1
|
Abbas D, Ciricillo JA, Elom HA, Moon AM. Extrahepatic Health Effects of Alcohol Use and Alcohol-associated Liver Disease. Clin Ther 2023; 45:1201-1211. [PMID: 37806811 DOI: 10.1016/j.clinthera.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Alcohol use disorder (AUD) is a growing public health concern and an important contributor to global morbidity and mortality. While the hepatotoxic effects of alcohol are well known, the adverse effects of alcohol are manifested in almost every organ system. With the growing public health impact of AUD, the aim of this narrative review is to highlight the epidemiology and burden of AUD and its association with extrahepatic diseases including malignancy and disorders of the gastrointestinal (GI), cardiovascular, immunologic, neurologic, endocrine, and hematologic systems. METHODS A narrative review of the literature was performed to identify studies addressing the epidemiology, pathophysiology, clinical manifestations, and therapy of extrahepatic health manifestations of alcohol use. FINDINGS In the United States, an estimated 14.5 million people have AUD and approximately 88,000 adults die yearly due to alcohol-related causes. The consumption of alcohol and AUD is associated with injuries, violence, cancers, nonmalignant conditions of the GI system, infections, effects on the cardiovascular system, and neurodegenerative diseases. These conditions contribute to the increased mortality associated with AUD and are burdensome to patients and caregivers. IMPLICATIONS Increased awareness of the extrahepatic manifestations of AUD, screening for AUD using validated screening tools, such as the Alcohol Use Disorders Identification Test-Concise (AUDIT-C) score, and offering evidence-based interventions to patients with AUD is imperative to reduce the public health burden of AUD. Although historically controversial, recent evidence suggests that any level of alcohol consumption can have negative health consequences. Further research is warranted to determine if any amount of alcohol is safe for consumption. Public health efforts are warranted to help curtail the growing burden of AUD.
Collapse
Affiliation(s)
- Daniyal Abbas
- Department of Internal Medicine, East Carolina University, Greenville, North Carolina
| | - Jacob A Ciricillo
- Department of Internal Medicine, University of Cincinnati Medicine Center, Cincinnati, Ohio
| | - Hilary A Elom
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrew M Moon
- Department of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
2
|
Tan J, Zhang J, Xie L, Sun G, Zhang X, Li P, Liao X, Wu W, Zhang W, Wang J, Li J, Tian M. Influence of l-NAME -induced hypertension on spermatogenesis and sperm tsRNA profile in mice. Biochem Biophys Res Commun 2023; 683:149110. [PMID: 37866110 DOI: 10.1016/j.bbrc.2023.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Sperm is the key media between the father's aberrant exposure and the offspring's phenotype. Whether paternal hypertension affects offspring through sperm epigenetics remains to be explored. To investigate the underlying mechanisms, we constructed a hypertensive mice model induced by drinking l-NAME and found that spermatocytes and spermatids in the testis were increased significantly after l-NAME treatment. The sequencing of sperm showed that tsRNA profiles changed with 315 tsRNAs (195 up-regulated and 120 down-regulated) altered. Meanwhile, KEGG pathway analysis showed that the target genes of these altered tsRNAs were involved in influencing some important signaling pathways, such as the cAMP signaling path, the mTOR signaling path, the Hippo signaling path, and the Ras signaling path. Bioinformatics of tsRNA-miRNA-mRNA pathway interactions revealed several ceRNA mechanisms, such as tsRNA-00051, the ceRNA of miR-128-1-5p, co-targeting Agap1. This study provides evidence for enriching and further understanding the pathophysiology and paternal epigenetic mechanisms of testicular reproduction, as well as contributing to a rethinking of the transgenerational reprogramming mechanisms of paternal exposure in hypertension.
