1
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
2
|
Wang J, Akbari A, Chardahcherik M, Wu J. Ginger (Zingiber Officinale Roscoe) ameliorates ethanol-induced cognitive impairment by modulating NMDA and GABA-A receptors in rat hippocampus. Metab Brain Dis 2024; 39:67-76. [PMID: 37966694 DOI: 10.1007/s11011-023-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/24/2023] [Indexed: 11/16/2023]
Abstract
Brain damage caused by ethanol abuse may lead to permanent damage, including severe dementia. The aim of this study was to investigate the effects of ginger powder on ethanol-induced cognitive disorders by examining oxidative damage and inflammation status, and the gene expression of N-methyl-D-aspartate (NMDA) and γ-Aminobutyric acid (GABA)-A receptors in the hippocampus of male rats. 24 adult male Sprague-Dawley rats were allocated randomly to four groups as follows control, ethanol (4g/kg/day, by gavage), ginger (1g/kg/day, by gavage), and ginger-ethanol. At the end of the study, memory and learning were evaluated by the shuttle box test. Moreover, to explore mechanisms involved in ethanol-induced cognitive impairment and the protective effect of ginger, the expression of Nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), NMDA receptor, and GABA-A receptor was measured along with inflammatory and oxidative biomarkers in the hippocampus tissue. The results showed that ethanol could induce cognitive impairment in the ethanol group, while pretreatment with ginger could reverse it. The gene expression of the NF-κB/ Tumor necrosis factor (TNF)-α/Interleukin (IL)-1β pathway and NMDA and GABA-A receptors significantly increased in the ethanol group compared to the control group. While pretreatment with ginger could significantly improve ethanol-induced cognitive impairment through these pathways in the ginger-ethanol group compared to the ethanol group (P < 0.05). It can be concluded that ginger powder could ameliorate ethanol-induced cognitive impairment by modulating the expression of NMDA and GABA-A receptors and inhibiting oxidative damage and the NF-κB/TNF-α/IL-1β pathway in the rat hippocampus.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Marjan Chardahcherik
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Jun Wu
- Department of Internal Medicine, Xi'an Yanta Qiangsen Meilin Hospital, Xi'an, 710000, China.
| |
Collapse
|
3
|
Acute stress impairs sensorimotor gating via the neurosteroid allopregnanolone in the prefrontal cortex. Neurobiol Stress 2022; 21:100489. [DOI: 10.1016/j.ynstr.2022.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
|
4
|
Torres ERS, Stanojlovic M, Zelikowsky M, Bonsberger J, Hean S, Mulligan C, Baldauf L, Fleming S, Masliah E, Chesselet MF, Fanselow MS, Richter F. Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson's disease. Neurobiol Dis 2021; 158:105478. [PMID: 34390837 PMCID: PMC8447919 DOI: 10.1016/j.nbd.2021.105478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
In Parkinson's disease (PD), the second most common neurodegenerative disorder, non-motor symptoms often precede the development of debilitating motor symptoms and present a severe impact on the quality of life. Lewy bodies containing misfolded α-synuclein progressively develop in neurons throughout the peripheral and central nervous system, which may be correlated with the early development of non-motor symptoms. Among those, increased fear and anxiety is frequent in PD and thought to result from pathology outside the dopaminergic system, which has been the focus of symptomatic treatment to alleviate motor symptoms. Alpha-synuclein accumulation has been reported in the amygdala of PD patients, a brain region critically involved in fear and anxiety. Here we asked whether α-synuclein overexpression alone is sufficient to induce an enhanced fear phenotype in vivo and which pathological mechanisms are involved. Transgenic mice expressing human wild-type α-synuclein (Thy1-aSyn), a well-established model of PD, were subjected to fear conditioning followed by extinction and then tested for extinction memory retention followed by histopathological analysis. Thy1-aSyn mice showed enhanced tone fear across acquisition and extinction compared to wild-type littermates, as well as a trend to less retention of fear extinction. Immunohistochemical analysis of the basolateral nucleus of the amygdala, a nucleus critically involved in tone fear learning, revealed extensive α-synuclein pathology, with accumulation, phosphorylation, and aggregation of α-synuclein in transgenic mice. This pathology was accompanied by microgliosis and parvalbumin neuron loss in this nucleus, which could explain the enhanced fear phenotype. Importantly, this non-motor phenotype was detected in the pre-clinical phase, prior to dopamine loss in Thy1-aSyn mice, thus replicating observations in patients. Results obtained in this study suggest a possible mechanism by which increased anxiety and maladaptive fear processing may occur in PD, opening a door for therapeutic options and further early biomarker research.
