1
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
2
|
Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Zaytseva A, Chekanov K, Zaytsev P, Bakhareva D, Gorelova O, Kochkin D, Lobakova E. Sunscreen Effect Exerted by Secondary Carotenoids and Mycosporine-like Amino Acids in the Aeroterrestrial Chlorophyte Coelastrella rubescens under High Light and UV-A Irradiation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122601. [PMID: 34961072 PMCID: PMC8704241 DOI: 10.3390/plants10122601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
The microalga Coelastrella rubescens dwells in habitats with excessive solar irradiation; consequently, it must accumulate diverse compounds to protect itself. We characterized the array of photoprotective compounds in C. rubescens. Toward this goal, we exposed the cells to high fluxes of visible light and UV-A and analyzed the ability of hydrophilic and hydrophobic extracts from the cells to absorb radiation. Potential light-screening compounds were profiled by thin layer chromatography and UPLC-MS. Coelastrella accumulated diverse carotenoids that absorbed visible light in the blue-green part of the spectrum and mycosporine-like amino acids (MAA) that absorbed the UV-A. It is the first report on the occurrence of MAA in Coelastrella. Two new MAA, named coelastrin A and coelastrin B, were identified. Transmission electron microscopy revealed the development of hydrophobic subcompartments under the high light and UV-A exposition. We also evaluate and discuss sporopollenin-like compounds in the cell wall and autophagy-like processes as the possible reason for the decrease in sunlight absorption by cells, in addition to inducible sunscreen accumulation. The results suggested that C. rubescens NAMSU R1 accumulates a broad range of valuable photoprotective compounds in response to UV-A and visible light irradiation, which indicates this strain as a potential producer for biotechnology.
Collapse
Affiliation(s)
- Anna Zaytseva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Konstantin Chekanov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- Centre for Humanities Research and Technology, National Research Nuclear University MEPhI, 31 Kashirskoye Highway, 115522 Moscow, Russia
- Correspondence:
| | - Petr Zaytsev
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- N.N. Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science, 4 Kosygina Street, Building 1, 119192 Moscow, Russia
| | - Daria Bakhareva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Dmitry Kochkin
- Department of Plant Physiology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia;
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Elena Lobakova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
4
|
Leyland B, Zarka A, Didi-Cohen S, Boussiba S, Khozin-Goldberg I. High Resolution Proteome of Lipid Droplets Isolated from the Pennate Diatom Phaeodactylum tricornutum (Bacillariophyceae) Strain pt4 provides mechanistic insights into complex intracellular coordination during nitrogen deprivation. JOURNAL OF PHYCOLOGY 2020; 56:1642-1663. [PMID: 32779202 DOI: 10.1111/jpy.13063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 07/12/2020] [Indexed: 05/08/2023]
Abstract
Lipid droplets (LDs) are an organelle conserved amongst all eukaryotes, consisting of a neutral lipid core surrounded by a polar lipid monolayer. Many species of microalgae accumulate LDs in response to stress conditions, such as nitrogen starvation. Here, we report the isolation and proteomic profiling of LD proteins from the model oleaginous pennate diatom Phaeodactylum tricornutum, strain Pt4 (UTEX 646). We also provide a quantitative description of LD morphological ontogeny, and fatty acid content. Novel cell disruption and LD isolation methods, combined with suspension-trapping and nanoflow liquid chromatography coupled to high resolution mass spectrometry, yielded an unprecedented number of LD proteins. Predictive annotation of the LD proteome suggests a broad assemblage of proteins with diverse functions, including lipid metabolism and vesicle trafficking, as well as ribosomal and proteasomal machinery. These proteins provide mechanistic insights into LD processes, and evidence for interactions between LDs and other organelles. We identify for the first time several key steps in diatom LD-associated triacylglycerol biosynthesis. Bioinformatic analyses of the LD proteome suggests multiple protein targeting mechanisms, including amphipathic helices, post-translational modifications, and translocation machinery. This work corroborates recent findings from other strains of P. tricornutum, other diatoms, and other eukaryotic organisms, suggesting that the fundamental proteins orchestrating LDs are conserved, and represent an ancient component of the eukaryotic endomembrane system. We postulate a comprehensive model of nitrogen starvation-induced diatom LDs on a molecular scale, and provide a wealth of candidates for metabolic engineering, with the potential to eventually customize LD contents.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Aliza Zarka