Collapse
Affiliation(s)
- Jin Tan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Jialin Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Li Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Guoying Sun
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, The Research Team for Reproduction Health and Translational Medicine of Hunan Normal University (2023JC101), Changsha, China
| | - Xiaoli Zhang
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany; Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Pan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Xinrui Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Wenyuan Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Wanting Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Jiao Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Jian Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, The Research Team for Reproduction Health and Translational Medicine of Hunan Normal University (2023JC101), Changsha, China.
| | - Mei Tian
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Hunan, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, The Research Team for Reproduction Health and Translational Medicine of Hunan Normal University (2023JC101), Changsha, China.
| |
Collapse
|
3
|
Yari S, Karamian R, Asadbegy M, Hoseini E, Moazzami Farida SH. The protective effects ofArctium lappaL. Extract on testicular injuries induced by ethanol in rats. Andrologia 2018; 50:e13086. [DOI: 10.1111/and.13086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Siamak Yari
- Department of Biology; Faculty of Science; Bu-Ali Sina University; Hamedan Iran
| | - Roya Karamian
- Department of Biology; Faculty of Science; Bu-Ali Sina University; Hamedan Iran
| | - Mostafa Asadbegy
- Department of Biology; Faculty of Science; Bu-Ali Sina University; Hamedan Iran
| | - Ehsan Hoseini
- Department of Plant Sciences; Faculty of Biological Sciences; Kharazmi University; Tehran Iran
| | | |
Collapse
|
4
|
Abarikwu SO, Duru QC, Chinonso OV, Njoku RC. Antioxidant enzymes activity, lipid peroxidation, oxidative damage in the testis and epididymis, and steroidogenesis in rats after co-exposure to atrazine and ethanol. Andrologia 2015; 48:548-57. [DOI: 10.1111/and.12478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 12/18/2022] Open
Affiliation(s)
- S. O. Abarikwu
- Department of Biochemistry; University of Port Harcourt; Choba Nigeria
| | - Q. C. Duru
- Department of Biochemistry; University of Port Harcourt; Choba Nigeria
| | - O. V. Chinonso
- Department of Biochemistry; University of Port Harcourt; Choba Nigeria
| | - R.-C. Njoku
- Department of Biochemistry; University of Port Harcourt; Choba Nigeria
| |
Collapse
|
5
|
Siervo GEML, Vieira HR, Ogo FM, Fernandez CDB, Gonçalves GD, Mesquita SFP, Anselmo-Franci JA, Cecchini R, Guarnier FA, Fernandes GSA. Spermatic and testicular damages in rats exposed to ethanol: influence of lipid peroxidation but not testosterone. Toxicology 2015; 330:1-8. [PMID: 25637669 DOI: 10.1016/j.tox.2015.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 11/30/2022]
Abstract
Chronic consumption of ethanol causes morphological and physiological changes in the reproductive system of mammals. Vitamin C has an antioxidant role in organisms by neutralizing the ROS (reactive oxygen species) produced by oxidizing agents and this vitamin has an important function in the male reproductive system. The aim of this study was to evaluate whether vitamin C could prevent or attenuate the alterations in the male reproductive system caused by ethanol consumption. To test this hypothesis, male rats were divided into three experimental groups and treated by gavage for 63 days. The ethanol (E) and ethanol+vitamin C (EC) groups received 2 g/kg of ethanol (25%v/v) daily. In addition to ethanol, the EC group received vitamin C at a dose of 100 mg/day, diluted in water. The control group (C) received only the vehicle. On the 64th experimental day, the animals were anesthetized and euthanized, and blood was collected for plasmatic hormonal analysis. The testis, epididymis, vas deferens, and seminal vesicles were removed and weighed. Sperm from the vas deferens was submitted to morphological and motility analysis. The testis and epididymis were used for oxidative stress and histopathological analysis, sperm count, morphometric analysis of the testis, and stereological analysis of the epididymis. The results showed that vitamin C has a protective effect in the testes of adult male rats, entirely normalizing the parameters of sperm count, spermatogenesis kinetics, lipid peroxidation levels, and sperm motility, as well as partially normalizing the histopathological damage in the testis, epididymis, and sperm morphology. Thus, we concluded that lipid peroxidation is a major mechanism by which ethanol affects the testes and sperm, whereas no plasmatic testosterone alterations were found.