Collapse
Affiliation(s)
- Eileen Ruth S Torres
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Moriel Zelikowsky
- Department of Psychology, Staglin Center for Brain and Behavioral Health, UCLA, Los Angeles, CA 90095, USA; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Jana Bonsberger
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sindalana Hean
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Caitlin Mulligan
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Leonie Baldauf
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sheila Fleming
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Eliezer Masliah
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA 92093, USA
| | | | - Michael S Fanselow
- Department of Psychology, Staglin Center for Brain and Behavioral Health, UCLA, Los Angeles, CA 90095, USA
| | - Franziska Richter
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
5
|
Khachatryan VP, Nazaryan OH, Karapetyan KV, Nebogova KA, Simonyan KV, Danielyan MH. Structural Changes in the Rat Hippocampus during Alcohol Intoxication and at Abstinence; Protective Effects of Taurine. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Van Skike CE, Goodlett C, Matthews DB. Acute alcohol and cognition: Remembering what it causes us to forget. Alcohol 2019; 79:105-125. [PMID: 30981807 DOI: 10.1016/j.alcohol.2019.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Addiction has been conceptualized as a specific form of memory that appropriates typically adaptive neural mechanisms of learning to produce the progressive spiral of drug-seeking and drug-taking behavior, perpetuating the path to addiction through aberrant processes of drug-related learning and memory. From that perspective, to understand the development of alcohol use disorders, it is critical to identify how a single exposure to alcohol enters into or alters the processes of learning and memory, so that involvement of and changes in neuroplasticity processes responsible for learning and memory can be identified early. This review characterizes the effects produced by acute alcohol intoxication as a function of brain region and memory neurocircuitry. In general, exposure to ethanol doses that produce intoxicating effects causes consistent impairments in learning and memory processes mediated by specific brain circuitry, whereas lower doses either have no effect or produce a facilitation of memory under certain task conditions. Therefore, acute ethanol does not produce a global impairment of learning and memory, and can actually facilitate particular types of memory, perhaps particular types of memory that facilitate the development of excessive alcohol use. In addition, the effects on cognition are dependent on brain region, task demands, dose received, pharmacokinetics, and tolerance. Additionally, we explore the underlying alterations in neurophysiology produced by acute alcohol exposure that help to explain these changes in cognition and highlight future directions for research. Through understanding the impact that acute alcohol intoxication has on cognition, the preliminary changes potentially causing a problematic addiction memory can better be identified.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, United States
| | - Charles Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Douglas B Matthews
- Division of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, 54702, United States.
| |
Collapse
|
7
|
Andonegui G, Zelinski EL, Schubert CL, Knight D, Craig LA, Winston BW, Spanswick SC, Petri B, Jenne CN, Sutherland JC, Nguyen R, Jayawardena N, Kelly MM, Doig CJ, Sutherland RJ, Kubes P. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment. JCI Insight 2018; 3:99364. [PMID: 29720578 DOI: 10.1172/jci.insight.99364] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Sepsis-associated encephalopathy manifesting as delirium is a common problem in critical care medicine. In this study, patients that had delirium due to sepsis had significant cognitive impairments at 12-18 months after hospital discharge when compared with controls and Cambridge Neuropsychological Automated Test Battery-standardized scores in spatial recognition memory, pattern recognition memory, and delayed-matching-to-sample tests but not other cognitive functions. A mouse model of S. pneumoniae pneumonia-induced sepsis, which modeled numerous aspects of the human sepsis-associated multiorgan dysfunction, including encephalopathy, also revealed similar deficits in spatial memory but not new task learning. Both humans and mice had large increases in chemokines for myeloid cell recruitment. Intravital imaging of the brains of septic mice revealed increased neutrophil and CCR2+ inflammatory monocyte recruitment (the latter being far more robust), accompanied by subtle microglial activation. Prevention of CCR2+ inflammatory monocyte recruitment, but not neutrophil recruitment, reduced microglial activation and other signs of neuroinflammation and prevented all signs of cognitive impairment after infection. Therefore, therapeutically targeting CCR2+ inflammatory monocytes at the time of sepsis may provide a novel neuroprotective clinical intervention to prevent the development of persistent cognitive impairments.
