1
|
Abstract
Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function.
Collapse
Affiliation(s)
- W Gibson Wood
- Department of Pharmacology, University of Minnesota, School of Medicine, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
2
|
Igbavboa U, Pidcock JM, Johnson LNA, Malo TM, Studniski AE, Yu S, Sun GY, Wood WG. Cholesterol distribution in the Golgi complex of DITNC1 astrocytes is differentially altered by fresh and aged amyloid beta-peptide-(1-42). J Biol Chem 2003; 278:17150-7. [PMID: 12584199 DOI: 10.1074/jbc.m301150200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi complex plays an important role in cholesterol trafficking in cells, and amyloid beta-peptides (Abetas) alter cholesterol trafficking. The hypothesis was tested that fresh and aged Abeta-(1-42) would differentially modify Golgi cholesterol content in DINTC1 astrocytes and that the effects of Abeta-(1-42) would be associated with the region of the Golgi complex. Two different methods were used to determine the effects of Abeta-(1-42) on Golgi complex cholesterol. Confocal microscopy showed that fresh Abeta-(1-42) significantly increased cholesterol and that aged Abeta-(1-42) significantly reduced cholesterol content in the Golgi complex. Isolation of the Golgi complex into two fractions using density gradient centrifugation showed effects of aged Abeta-(1-42) similar to those observed with confocal microscopy but revealed the novel finding that fresh Abeta-(1-42) had opposite effects on the two Golgi fractions suggesting a specificity of Abeta-(1-42) perturbation of the Golgi complex. Phosphatidylcholine-phospholipase D activity, cell membrane cholesterol, and apolipoprotein E levels were associated with effects of fresh Abeta-(1-42) on cholesterol distribution but not with effects of aged Abeta-(1-42), arguing against a common mechanism. Extracellular Abeta-(1-42) targets the Golgi complex and disrupts cell cholesterol homeostasis, and this action of Abeta-(1-42) could alter cell functions requiring optimal levels of cholesterol.
Collapse
Affiliation(s)
- Urule Igbavboa
- Geriatric Research, Education and Clinical Center, Veterans Affairs Medical Center, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Chochina S, Avdulov N, Igbavboa U, Cleary J, O'Hare E, Wood W. Amyloid β-peptide1-40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31580-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Estilaei MR, Matson GB, Payne GS, Leach MO, Fein G, Meyerhoff DJ. Effects of Chronic Alcohol Consumption on the Broad Phospholipid Signal in Human Brain: An In Vivo 31P MRS Study. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02131.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Abstract
Ethanol has a pronounced effect on lipid homeostasis. It is our overall hypothesis that certain lipid carrier proteins are targets of acute and chronic ethanol exposure and that perturbation of these proteins induces lipid dysfunction leading to cellular pathophysiology. These proteins include both intracellular proteins and lipoproteins. This paper examines recent data on the interaction of ethanol with these proteins. In addition, new data are presented on the stimulatory effects of ethanol on low-density-lipoprotein (LDL)-mediated cholesterol uptake into fibroblasts and direct perturbation of the LDL apolipoprotein, apolipoprotein B. A cell model is presented that outlines potential mechanisms thought to be involved in ethanol perturbation of cholesterol transport and distribution.
Collapse
Affiliation(s)
- W G Wood
- Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN 55417, USA.
| | | | | | | |
Collapse
|
6
|
Daragan VA, Voloshin AM, Chochina SV, Khazanovich TN, Wood WG, Avdulov NA, Mayo KH. Specific binding of ethanol to cholesterol in organic solvents. Biophys J 2000; 79:406-15. [PMID: 10866966 PMCID: PMC1300944 DOI: 10.1016/s0006-3495(00)76302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although ethanol has been reported to affect cholesterol homeostasis in biological membranes, the molecular mechanism of action is unknown. Here, nuclear magnetic resonance (NMR) spectroscopic techniques have been used to investigate possible direct interactions between ethanol and cholesterol in various low dielectric solvents (acetone, methanol, isopropanol, DMF, DMSO, chloroform, and CCl(4)). Measurement of (13)C chemical shifts, spin-lattice and multiplet relaxation times, as well as self-diffusion coefficients, indicates that ethanol interacts weakly, yet specifically, with the HC-OH moiety and the two flanking methylenes in the cyclohexanol ring of cholesterol. This interaction is most strong in the least polar-solvent carbon tetrachloride where the ethanol-cholesterol equilibrium dissociation constant is estimated to be 2 x 10(-3) M. (13)C-NMR spin-lattice relaxation studies allow insight into the geometry of this complex, which is best modeled with the methyl group of ethanol sandwiched between the two methylenes in the cyclohexanol ring and the hydroxyl group of ethanol hydrogen bonded to the hydroxyl group of cholesterol.