Collapse
Affiliation(s)
- Glaucia E M L Siervo
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil; Department of General Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Henrique R Vieira
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Fernanda M Ogo
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil; Department of General Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Carla D B Fernandez
- Department of Morphology, Institute of Biosciences, UNESP-Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Géssica D Gonçalves
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Suzana F P Mesquita
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Janete Ap Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Cecchini
- Department of General Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Flavia A Guarnier
- Department of General Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Glaura S A Fernandes
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil.
| |
Collapse
|
6
|
Zhu Q, Emanuele MA, LaPaglia N, Kovacs EJ, Emanuele NV. Vitamin E prevents ethanol-induced inflammatory, hormonal, and cytotoxic changes in reproductive tissues. Endocrine 2007; 32:59-68. [PMID: 17992603 DOI: 10.1007/s12020-007-9010-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 12/01/2022]
Abstract
Ethanol causes decreased function of the hypothalamic-pituitary-gonadal (HPG) axis. Ethanol resulted in inflammatory changes in HPG manifested by increased concentrations of pro-inflammatory cytokines. Since, such cytokines have deleterious effects on functions of HPG, it seemed possible that ethanol's suppressive action could be due, at least in part, to this inflammation. Since oxidative stress can cause inflammation, we have used the antioxidant vitamin E to test, whether reducing inflammation might protect reproductive functions from ethanol. Rats were fed an ethanol diet or pair fed identically without ethanol for a 3-week period. For the last 10 days, animals were given 30 IU/kg or 90 IU/kg or vehicle. Ethanol significantly increased hypothalamic, pituitary and testicular TNF-alpha and IL-6, all changes prevented by the higher dose of vitamin E. Also, ethanol induced changes in LHRH, LH, testosterone, and testicular germ cell apoptosis were similarly prevented by vitamin E. These data strikingly show that vitamin E protects the HPG from deleterious effects of ethanol and suggests that the mechanism of this protection might be both anti-inflammatory and antioxidant.
Collapse
Affiliation(s)
- Qianlong Zhu
- Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
7
|
Wallock-Montelius LM, Villanueva JA, Chapin RE, Conley AJ, Nguyen HP, Ames BN, Halsted CH. Chronic ethanol perturbs testicular folate metabolism and dietary folate deficiency reduces sex hormone levels in the Yucatan micropig. Biol Reprod 2006; 76:455-65. [PMID: 17151354 DOI: 10.1095/biolreprod.106.053959] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although alcoholism causes changes in hepatic folate metabolism that are aggravated by folate deficiency, male reproductive effects have never been studied. We evaluated changes in folate metabolism in the male reproductive system following chronic ethanol consumption and folate deficiency. Twenty-four juvenile micropigs received folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE or FDE) for 14 wk, and the differences between the groups were determined by ANOVA. Chronic ethanol consumption (FSE and FDE compared with FS and FD groups) reduced testis and epididymis weights, testis sperm concentrations, and total sperm counts and circulating FSH levels. Folate deficiency (FD and FDE compared with FS and FSE groups) reduced circulating testosterone, estradiol and LH levels, and also testicular 17,20-lyase and aromatase activities. There was histological evidence of testicular lesions and incomplete progression of spermatogenesis in all treated groups relative to the FS control, with the FDE group being the most affected. Chronic ethanol consumption increased testis folate concentrations and decreased testis methionine synthase activity, whereas folate deficiency reduced total testis folate levels and increased methionine synthase activity. In all pigs combined, testicular methionine synthase activity was negatively associated with circulating estradiol, LH and FSH, and 17,20-lyase activity after controlling for ethanol, folate deficiency, and their interaction. Thus, while chronic ethanol consumption primarily impairs spermatogenesis, folate deficiency reduces sex hormones, and the two treatments have opposite effects on testicular folate metabolism. Furthermore, methionine synthase may influence the hormonal regulation of spermatogenesis.