Collapse
Affiliation(s)
- Graciela Andonegui
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, and.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Courtney L Schubert
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, and.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derrice Knight
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, and
| | - Laura A Craig
- Regeneration Unit in Neurobiology Facility, Hotchkiss Brain Institute
| | - Brent W Winston
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, and.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine.,Department of Biochemistry and Molecular Biology
| | - Simon C Spanswick
- Regeneration Unit in Neurobiology Facility, Hotchkiss Brain Institute
| | - Björn Petri
- Department of Microbiology, Immunology and Infectious Diseases.,Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases
| | - Craig N Jenne
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, and.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases
| | - Janice C Sutherland
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Rita Nguyen
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, and
| | - Natalie Jayawardena
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, and
| | - Margaret M Kelly
- Airway Inflammation Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases.,Department of Pathology and Laboratory Medicine.,Department of Physiology and Pharmacology, and
| | - Christopher J Doig
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Paul Kubes
- Immunology Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, and.,Department of Physiology and Pharmacology, and
| |
Collapse
|
8
|
Mojica C, Bai Y, Lotfipour S. Maternal nicotine exposure effects on adolescent learning and memory are abolished in alpha(α)2* nicotinic acetylcholine receptor-null mutant mice. Neuropharmacology 2018; 135:529-535. [PMID: 29677582 DOI: 10.1016/j.neuropharm.2018.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/13/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022]
Abstract
The objective of the current study is to test the hypothesis that the deletion of alpha(α)2* nicotinic acetylcholine receptors (nAChRs) (encoded by the Chrna2 gene) ablate maternal nicotine-induced learning and memory deficits in adolescent mice. We use a pre-exposure-dependent contextual fear conditioning behavioral paradigm that is highly hippocampus-dependent. Adolescent wild type and α2-null mutant offspring are exposed to vehicle or maternal nicotine exposure (200 μg/ml, expressed as base) in the drinking water throughout pregnancy until weaning. Adolescent male offspring mice are tested for alterations in growth and development characteristics as well as modifications in locomotion, anxiety, shock-reactivity and learning and memory. As expected, maternal nicotine exposure has no effects on pup number, weight gain and only modestly reduces fluid intake by 19%. Behaviorally, maternal nicotine exposure impedes extinction learning in adolescent wild type mice, a consequence that is abolished in α2-null mutant mice. The effects on learning and memory are not confounded by alternations in stereotypy, locomotion, anxiety or sensory shock reactivity. Overall, the findings highlight that the deletion of α2* nAChRs eliminate the effects of maternal nicotine exposure on learning and memory in adolescent mice.
Collapse
Affiliation(s)
- Celina Mojica
- University of California, Los Angeles, Department of Psychiatry, United States; University of California, Irvine, Graduate Division, United States
| | - Yu Bai
- University of California, Irvine, School of Biological Sciences, United States
| | - Shahrdad Lotfipour
- University of California, Los Angeles, Department of Psychiatry, United States; University of California, Irvine, Department of Emergency Medicine and Pharmacology, United States.