Collapse
Affiliation(s)
- V A Daragan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Sciences Center, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Wood WG, Schroeder F, Avdulov NA, Chochina SV, Igbavboa U. Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer's disease. Lipids 1999; 34:225-34. [PMID: 10230715 DOI: 10.1007/s11745-999-0357-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major advances in understanding cholesterol dynamics and the role that cholesterol plays in vascular disease have recently been made. The brain is an organ that is highly enriched in cholesterol, but progress toward understanding brain cholesterol dynamics has been relatively limited. This review examines recent contributions to the understanding of brain cholesterol dynamics, focusing on extracellular and intracellular lipid carrier proteins, membrane cholesterol domains, and emerging evidence linking an association between cholesterol dynamics and Alzheimer's disease.
Collapse
Affiliation(s)
- W G Wood
- Geriatric Research, Education and Clinical Center, Veterans Administration Medical Center and the Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis 55417, USA
| | | | | | | | | |
Collapse
|
8
|
Avdulov NA, Chochina SV, Igbavboa U, Warden CS, Schroeder F, Wood WG. Lipid binding to sterol carrier protein-2 is inhibited by ethanol. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:37-45. [PMID: 9931423 DOI: 10.1016/s0005-2760(98)00178-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sterol carrier protein-2 (SCP-2) is an intracellular lipid carrier protein that binds cholesterol, phospholipids, fatty acids and other ligands. It has been reported that expression of SCP-2 was increased in brain nerve endings or synaptosomes of chronic ethanol-treated mice and it was shown that cholesterol homeostasis was altered in brain membranes of chronic ethanol-treated animals. Ethanol may interfere with the capacity of SCP-2 to bind cholesterol as well as other lipids. This hypothesis was tested using recombinant SCP-2 and fluorescent-labeled cholesterol, phosphatidylcholine (PC), and stearic acid. The association constants (Ka) of the ligand-SCP-2 complex were in the following order: NBD-cholesterol>NBD-PC>NBD-stearic acid. Ethanol, beginning at a concentration of 25 mM, significantly reduced the affinity of NBD-cholesterol and NBD-PC for SCP-2. Effects of ethanol on the Ka of NBD-stearic acid was significant only at the highest concentration that was examined (200 mM). Ethanol significantly increased the Bmax of NBD-cholesterol for SCP-2 but did not have a significant effect on the Bmax of NBD-PC. Similar results were found for effects of ethanol on the Kas and Bmaxs using pyrene-labeled cholesterol and PC. In conclusion, ethanol beginning at a physiological concentration of 25 mM inhibited binding of cholesterol and PC to SCP-2. However, effects of ethanol on lipid binding to SCP-2 were dependent on the type of lipid. Ethanol in vivo may interfere with lipid binding to SCP-2 and disrupt lipid trafficking within cells.
Collapse
Affiliation(s)
- N A Avdulov
- Geriatric Research, Education and Clinical Center, VA Medical Center and Department of Pharmacology, University of Minnesota School of Medicine, 11G, One Veterans Drive, Minneapolis, MN 55417, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bondar OP, Rowe ES. Role of cholesterol in the modulation of interdigitation in phosphatidylethanols. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1370:207-17. [PMID: 9545567 DOI: 10.1016/s0005-2736(97)00264-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphatidylethanol (Peth) is formed in biological membranes when ethanol replaces water in the transphosphatidylation reaction catalyzed by phospholipase D. This charged lipid accumulates in the presence of ethanol, and it has unusual properties that can influence membrane structure and function. We have previously shown that dimyristoylphosphatidylethanol (DMPeth) and dipalmitoylphosphatidylethanol (DPPeth) form the interdigitated gel phase in the presence of Tris-HCl [O.P. Bondar, E.S. Rowe, Biophys. J., 71 (1996) 1440-1449]. In the present investigation, differential scanning calorimetry (DSC) and fluorescence have been used to investigate the effect of cholesterol on the phase behavior of DPPeth and DMPeth. Our results show that cholesterol prevents the formation of the interdigitated phase in the presence of Tris-HCl, and that ethanol counters this influence and restores the ability of these lipids to interdigitate. Pyrene-PC fluorescence probe was used in this investigation and gave results that were in agreement with the conclusions based on the DSC study.