Collapse
Affiliation(s)
- Lynn M Wallock-Montelius
- Children's Hospital Oakland Research Institute, Oakland, California 94609, and Department of Internal Medicine, University of California, Davis 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Herman M, Kang SS, Lee S, James P, Rivier C. Systemic Administration of Alcohol to Adult Rats Inhibits Leydig Cell Activity: Time Course of Effect and Role of Nitric Oxide. Alcohol Clin Exp Res 2006; 30:1479-91. [PMID: 16930210 DOI: 10.1111/j.1530-0277.2006.00179.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol has been shown to interfere with testosterone (T) release from Leydig cells. However, the mechanisms responsible for this phenomenon, which may include decreased activity of the luteinizing hormone-releasing hormone (LHRH)-LH axis, as well as a direct influence of the drug on the testes, are not fully understood. In this work, we investigated the influence of alcohol, administered intragastrically (i.g.) or delivered via vapors, on Leydig cell activity and T release. Leydig cell function was studied by measuring changes in the levels of the steroidogenic proteins steroidogenic acute regulatory (StAR), the peripheral-type benzodiazepine receptor (PBR), and the cytochrome P450 side-chain cleavage enzyme (P450scc). Testosterone release was studied under basal conditions or in response to human chorionic gonadotropin (hCG). Finally, to identify potential factors mediating the influence of alcohol, we measured the testicular variant of the neuronal nitric oxide (NO) synthase (NOS), TnNOS, in semipurified Leydig cells. METHODS Adult male Sprague-Dawley rats were either injected with alcohol i.g. once or exposed to alcohol vapors (4 h/d) for 1 or 5 days. Controls received the vehicle (i.g. model) or were kept in boxes through which no vapors were circulated. Following these treatments, one series of experiments was devoted to investigate Leydig cell responsiveness by measuring plasma T levels before or after the intravenous injection of hCG (1 U/kg). In another series of experiments, we used semipurified Leydig cell preparations to measure StAR, PBR, P450scc, and TnNOS by Western blot analysis. RESULTS In the i.g. model, the T response to hCG was blunted for 12 hours following alcohol injection, but showed a rebound at 48 hours. Levels of StAR protein and of PBR, but not of P450scc, were significantly decreased within 10 minutes of drug administration. While StAR then remained depressed for 24 hours, PBR values were variable over this time course. By 48 hours, StAR, PBR, and P450scc levels had increased above control values. Both StAR and PBR levels showed correlations with plasma T levels. In the alcohol vapor models, both regimens of the drug also significantly depressed StAR and PBR protein concentrations, blunted the T response to hCG, and did not alter P450scc. Finally, we observed that alcohol delivered i.g. or via vapors up-regulated TnNOS levels in Leydig cells, but that blockade of NO formation failed to restore a normal T response to hCG. CONCLUSIONS Collectively, these results suggest that (a) the ability of Leydig cells to release T does not show a simple correlation with changes in StAR, PBR, and P450scc levels; (b) the time course of the alcohol-induced changes were protein-specific; and (c) despite the ability of alcohol to stimulate TnNOS expression, NO does not appear to mediate the inhibitory influence of this drug on testicular steroidogenesis in the models that we studied.
Collapse
Affiliation(s)
- Melissa Herman
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
9
|
Herman M, Rivier C. Activation of a neural brain-testicular pathway rapidly lowers Leydig cell levels of the steroidogenic acute regulatory protein and the peripheral-type benzodiazepine receptor while increasing levels of neuronal nitric oxide synthase. Endocrinology 2006; 147:624-33. [PMID: 16239298 DOI: 10.1210/en.2005-0879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of a neural brain-testicular pathway by the intracerebroventricular injection of the beta-adrenergic agonist isoproterenol (ISO), the hypothalamic peptide corticotropin-releasing factor (CRF), or alcohol (EtOH) rapidly decreases the testosterone (T) response to human chorionic gonadotropin. To elucidate the intratesticular mechanisms responsible for this phenomenon, we investigated the influence of intracerebroventricular-injected ISO, CRF, or EtOH on levels of the steroidogenic acute regulatory (StAR) protein, the peripheral-type benzodiazepine receptor (PBR), and the cytochrome P450 side-chain cleavage enzyme in semipurified Leydig cells. ISO (10 microg), CRF (5 microg), or EtOH (5 microl of 200 proof, a dose that does not induce neuronal damage nor leaks to the periphery) rapidly decreased StAR and PBR but not cytochrome P450 side-chain cleavage enzyme protein levels. Levels of the variant of the neuronal nitric oxide synthase (nNOS) that is restricted to Leydig cells, TnNOS, significantly increased in response to ISO, CRF, and EtOH over the time course of altered StAR/PBR concentrations. However, pretreatment of the rats with N(w)nitro-arginine methylester, which blocked ISO-induced increases in TnNOS, neither restored the T response to human chorionic gonadotropin nor prevented the decreases in StAR and PBR. These results provide evidence of concomitant changes in Leydig cell StAR and PBR levels in live rats. They also indicate that activation of a neural brain-testicular pathway rapidly decreases concentrations of these steroidogenic proteins while up-regulating testicular NO production. However, additional studies are necessary to elucidate the functional role played by this gas in our model.