| |
Collapse
|
9
|
Olsen RW, Liang J. Role of GABA A receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain 2017; 10:45. [PMID: 28931433 PMCID: PMC5605989 DOI: 10.1186/s13041-017-0325-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
GABAergic inhibitory transmission is involved in the acute and chronic effects of ethanol on the brain and behavior. One-dose ethanol exposure induces transient plastic changes in GABAA receptor subunit levels, composition, and regional and subcellular localization. Rapid down-regulation of early responder δ subunit-containing GABAA receptor subtypes mediating ethanol-sensitive tonic inhibitory currents in critical neuronal circuits corresponds to rapid tolerance to ethanol's behavioral responses. Slightly slower, α1 subunit-containing GABAA receptor subtypes mediating ethanol-insensitive synaptic inhibition are down-regulated, corresponding to tolerance to additional ethanol behaviors plus cross-tolerance to other GABAergic drugs including benzodiazepines, anesthetics, and neurosteroids, especially sedative-hypnotic effects. Compensatory up-regulation of synaptically localized α4 and α2 subunit-containing GABAA receptor subtypes, mediating ethanol-sensitive synaptic inhibitory currents follow, but exhibit altered physio-pharmacology, seizure susceptibility, hyperexcitability, anxiety, and tolerance to GABAergic positive allosteric modulators, corresponding to heightened alcohol withdrawal syndrome. All these changes (behavioral, physiological, and biochemical) induced by ethanol administration are transient and return to normal in a few days. After chronic intermittent ethanol (CIE) treatment the same changes are observed but they become persistent after 30 or more doses, lasting for at least 120 days in the rat, and probably for life. We conclude that the ethanol-induced changes in GABAA receptors represent aberrant plasticity contributing critically to ethanol dependence and increased voluntary consumption. We suggest that the craving, drug-seeking, and increased consumption in the rat model are tied to ethanol-induced plastic changes in GABAA receptors, importantly the development of ethanol-sensitive synaptic GABAA receptor-mediating inhibitory currents that participate in maintained positive reward actions of ethanol on critical neuronal circuits. These probably disinhibit nerve endings of inhibitory GABAergic neurons on dopamine reward circuit cells, and limbic system circuits mediating anxiolysis in hippocampus and amygdala. We further suggest that the GABAA receptors contributing to alcohol dependence in the rat and presumably in human alcohol use disorders (AUD) are the ethanol-induced up-regulated subtypes containing α4 and most importantly α2 subunits. These mediate critical aspects of the positive reinforcement of ethanol in the dependent chronic user while alleviating heightened withdrawal symptoms experienced whenever ethanol is absent. The speculative conclusions based on firm observations are readily testable.
Collapse
Affiliation(s)
- Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Jing Liang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
10
|
In vivo evaluation of the hippocampal glutamate, GABA and the BDNF levels associated with spatial memory performance in a rodent model of neuropathic pain. Physiol Behav 2017; 175:97-103. [DOI: 10.1016/j.physbeh.2017.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/18/2017] [Accepted: 03/18/2017] [Indexed: 11/22/2022]
|
11
|
Lotfipour S, Mojica C, Nakauchi S, Lipovsek M, Silverstein S, Cushman J, Tirtorahardjo J, Poulos A, Elgoyhen AB, Sumikawa K, Fanselow MS, Boulter J. α2* Nicotinic acetylcholine receptors influence hippocampus-dependent learning and memory in adolescent mice. ACTA ACUST UNITED AC 2017; 24:231-244. [PMID: 28507032 PMCID: PMC5435881 DOI: 10.1101/lm.045369.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/31/2017] [Indexed: 11/24/2022]
Abstract
The absence of α2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of α2* nAChRs (Chrna2L9′S/L9′S and Chrna2KO) influence hippocampus-dependent learning and memory and CA1 synaptic plasticity. We substituted a serine for a leucine (L9′S) in the α2 subunit (encoded by the Chrna2 gene) to make a hypersensitive nAChR. Using a dorsal hippocampus-dependent task of preexposure-dependent contextual fear conditioning, adolescent hypersensitive Chrna2L9′S/L9′S male mice exhibited impaired learning and memory. The deficit was rescued by low-dose nicotine exposure. Electrophysiological studies demonstrated that hypersensitive α2 nAChRs potentiate acetylcholine-induced ion channel flux in oocytes and acute nicotine-induced facilitation of dorsal/intermediate CA1 hippocampal long-term potentiation in Chrna2L9′S/L9′S mice. Adolescent male mice null for the α2 nAChR subunit exhibited a baseline deficit in learning that was not reversed by an acute dose of nicotine. These effects were not influenced by locomotor, sensory or anxiety-related measures. Our results demonstrated that α2* nAChRs influenced hippocampus-dependent learning and memory, as well as nicotine-facilitated CA1 hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Shahrdad Lotfipour
