas. The high number of different haplotypes does not allow the screening of ATM mutations by haplotype analysis alone in the Italian population. The finding of recurrent public mutations without founder effect suggests the existence of 'mild' hot spots of mutation located along the sequence of the ATM gene.
Collapse
Affiliation(s)
- Luciana Chessa
- II School of Medicine, University La Sapienza, I-00189 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND The onset of progressive cerebellar ataxia in early childhood is considered a key feature of ataxia-telangiectasia (A-T), accompanied by ocular apraxia, telangiectasias, immunodeficiency, cancer susceptibility and hypersensitivity to ionizing radiation. METHODS We describe the clinical features and course of three Mennonite children who were diagnosed with A-T following the completion of therapy for lymphoid malignancies. RESULTS Prior to cancer therapy, all had non-progressive atypical neurological abnormalities, with onset by age 30 months, including dysarthria, dyskinesia, hypotonia and/or dystonia, without telangiectasias. Cerebellar ataxia was noted in only one of the children and was mild until his death at age eight years. None had severe infections. All three children were "cured" of their lymphoid malignancies, but experienced severe adverse effects from the treatments administered. The two children who received cranial irradiation developed supratentorial primitive neuroectodermal tumors of the brain, an association not previously described, with fatal outcomes. CONCLUSIONS The range of neurological presentations of A-T is broad. Ataxia and telangiectasias may be minimal or absent and the course seemingly non-progressive. The diagnosis of A-T should be considered in all children with neuromotor dysfunction or peripheral neuropathy, particularly those who develop lymphoid malignancies. The consequences of missing the diagnosis may be dire. Radiation therapy and radiomimetic drugs should be avoided in individuals with A-T.
Collapse
|
31
|
Orton NC, Innes AM, Chudley AE, Bech-Hansen NT. Unique disease heritage of the Dutch-German Mennonite population. Am J Med Genet A 2008; 146A:1072-87. [PMID: 18348259 DOI: 10.1002/ajmg.a.32061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Dutch-German Mennonites are a religious isolate with foundational roots in the 16th century. A tradition of endogamy, large families, detailed genealogical records, and a unique disease history all contribute to making this a valuable population for genetic studies. Such studies in the Dutch-German Mennonite population have already contributed to the identification of the causative genes in several conditions such as the incomplete form of X-linked congenital stationary night blindness (CSNB2; previously iCSNB) and hypophosphatasia (HOPS), as well as the discovery of founder mutations within established disease genes (MYBPC1, CYP17alpha). The Dutch-German Mennonite population provides a strong resource for gene discovery and could lead to the identification of additional disease genes with relevance to the general population. In addition, further research developments should enhance delivery of clinical genetic services to this unique community. In the current review we discuss 31 genetic conditions, including 17 with identified gene mutations, within the Dutch-German Mennonite population.
Collapse
Affiliation(s)
- Noelle C Orton
- Department of Medical Genetics, Faculty of Medicine, Institute of Maternal and Child Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
32
|
Babaei M, Mitui M, Olson ER, Gatti RA. ATM haplotypes and associated mutations in Iranian patients with ataxia–telangiectasia: recurring homozygosity without a founder haplotype. Hum Genet 2005; 117:101-6. [PMID: 15843990 DOI: 10.1007/s00439-005-1254-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 01/05/2005] [Indexed: 12/22/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder caused by mutations in the ATM gene. The ATM gene spans more than 150 kb at chromosomal region 11q23.1 and encodes a product of 3,056 amino acids. The ATM protein is a serine/threonine protein kinase and is involved in oxidative stress, cell cycle control, and DNA repair. We analyzed the 11q22-23 haplotypes and associated mutations of 16 Iranian families. We utilized standardized short tandem repeat (STR) haplotypes to enhance mutation identification. In addition to the STR markers, single-nucleotide polymorphism haplotypes were determined, using three critical polymorphisms. The entire gene was screened sequentially by protein truncation testing, single-strand conformation polymorphism, and denaturing high-performance liquid chromatography to identify the disease-causing mutations. Of the expected 32 mutations, 25 (78%) were identified. All but two mutations led to a truncated or null form of the ATM protein (nonsense, splice site, or frameshift). Twelve mutations were identified for 15 haplotypes. Five mutations were novel. Mutations were located throughout the entire gene, with no clustering. Despite the absence of an Iranian founder mutation, three-fourths of the families were homozygous, suggesting that many undetected ATM mutations still exist in Iran. This study establishes a database for Iranian A-T families, and extends the global spectrum of ATM mutations.
Collapse
Affiliation(s)
- Mahnoush Babaei
- The David Geffen School of Medicine, Department of Pathology, University of California, 675 Young Drive South, Los Angeles, CA 90095-1732, USA
| | | | | | | |
Collapse
|