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Shoshana Didi-Cohen
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| |
Collapse
|
5
|
Kublanovskaya A, Solovchenko A, Fedorenko T, Chekanov K, Lobakova E. Natural Communities of Carotenogenic Chlorophyte Haematococcus lacustris and Bacteria from the White Sea Coastal Rock Ponds. MICROBIAL ECOLOGY 2020; 79:785-800. [PMID: 31676992 DOI: 10.1007/s00248-019-01437-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Haematococcus lacustris is a biotechnologically important green unicellular alga producing widely used keta-karotenoid astaxanthin. In natural habitats, it exists in the form of algal-bacterial community, and under laboratory conditions, it is also accompanied by bacteria. The issue of the bacterial composition of industrial algal cultures is widely recognized as important. However, there is a dearth of information about bacterial composition of H. lacustris communities. In current work, we analyze the composition of natural H. lacustris communities from the White Sea coastal temporal rock ponds. For the first time, a 16S rRNA gene-based metagenome of natural H. lacustris bacterial communities has been generated. Main results of its analysis are as follow. Bacterial families Comamonadaceae, Cytophagaceae, Xanthomonadaceae, Acetobacteraceae, Rhodobacteraceae, and Rhodocyclaceae were observed in all studied H. lacustris natural communities. They also contained genera Hydrogenophaga and Cytophaga. Bacteria from the Hydrogenophaga genus were present in H. lacustris cultures after their isolation under the conditions of laboratory cultivation. Similar to other planktonic microalgae, H. lacustris forms a phycosphere around the cells. In this zone, bacteria attached to the algal surface. The contact between H. lacustris and bacteria is maintained even after sample drying. The study provides information about possible members of H. lacustris core microbiome, which can be presented in the industrial and laboratory cultures of the microalga.
Collapse
Affiliation(s)
- Anna Kublanovskaya
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Tatyana Fedorenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Konstantin Chekanov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Centre for Humanities Research and Technology, National Research Nuclear University MEPhi, Moscow, 115409, Russia.
| | - Elena Lobakova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
6
|
Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable conditions and under stress. Biochim Biophys Acta Gen Subj 2019; 1863:1429-1442. [PMID: 31075358 DOI: 10.1016/j.bbagen.2019.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 11/20/2022]
Abstract
The microalga Haematococcus lacustris (formerly H. pluvialis) is the richest source of the valuable pigment astaxanthin, accumulated in red aplanospores (haematocysts). In this work, we report on the photoprotective mechanisms in H. lacustris, conveying this microalga its ability to cope with a wide range of adverse conditions, with special emphasis put on non-photochemical quenching (NPQ) of the excited chlorophyll states. We studied the changes in the primary photochemistry of the photosystems (PS) as a function of irradiance and the physiological state. We leveraged the transcriptomic data to gain a deeper insight into possible NPQ mechanisms in this microalga. Peculiar to H. lacustris is a bi-phasic pattern of changes in photoprotection during haematocyst formation. The first phase coincides with a transient rise of photosynthetic activity. Based on transcriptomic data, high NPQ level in the first phase is maintained predominantly by the expression of PsbS and LhcsR proteins. Then, (in mature haematocysts), stress tolerance is achieved by optical shielding by astaxanthin and dramatic reduction of photosynthetic apparatus. In contrast to many microalgae, shielding plays an important role in H. lacistris haematocysts, whereas regulated NPQ is suppressed. Astaxanthin is decoupled from the PS, hence the light energy is not transferred to reaction centers and dissipates as heat. It allows to retain a higher photochemical yield in haematocysts comparing to vegetative cells. The ability of H. lacustris to substitute the "classical" active photoprotective mechanisms such as NPQ with optic shielding and general metabolism quiescence makes this organism a useful model to reveal photoprotection mechanisms.