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Celina Mojica
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92612, USA
| | - Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, CONICET, Buenos Aires, C1428ADN, Argentina
| | - Sarah Silverstein
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Jesse Cushman
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | - Andrew Poulos
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, CONICET, Buenos Aires, C1428ADN, Argentina
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92612, USA
| | - Michael S Fanselow
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Jim Boulter
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
12
|
The Neuroprotective Effects of Carvacrol on Ethanol-Induced Hippocampal Neurons Impairment via the Antioxidative and Antiapoptotic Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4079425. [PMID: 28191274 PMCID: PMC5278232 DOI: 10.1155/2017/4079425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 02/03/2023]
Abstract
Chronic alcohol consumption causes hippocampal neuronal impairment, which is associated with oxidative stress and apoptosis. Carvacrol is a major monoterpenic phenol found in essential oils from the family Labiatae and has antioxidative stress and antiapoptosis actions. However, the protective effects of carvacrol in ethanol-induced hippocampal neuronal impairment have not been fully understood. We explored the neuroprotective effects of carvacrol in vivo and in vitro. Male C57BL/6 mice were exposed to 35% ethanol for 4 weeks to establish ethanol model in vivo, and hippocampal neuron injury was simulated by 200 mM ethanol in vitro. Morris water maze test was performed to evaluate the cognitive dysfunction. The oxidative stress injury of hippocampal neurons was evaluated by measuring the levels of oxidative stress biomarkers. Histopathological examinations and western blot were performed to evaluate the apoptosis of neurons. The results showed that carvacrol attenuates the cognitive dysfunction, oxidative stress, and apoptosis of the mice treated with ethanol and decreases hippocampal neurons apoptosis induced by ethanol in vitro. In addition, western blot analysis revealed that carvacrol modulates the protein expression of Bcl-2, Bax, caspase-3, and p-ERK, without influence of p-JNK and p-p38. Our results suggest that carvacrol alleviates ethanol-mediated hippocampal neuronal impairment by antioxidative and antiapoptotic effects.
Collapse
|
13
|
Johansson M, Strömberg J, Ragagnin G, Doverskog M, Bäckström T. GABAA receptor modulating steroid antagonists (GAMSA) are functional in vivo. J Steroid Biochem Mol Biol 2016; 160:98-105. [PMID: 26523675 DOI: 10.1016/j.jsbmb.2015.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 12/18/2022]
Abstract
GABAA receptor modulating steroid antagonists (GAMSA) selectively inhibit neurosteroid-mediated enhancement of GABA-evoked currents at the GABAA receptor. 3α-hydroxy-neurosteroids, notably allopregnanolone and tetrahydrodeoxycorticosterone (THDOC), potentiate GABAA receptor-mediated currents. On the contrary, various 3β-hydroxy-steroids antagonize this positive neurosteroid-mediated modulation. Importantly, GAMSAs are specific antagonists of the positive neurosteroid-modulation of the receptor and do not inhibit GABA-evoked currents. Allopregnanolone and THDOC have both negative and positive actions. Allopregnanolone can impair encoding/consolidation and retrieval of memories. Chronic administration of a physiological allopregnanolone concentration reduces cognition in mice models of Alzheimer's disease. In humans an allopregnanolone challenge impairs episodic memory and in hepatic encephalopathy cognitive deficits are accompanied by increased brain ammonia and allopregnanolone. Hippocampal slices react in vitro to ammonia by allopregnanolone synthesis in CA1 neurons, which blocks long-term potentiation (LTP). Thus, allopregnanolone may impair learning and memory by interfering with hippocampal LTP. Contrary, pharmacological treatment with allopregnanolone can promote neurogenesis and positively influence learning and memory of trace eye-blink conditioning in mice. In rat the GAMSA UC1011 inhibits an allopregnanolone-induced learning impairment and the GAMSA GR3027 restores learning and motor coordination in rats with hepatic encephalopathy. In addition, the GAMSA isoallopregnanolone antagonizes allopregnanolone-induced anesthesia in rats, and in humans it antagonizes allopregnanolone-induced sedation and reductions in saccadic eye velocity. 17PA is also an effective GAMSA in vivo, as it antagonizes allopregnanolone-induced anesthesia and spinal analgesia in rats. In vitro the allopregnanolone/THDOC-increased GABA-mediated GABAA receptor activity is antagonized by isoallopregnanolone, UC1011, GR3027 and 17PA, while the effect of GABA itself is not affected.