Collapse
Affiliation(s)
- O P Bondar
- Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | | |
Collapse
|
10
|
Wood WG, Igbavboa U, Rao AM, Schroeder F, Avdulov NA. Cholesterol oxidation reduces Ca(2+)+MG (2+)-ATPase activity, interdigitation, and increases fluidity of brain synaptic plasma membranes. Brain Res 1995; 683:36-42. [PMID: 7552342 DOI: 10.1016/0006-8993(95)00347-s] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
These experiments examined effects of cholesterol oxidation on Ca(2+)+Mg(2+)-ATPase activity, Na(+)+K(+)-ATPase activity, and membrane structure of brain synaptic plasma membranes (SPM). Cholesterol oxidase [E.C.1.1.3.6 from Brevibacterium sp.] was used to oxidize cholesterol. Two cholesterol pools were identified in synaptosomal membranes based on their accessibility to cholesterol oxidase. A rapidly oxidized cholesterol pool was observed with a 1t1/2 of 1.19 +/- 0.09 min and a second pool with a 2t1/2 of 38.30 +/- 4.16 min. Activity of Ca(2+)+Mg(2+)-ATPase was inhibited by low levels of cholesterol oxidation. Ten percent cholesterol oxidation, for example, resulted in approximately 35% percent inhibition of Ca(2+)+Mg(2+)-ATPase activity. After 13% cholesterol oxidation, further inhibition of Ca(2+)+Mg(2+)-ATPase activity was not observed. Activity of Na(+)+K(+)-ATPase was not affected by different levels of cholesterol oxidation (5%-40%). SPM interdigitation was significantly reduced and fluidity was significantly increased by cholesterol oxidation. The relationship observed between SPM interdigitation and Ca(2+)+Mg(2+)-ATPase activity was consistent with studies using model membranes [7]. Brain SPM function and structure were altered by relatively low levels of cholesterol oxidation and is a new approach to understanding cholesterol dynamics and neuronal function. The sensitivity of brain SPM to cholesterol oxidation may be important with respect to the proposed association between oxygen free radicals and certain neurodegenerative diseases.
Collapse
Affiliation(s)
- W G Wood
- Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN 55417, USA
| | | | | | | | | |
Collapse
|
11
|
Schroeder F, Woodford JK, Kavecansky J, Wood WG, Joiner C. Cholesterol domains in biological membranes. Mol Membr Biol 1995; 12:113-9. [PMID: 7767369 DOI: 10.3109/09687689509038505] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Membrane cholesterol is distributed asymmetrically both within the cell or within cellular membranes. Elaboration of intracellular cholesterol trafficking, targeting and intramembrane distribution has been spurred by both molecular and structural approaches. The expression of recombinant sterol carrier proteins in L-cell fibroblasts has been especially useful in demonstrating for the first time that such proteins actually elicit intracellular and intraplasma membrane redistribution of sterol. Additional advances in the use of native fluorescent sterols allowed resolution of transbilayer and lateral cholesterol domains in plasma membranes from cultured fibroblasts, brain synaptosomes and erythrocytes. In all three cell surface membranes, cholesterol is enriched in the inner, cytofacial leaflet. Up to three different cholesterol domains have been identified in the lateral plane of the plasma membrane: a fast exchanging domain comprising less than 10% of cholesterol, a slowly exchanging domain comprising about 30% of cholesterol, and a very slowly or non-exchangeable sterol domain comprising 50-60% of plasma membrane cholesterol. Factors modulating plasma membrane cholesterol domains include polyunsaturated fatty acids, expression of intracellular sterol carrier proteins, drugs such as ethanol, and several membrane pathologies (systemic lupus erythematosus, sickle cell anaemia and aging). Disturbances in plasma membrane cholesterol domains alter transbilayer fluidity gradients in plasma membranes. Such changes are associated with decreased Ca(2+)-ATPase and Na+, K(+)-ATPase activity. Thus, the size, dynamics and distribution of cholesterol domains within membranes not only regulate cholesterol efflux/influx but also modulate plasma membrane protein functions and receptor-effector coupled systems.
Collapse
Affiliation(s)
- F Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station 77843-4466, USA
| | | | | | | | | |
Collapse
|