Collapse
|
7
|
Pick U, Zarka A, Boussiba S, Davidi L. A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus. PLANTA 2019; 249:31-47. [PMID: 30470898 DOI: 10.1007/s00425-018-3050-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023]
Abstract
Hypercarotenogenesis in green algae evolved by mutation of PSY that increased its transcription at high light, disintegration of the eyespot in Dunaliella and acquisition of the capacity to export carotenoids from chloroplasts in Haematococcus. Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10% (w/w) β-carotene (βC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4% (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates βC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export βC out of the chloroplast and its enzymatic conversion into Ast.
Collapse
Affiliation(s)
- Uri Pick
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Aliza Zarka
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker Campus, Beer-Sheva, 8499000, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker Campus, Beer-Sheva, 8499000, Israel
| | - Lital Davidi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1569, USA
| |
Collapse
|
8
|
Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci Rep 2018; 8:5617. [PMID: 29618734 PMCID: PMC5884812 DOI: 10.1038/s41598-018-23854-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 01/30/2023] Open
Abstract
The unicellular green alga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin to protect against environmental stresses. Haematococcus cells that accumulate astaxanthin in the central part (green-red cyst cells) respond rapidly to intense light by distributing astaxanthin diffusively to the peripheral part of the cell within 10 min after irradiation. This response is reversible: when astaxanthin-diffused cells were placed in the dark, astaxanthin was redistributed to the center of the cell. Although Haematococcus possesses several pigments other that astaxanthin, the subcellular distribution and content of each pigment remain unknown. Here, we analyzed the subcellular dynamics and localization of major pigments such as astaxanthin, β-carotene, lutein, and chlorophylls under light irradiation using time-lapse and label-free hyperspectral imaging analysis. Fluorescence microscopy and freeze-fracture transmission electron microscopy showed that, preceding/following exposure to light, astaxanthin colocalized with lipid droplets, which moved from the center to the periphery through pathways in a chloroplast. This study revealed that photoresponse dynamics differed between astaxanthin and other pigments (chlorophylls, lutein, and β-carotene), and that only astaxanthin freely migrates from the center to the periphery of the cell through a large, spherical, cytoplasm-encapsulating chloroplast as a lipid droplet. We consider this to be the Haematococcus light-protection mechanism.
Collapse
|
9
|
Solovchenko A, Neverov K. Carotenogenic response in photosynthetic organisms: a colorful story. PHOTOSYNTHESIS RESEARCH 2017; 133:31-47. [PMID: 28251441 DOI: 10.1007/s11120-017-0358-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/13/2017] [Indexed: 05/16/2023]
Abstract
Carotenoids are a diverse group of terpenoid pigments ubiquitous in and essential for functioning of phototrophs. Most of the researchers in the field are focused on the primary carotenoids serving light harvesting, photoprotection, and supporting the structural integrity of the photosynthetic apparatus (PSA) within the thylakoid membranes. A distinct group of the pigments functionally and structurally uncoupled from the PSA and accumulating outside of the thylakoids is called secondary carotenoids. Induction of the biosynthesis and massive accumulation of the latter termed as secondary carotenogenesis and carotenogenic response (CR), respectively, is a major though insufficiently studied stress response discovered in many phototrophic organisms ranging from single-celled algae to terrestrial higher plants. The CR protects cell by means of optical shielding of cell structures vulnerable photodamage, consumption of potentially harmful dioxygen, augmenting sink capacity of photoassimilates, and exerting an antioxidant effect. The secondary carotenoids exhibit a remarkable photostability in situ. Therefore, the CR-based photoprotective mechanism, unlike, e.g., antioxidant enzyme-based protection in the chloroplast, does not require continuous investment of energy and metabolites making it highly suitable for long-term stress acclimation in phototrophs. Capability of the CR determines the strategy of acclimation of photosynthetic organisms to different stresses such as excessive irradiance, drought, extreme temperatures, and salinities. Build-up of the CR might be accompanied by gradual disengagement of 'classical' active (energy-dependent) photoprotective mechanisms such as non-photochemical quenching. In addition to that, the CR has great ecological significance. Illustrious examples of this are extremely stress-tolerant 'snow' algae and conifer species developing red coloration during winter. The CR has also considerable practical implications since the secondary carotenoids exert a plethora of beneficial effects on human and animal health. The carotenogenic microalgae are the richest biotechnological sources of natural value-added carotenoids such as astaxanthin and β-carotene. In the present review, we summarize current functional, mechanistic, and ecological insights into the CR in a broad range of organisms suggesting that it is obviously more widespread and important stress response than it is currently thought to be.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276.