Collapse
Affiliation(s)
- Maja Johansson
- Umeå Neurosteroid research center, Obstetrics and Gynecology, Clinical Sciences at Umeå University, Building 6M, 4th floor at NUS, SE-901 85 Umeå, Sweden; Umecrine Cognition AB, Sweden.
| | - Jessica Strömberg
- Umeå Neurosteroid research center, Obstetrics and Gynecology, Clinical Sciences at Umeå University, Building 6M, 4th floor at NUS, SE-901 85 Umeå, Sweden
| | - Gianna Ragagnin
- Umeå Neurosteroid research center, Obstetrics and Gynecology, Clinical Sciences at Umeå University, Building 6M, 4th floor at NUS, SE-901 85 Umeå, Sweden
| | | | - Torbjörn Bäckström
- Umeå Neurosteroid research center, Obstetrics and Gynecology, Clinical Sciences at Umeå University, Building 6M, 4th floor at NUS, SE-901 85 Umeå, Sweden
| |
Collapse
|
14
|
Ondo W. Essential Tremor: What We Can Learn from Current Pharmacotherapy. Tremor Other Hyperkinet Mov (N Y) 2016; 6:356. [PMID: 26989572 PMCID: PMC4790207 DOI: 10.7916/d8k35tc3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/17/2015] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. METHODS We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. RESULTS Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. DISCUSSION To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.
Collapse
Affiliation(s)
- William Ondo
- Methodist Neurological Institute, Houston, TX, USA
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Zwierzyńska E, Krupa A, Pietrzak B. A pharmaco-EEG study of the interaction between ethanol and retigabine in rabbits. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 41:153-60. [DOI: 10.3109/00952990.2014.987349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ewa Zwierzyńska
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Agata Krupa
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Bogusława Pietrzak
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
16
|
Petitto JM, Cushman JD, Huang Z. Effects of Brain-Derived IL-2 Deficiency and the Development of Autoimmunity on Spatial Learning and Fear Conditioning. ACTA ACUST UNITED AC 2015; 3:196. [PMID: 25961067 PMCID: PMC4423554 DOI: 10.4172/2329-6895.1000196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin-2 (IL-2) has been implicated in neurological disorders including multiple sclerosis and Alzheimer’s disease. Peripheral IL-2 deficiency in gene-deleted mice results in T cell mediated autoimmunity that begins to develop slowly after weaning and progressively increases through adulthood. Loss of brain-derived IL-2 results in neurobiological and behavioral abnormalities, and may contribute to the development of CNS autoimmunity by modifying the neuroimmunological milieu of the brain. We have shown previously that IL-2 knockout (KO) mice have altered learning acquisition in the Morris water-maze. Hypothesizing that the learning acquisition deficits in IL-2KO would be associated largely with the loss of brain-derived IL-2, the present study sought to determine if these cognitive alterations are due to the loss the IL-2 gene in the brain and/or autoimmunity resulting from loss of the gene in the peripheral immune system. We found that SCID congenic mice (mice free of IL-2 deficiency induced peripheral autoimmunity) without brain IL-2 (two IL-2KO alleles) did not differ from SCID congenic mice with normal brain IL-2 (two WT IL-2 alleles); thus, contrary to our hypothesis, loss of brain-derived IL-2 did not affect learning acquisition in the water-maze. Compared to adult WT littermates (9 weeks), adult IL-2KO mice with autoimmunity exhibited alterations in learning acquisition in the Morris water-maze whereas younger pre-autoimmune IL-2KO mice (5 weeks) had performance comparable to younger WT littermates, suggesting that the water-maze learning deficits in IL-2KO mice were associated with the development of peripheral autoimmunity. As IL-2KO mice have cytoarchitectural alterations in the dentate gyrus, circuitry involved in the differentiation of contexts (versus places), we also compared IL-2KO mice and littermates in a contextual fear discrimination paradigm. IL-2KO mice were found to have reduced conditioned fear discrimination that was not related to age-associated autoimmunity. Together, these findings suggest that complex interactions between IL-2 deficiency in the brain and immune system may modify brain processes involved in different modalities of learning and memory.