Collapse
Affiliation(s)
- Melissa Herman
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
10
|
Emanuele N, LaPaglia N, Kovacs EJ, Emanuele MA. Effects of chronic ethanol (EtOH) administration on pro-inflammatory cytokines of the hypothalamic-pituitary-gonadal (HPG) axis in female rats. Endocr Res 2005; 31:9-16. [PMID: 16238187 DOI: 10.1080/07435800500228930] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We and others have investigated the effects of acute and chronic ethanol (EtOH) administration on function of the hypothalamic-pituitary-gonadal (HPG) axis in female rats, consistently finding EtOH to be detrimental. There are now substantial data that pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNFalpha) and interleukin 6 (IL-6), have anti-reproductive effects. If EtOH increased levels of these cytokines, such data would be consistent with, though not necessarily prove, a cytokine mediated mechanism for EtOH's deleterious effects on reproduction. Young adult female Sprague Dawley rats were used. In the experiment reported here, the Lieber DeCarli diet was used, with animals fed a 36% EtOH containing diet or pair fed an identical diet which contained dextrimaltose instead of EtOH. This was done for 4 to 6 weeks. TNFalpha and IL-6 were measured in the hypothalamus, pituitary, and ovary by ELISA. EtOH exposure resulted in significant increases in TNFalpha and IL-6 in hypothalami, pituitaries, and ovaries. The data reported here are the first to show consistent stimulatory effects of EtOH exposure on cytokines in the reproductive axis of female rats. Because the effects of these cytokines are generally anti-reproductive, these data provide a rational for more rigorous testing of the notion that part of EtOH's deleterious HPG effects may be due to such immuno-endocrine interactions.
Collapse
Affiliation(s)
- Nicholas Emanuele
- Department of Medicine, Burn and Shock Trauma Institute, Research and Medical Services, VA Hospital, Hines, Illinois, USA.
| | | | | | | |
Collapse
|
11
|
Selvage DJ, Lee SY, Parsons LH, Seo DO, Rivier CL. A hypothalamic-testicular neural pathway is influenced by brain catecholamines, but not testicular blood flow. Endocrinology 2004; 145:1750-9. [PMID: 14684600 DOI: 10.1210/en.2003-1441] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported the existence of a descending multisynaptic, pituitary-independent, neural pathway between the hypothalamus and the testes in the male rat. Stimulation of this pathway by the intracerebroventricular (icv) injection of IL-1beta or corticotropin-releasing factor blunts the testosterone (T) response to human chorionic gonadotropin (hCG). This response is mediated at least in part by catecholamine beta-adrenergic receptor activation. The present work was performed to further investigate the role of brain catecholamines and testicular blood flow in this pathway. The icv injection of 5 microl of 200 proof ethanol (EtOH; 86 micromol) did not result in detectable levels of the drug in the general circulation and did not induce neuronal damage, but rapidly blunted hCG-induced T release while not decreasing LH levels or altering testicular blood flow. EtOH significantly up-regulated transcripts of the immediate-early gene c-fos in the paraventricular nucleus (PVN) of the hypothalamus. Lesions of the PVN blocked the inhibitory effect of IL-1beta on T, but only partially interfered with the influence of EtOH. PVN catecholamine turnover significantly increased after icv injection of IL-1beta, but not EtOH. Brain catecholamine depletion due to the neurotoxin 6-hydroxydopamine did not alter the ability of hCG to induce T release, but significantly reversed the inhibitory effect of icv EtOH or IL-1beta on this response. Collectively, these results indicate that icv-injected IL-1beta or EtOH blunts hCG-induced T secretion through a catecholamine-mediated mechanism that does not depend on either peripherally mediated effects or pituitary LH, and that the PVN plays a role in these effects.
Collapse
Affiliation(s)
- Daniel J Selvage
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
12
|
Emanuele MA, LaPaglia N, Steiner J, Kirsteins L, Emanuele NV. Effects of Nitric Oxide Synthase Blockade on the Acute Response of the Reproductive Axis to Ethanol in Pubertal Male Rats. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04196.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|