| | - Konstantin Neverov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
- A.N.Bach Institute of Biochemistry, Biotechnology Research Center, Russian Academy of Sciences, Moscow, Russia, 117071
| |
Collapse
|
10
|
Shemesh Z, Leu S, Khozin-Goldberg I, Didi-Cohen S, Zarka A, Boussiba S. Inducible expression of Haematococcus oil globule protein in the diatom Phaeodactylum tricornutum : Association with lipid droplets and enhancement of TAG accumulation under nitrogen starvation. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Abstract
Microalgae present a huge and still insufficiently tapped resource of very long-chain omega-3 and omega-6 polyunsaturated fatty acids (VLC-PUFA) for human nutrition and medicinal applications. This chapter describes the diversity of unicellular eukaryotic microalgae in respect to VLC-PUFA biosynthesis. Then, we outline the major biosynthetic pathways mediating the formation of VLC-PUFA by sequential desaturation and elongation of C18-PUFA acyl groups. We address the aspects of spatial localization of those pathways and elaborate on the role for VLC-PUFA in microalgal cells. Recent progress in microalgal genetic transformation and molecular engineering has opened the way to increased production efficiencies for VLC-PUFA. The perspectives of photobiotechnology and metabolic engineering of microalgae for altered or enhanced VLC-PUFA production are also discussed.
Collapse
Affiliation(s)
- Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel.
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| |
Collapse
|
12
|
Vitova M, Bisova K, Kawano S, Zachleder V. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol Adv 2015; 33:1204-18. [DOI: 10.1016/j.biotechadv.2015.04.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/28/2023]
|
13
|
Solovchenko AE. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. PHOTOSYNTHESIS RESEARCH 2015; 125:437-49. [PMID: 25975708 DOI: 10.1007/s11120-015-0156-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/06/2015] [Indexed: 05/09/2023]
Abstract
Massive accumulation of the secondary ketokarotenoid astaxanthin is a characteristic stress response of certain microalgal species with Haematococcus pluvialis as an illustrious example. The carotenogenic response confers these organisms a remarkable ability to survive in extremely unfavorable environments and makes them the richest source of natural astaxanthin. Exerting a plethora of beneficial effects on human and animal health, astaxanthin is among the most important bioproducts from microalgae. Though our understanding of astaxanthin biosynthesis, induction, and regulation is far from complete, this gap is filling rapidly with new knowledge generated predominantly by application of advanced "omics" approaches. This review focuses on the most recent progress in the biology of astaxanthin accumulation in microalgae including the genomic, proteomic, and metabolomics insights into the induction and regulation of secondary carotenogenesis and its role in stress tolerance of the photosynthetic microorganisms. Special attention is paid to the coupling of the carotenoid and lipid biosynthesis as well as deposition of astaxanthin in the algal cell. The place of the carotenogenic response among the stress tolerance mechanisms is revisited, and possible implications of the new findings for biotechnological production of astaxanthin from microalgae are considered. The potential use of the carotenogenic microalgae as a source not only of value-added carotenoids, but also of biofuel precursors is discussed.