Collapse
Affiliation(s)
- John M Petitto
- Department of Psychiatry and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville FL, USA
| | - Jesse D Cushman
- Department of Psychiatry and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville FL, USA
| | - Zhi Huang
- Department of Psychiatry and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville FL, USA
| |
Collapse
|
17
|
Rabinowitz A, Cohen SJ, Finn DA, Stackman RW. The neurosteroid allopregnanolone impairs object memory and contextual fear memory in male C57BL/6J mice. Horm Behav 2014; 66:238-46. [PMID: 24874172 DOI: 10.1016/j.yhbeh.2014.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 12/16/2022]
Abstract
Allopregnanolone (ALLO, or 3α-hydroxy-5α-pregnan-20-one) is a steroid metabolite of progesterone and a potent endogenous positive allosteric modulator of GABA-A receptors. Systemic ALLO has been reported to impair spatial, but not nonspatial learning in the Morris water maze (MWM) and contextual memory in rodents. These cognitive effects suggest an influence of ALLO on hippocampal-dependent memory, although the specific nature of the neurosteroid's effects on learning, memory or performance is unclear. The present studies aimed to determine: (i) the memory process(es) affected by systemic ALLO using a nonspatial object memory task; and (ii) whether ALLO affects object memory via an influence within the dorsal hippocampus. Male C57BL/6J mice received systemic ALLO either before or immediately after the sample session of a novel object recognition (NOR) task. Results demonstrated that systemic ALLO impaired the encoding and consolidation of object memory. A subsequent study revealed that bilateral microinfusion of ALLO into the CA1 region of dorsal hippocampus immediately following the NOR sample session also impaired object memory consolidation. In light of debate over the hippocampal-dependence of object recognition memory, we also tested systemic ALLO-treated mice on a contextual and cued fear-conditioning task. Systemic ALLO impaired the encoding of contextual memory when administered prior to the context pre-exposure session. Together, these results indicate that ALLO exhibits primary effects on memory encoding and consolidation, and extend previous findings by demonstrating a sensitivity of nonspatial memory to ALLO, likely by disrupting dorsal hippocampal function.
Collapse
Affiliation(s)
- Akiva Rabinowitz
- Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Sarah J Cohen
- Center for Complex Systems & Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Veterans Affairs Medical Center, Portland Alcohol Research Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239, USA
| | - Robert W Stackman
- Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA; Center for Complex Systems & Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA.
| |
Collapse
|
18
|
Cushman JD, Moore MD, Olsen RW, Fanselow MS. The role of the δ GABA(A) receptor in ovarian cycle-linked changes in hippocampus-dependent learning and memory. Neurochem Res 2014; 39:1140-6. [PMID: 24667980 DOI: 10.1007/s11064-014-1282-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 02/04/2023]
Abstract
The δ subunit of the GABAAR is highly expressed in the dentate gyrus of the hippocampus where it mediates a tonic extrasynaptic inhibitory current that is sensitive to neurosteroids. In female mice, the expression level of the δ subunit within the dentate gyrus is elevated in the diestrous relative to estrous phase of the estrous cycle. Previous work in our lab found that female δ-GABAAR KO mice showed enhanced hippocampus-dependent trace but normal hippocampus-independent delay fear conditioning. Wild-type females in this study showed a wide range of freezing levels, whereas δ-GABAAR KO mice expressed only high levels of fear. We hypothesized that the variability in the wild-type mice may have been due to estrous cycle-mediated changes in the expression of the δ-GABAAR, with low levels of freezing in mice that were in the diestrous phase when dentate gyrus tonic inhibition is high. In the present study we tested this hypothesis by utilizing contextual, delay, and trace fear conditioning protocols in mice that were trained and tested in either the diestrous or estrous phases. Consistent with our hypothesis, we found a significant impairment of hippocampus-dependent learning and memory during diestrus relative to estrus in wild-type mice and this impairment was absent in δ-GABAAR mice. These findings argue that the δ-GABAAR plays an important role in estrous cycle-mediated fluctuations in hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Jesse D Cushman
- Department of Psychology, Brain Research Institute, University of California Los Angeles, 8578 Franz Hall, Los Angeles, CA, 90095-1563, USA,
| | | | | | | |
Collapse
|
19
|
Abstract
In this experiment we present a technique to measure learning and memory. In the trace fear conditioning protocol presented here there are five pairings between a neutral stimulus and an unconditioned stimulus. There is a 20 sec trace period that separates each conditioning trial. On the following day freezing is measured during presentation of the conditioned stimulus (CS) and trace period. On the third day there is an 8 min test to measure contextual memory. The representative results are from mice that were presented with the aversive unconditioned stimulus (shock) compared to mice that received the tone presentations without the unconditioned stimulus. Trace fear conditioning has been successfully used to detect subtle learning and memory deficits and enhancements in mice that are not found with other fear conditioning methods. This type of fear conditioning is believed to be dependent upon connections between the medial prefrontal cortex and the hippocampus. One current controversy is whether this method is believed to be amygdala-independent. Therefore, other fear conditioning testing is needed to examine amygdala-dependent learning and memory effects, such as through the delay fear conditioning.
Collapse
Affiliation(s)
- Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University; Institute of Biomedical Studies, Baylor University;
| | | | - Andrew J Holley
- Department of Psychology and Neuroscience, Baylor University
| |
Collapse
|
20
|
Iyer SV, Chandra D, Homanics GE. GABAA-R α4 subunits are required for the low dose locomotor stimulatory effect of alphaxalone, but not for several other behavioral responses to alphaxalone, etomidate or propofol. Neurochem Res 2013; 39:1048-56. [PMID: 24062179 DOI: 10.1007/s11064-013-1148-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAA-Rs) are considered to be the primary molecular targets of injectable anesthetics such as propofol, etomidate and the neurosteriod, alphaxalone. A number of studies have sought to understand the specific GABAA-R subtypes involved in the mechanism of action of these three drugs. Here, we investigated the role of α4-subunit containing GABAA-Rs in the neurobehavioral responses to these drugs. Drug responses in α4 subunit knockout (KO) mice were compared to wild type (WT) littermate controls. While etomidate and propofol are currently used as injectable anesthetics, alphaxalone belongs to the class of neurosteroid drugs having anesthetic effects. Low dose effects of etomidate and alphaxalone were studied using an open field assay. The moderate and high dose effects of all three anesthetics were measured using the rotarod and loss of righting reflex assays, respectively. The locomotor stimulatory effect of alphaxalone was reduced significantly in α4 KO mice compared to WT controls. Neither the low dose sedating effect of etomidate, nor the moderate/high dose effect of any of the drugs differed between genotypes. These results suggest that α4 subunit-containing GABAA-Rs are required for the low dose, locomotor stimulatory effect of alphaxalone but are not required for the sedating effect of etomidate or the moderate/high dose effects of etomidate, propofol or alphaxalone on motor ataxia and loss of righting reflex.
Collapse
Affiliation(s)
- Sangeetha V Iyer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
21
|
Whissell PD, Eng D, Lecker I, Martin LJ, Wang DS, Orser BA. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus. Front Neural Circuits 2013; 7:146. [PMID: 24062648 PMCID: PMC3775149 DOI: 10.3389/fncir.2013.00146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/29/2013] [Indexed: 12/03/2022] Open
Abstract
Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.
Collapse
Affiliation(s)
- Paul D Whissell
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Whissell PD, Rosenzweig S, Lecker I, Wang DS, Wojtowicz JM, Orser BA. γ-aminobutyric acid type A receptors that contain the δ subunit promote memory and neurogenesis in the dentate gyrus. Ann Neurol 2013; 74:611-21. [PMID: 23686887 DOI: 10.1002/ana.23941] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Extrasynaptic γ-aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are highly expressed in the dentate gyrus (DG) subfield of the hippocampus, where they generate a tonic conductance that regulates neuronal activity. GABAA receptor-dependent signaling regulates memory and also facilitates postnatal neurogenesis in the adult DG; however, the role of the δGABAA receptors in these processes is unclear. Accordingly, we sought to determine whether δGABAA receptors regulate memory behaviors, as well as neurogenesis in the DG. METHODS Memory and neurogenesis were studied in wild-type (WT) mice and transgenic mice that lacked δGABAA receptors (Gabrd(-/-)). To pharmacologically increase δGABAA receptor activity, mice were treated with the δGABAA receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP). Behavioral assays including recognition memory, contextual discrimination, and fear extinction were used. Neurogenesis was studied by measuring the proliferation, survival, migration, maturation, and dendritic complexity of adult-born neurons in the DG. RESULTS Gabrd(-/-) mice exhibited impaired recognition memory and contextual discrimination relative to WT mice. Fear extinction was also impaired in Gabrd(-/-) mice, although the acquisition of fear memory was enhanced. Neurogenesis was disrupted in Gabrd(-/-) mice as the migration, maturation, and dendritic development of adult-born neurons were impaired. Long-term treatment with THIP facilitated learning and neurogenesis in WT but not Gabrd(-/-) mice. INTERPRETATION δGABAA receptors promote the performance of certain DG-dependent memory behaviors and facilitate neurogenesis. Furthermore, δGABAA receptors can be pharmacologically targeted to enhance these processes.
Collapse
Affiliation(s)
- Paul D Whissell
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|