Collapse
Affiliation(s)
- Alexei E Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia,
| |
Collapse
|
14
|
Advances in the Production of High-Value Products by Microalgae. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2013.0039] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U. Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. PLANT PHYSIOLOGY 2014; 164:2139-56. [PMID: 24567188 PMCID: PMC3982768 DOI: 10.1104/pp.113.235119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/20/2014] [Indexed: 05/17/2023]
Abstract
The halotolerant microalgae Dunaliella bardawil accumulates under nitrogen deprivation two types of lipid droplets: plastoglobuli rich in β-carotene (βC-plastoglobuli) and cytoplasmatic lipid droplets (CLDs). We describe the isolation, composition, and origin of these lipid droplets. Plastoglobuli contain β-carotene, phytoene, and galactolipids missing in CLDs. The two preparations contain different lipid-associated proteins: major lipid droplet protein in CLD and the Prorich carotene globule protein in βC-plastoglobuli. The compositions of triglyceride (TAG) molecular species, total fatty acids, and sn-1+3 and sn-2 positions in the two lipid pools are similar, except for a small increase in palmitic acid in plastoglobuli, suggesting a common origin. The formation of CLD TAG precedes that of βC-plastoglobuli, reaching a maximum after 48 h of nitrogen deprivation and then decreasing. Palmitic acid incorporation kinetics indicated that, at early stages of nitrogen deprivation, CLD TAG is synthesized mostly from newly formed fatty acids, whereas in βC-plastoglobuli, a large part of TAG is produced from fatty acids of preformed membrane lipids. Electron microscopic analyses revealed that CLDs adhere to chloroplast envelope membranes concomitant with appearance of small βC-plastoglobuli within the chloroplast. Based on these results, we propose that CLDs in D. bardawil are produced in the endoplasmatic reticulum, whereas βC-plastoglobuli are made, in part, from hydrolysis of chloroplast membrane lipids and in part, by a continual transfer of TAG or fatty acids derived from CLD.
Collapse
|
16
|
Gu W, Xie X, Gao S, Zhou W, Pan G, Wang G. Comparison of different cells of Haematococcus pluvialis reveals an extensive acclimation mechanism during its aging process: from a perspective of photosynthesis. PLoS One 2013; 8:e67028. [PMID: 23922648 PMCID: PMC3724872 DOI: 10.1371/journal.pone.0067028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
Both biomass dominated green vegetative cells (GV) and astaxanthin-dominated orange resting cells (OR) affect the final astaxanthin yield in industry. Examination of Haematococcus pluvialis revealed that the OR cells greatly varied from the GV cells at both cellular and subcellular levels. In particular, the thylakoid membranes in the OR were disassembled and fragmented. Furthermore, the OR conserved most of the photosynthetic pigments, with elevated concentrations of violaxanthin, antheraxanthin, and neoxanthin. Notably, moderate photosynthesis was detected in OR, even though most of the thylakoid membranes were disassembled, when compared with those in the GV. However, the energy distribution pattern between photosystem I and II (PSI and PSII) in the OR favored PSI, which was also confirmed by 77-K fluorescence. As zeaxanthin was not detected in the OR, we attribute the acclimation role to astaxanthin, instead of xanthophyll cycle. Additionally, proteomic-scale comparison analysis of thylakoids of the OR and GV indicated no photosynthetically remarkable variations. However, an extensive acclimation mechanism of H. pluvialis was proposed, in which proteins in thylakoid of GV were noted to be involved in biomass accumulation and those in OR were involved in stress response. Conclusions of the comparative analysis might provide some physiological background of OR for astaxanthin production by using H. pluvialis.
Collapse
Affiliation(s)
- Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|