1
|
Phan C, Kurach J, Foxcroft M, Xu D, Olafson C, Clarke G, Acker JP. Modification of deglycerolization procedure improves processing and post-thaw quality of cryopreserved sickle trait red cell concentrates. Cryobiology 2024; 115:104903. [PMID: 38734363 DOI: 10.1016/j.cryobiol.2024.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Red blood cell (RBC) transfusion is a critical therapy for those with sickle cell disease (SCD). Alloimmunization is frequent for those with SCD and may limit the availability of matched RBC. Cryopreserved RBCs, from family members or donors with a similar RBC antigen profile could provide a viable alternative to avoid further alloimmunization and prevent hemolytic transfusion-related events. However, cryopreserved SCD and Sickle Cell trait (S-trait) donor RBC units suffer from reduced recovery following deglycerolization. This study proposes and tests a modified deglycerolization protocol using an automated cell processor to mitigate RBC loss. Six red cell concentrates (RCC) from donors with S-trait and six control RCCs were glycerolized, frozen (<-65 °C) and deglycerolized on the ACP 215 using modified parameters (decreased hypertonic solution flow rate (100 mL/min) and hypertonic equilibration delay (120 s), and increased NaCl dilution volumes (500 mL). Quality testing included: hematocrit (HCT), hemolysis, indices, extracellular potassium, morphology, osmotic fragility, osmotic gradient ektacytometry, hemoglobin (HGB), and recovery. Canadian standards (CS) indicate that acceptable deglycerolized units for transfusion require a HCT ≤0.80 L/L, HGB ≥35 g/unit, and hemolysis <0.8 % in 90 % of units tested. No significant differences in HGB or RBC recovery were observed between study groups. Significant differences between study groups were identified in osmotic fragility and osmotic gradient ektacytometry parameters. Of the 6 S-trait RCCs, 3/6 units were within the HCT, HGB and hemolysis thresholds set by the CS. The modified deglycerolization protocol provides a path for the routine cryopreservation of S-trait RBCs.
Collapse
Affiliation(s)
- Celina Phan
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | - Jayme Kurach
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | - Megan Foxcroft
- Department of Biological Sciences, MacEwan University, Edmonton, Alberta, Canada.
| | - Daisy Xu
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | - Carly Olafson
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada.
| | - Gwen Clarke
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | - Jason P Acker
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Bizjak DA, Grolle A, Urena JAN, Bloch W, Deitenbeck R, Grau M. Monitoring of RBC rheology after cryopreservation to detect autologous blood doping in vivo? A pilot study. Clin Hemorheol Microcirc 2020; 76:367-379. [PMID: 32675400 DOI: 10.3233/ch-200887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND: Autologous blood doping (ABD) is applied to improve performance capacity. ABD includes blood donation, red blood cell (RBC) storage at –80°C and re-infusion prior to or during competition. ABD is not directly detectable with current detection techniques. OBJECTIVE: Since cryopreservation is known to affect RBC physiology in vitro, the aim of the study was to examine whether these alterations are detectable in vivo. METHODS: Blood from six healthy male donors was transferred into conventional blood bags, cryopreserved, stored for 18 weeks at –80°C and re-infused with a RBC volume corresponding to ∼4% of total blood volume into respective donor. RBC physiology parameters were measured before blood donation/re-infusion, and 0/1/2/6/24/48/72 h and 1 w post re-infusion. RESULTS: RBC parameters and age markers were unaffected during intervention. RBC deformability increased from pre-blood-sampling to pre-re-infusion while deformability and viscosity values remained unaltered post re-infusion. RBC nitric oxide associated analytes, metabolic parameters and electrolyte concentrations remained unaffected. CONCLUSIONS: The data of this pilot study indicate that the increase in RBC deformability might be related to neoformation of RBC after blood donation. The lack of changes in tested parameters might be related to the low re-infused RBC volume which might explain differences to in vitro results.
Collapse
Affiliation(s)
- Daniel A. Bizjak
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Andreas Grolle
- German Red Cross Blood Donation Service West, Hagen, Germany
| | | | - Wilhelm Bloch
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | | | - Marijke Grau
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| |
Collapse
|
3
|
|
4
|
Reddy PR, Kumar BR, Prasad C, Venkataseshiah C, Hyder I. Erythrocyte fragility based assessment of true thermal resilience in tropical small ruminants. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1629087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - B. Rajeev Kumar
- Department of Veterinary Physiology, NTR CVSc, Gannavaram, India
| | | | | | - Iqbal Hyder
- Department of Veterinary Physiology, NTR CVSc, Gannavaram, India
| |
Collapse
|
5
|
Rogers SC, Dosier LB, McMahon TJ, Zhu H, Timm D, Zhang H, Herbert J, Atallah J, Palmer GM, Cook A, Ernst M, Prakash J, Terng M, Towfighi P, Doctor R, Said A, Joens MS, Fitzpatrick JAJ, Hanna G, Lin X, Reisz JA, Nemkov T, D’Alessandro A, Doctor A. Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. PLoS One 2018; 13:e0209201. [PMID: 30576340 PMCID: PMC6303082 DOI: 10.1371/journal.pone.0209201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/01/2018] [Indexed: 12/20/2022] Open
Abstract
Intact red blood cells (RBCs) are required for phenotypic analyses. In order to allow separation (time and location) between subject encounter and sample analysis, we developed a research-specific RBC cryopreservation protocol and assessed its impact on data fidelity for key biochemical and physiological assays. RBCs drawn from healthy volunteers were aliquotted for immediate analysis or following glycerol-based cryopreservation, thawing, and deglycerolization. RBC phenotype was assessed by (1) scanning electron microscopy (SEM) imaging and standard morphometric RBC indices, (2) osmotic fragility, (3) deformability, (4) endothelial adhesion, (5) oxygen (O2) affinity, (6) ability to regulate hypoxic vasodilation, (7) nitric oxide (NO) content, (8) metabolomic phenotyping (at steady state, tracing with [1,2,3-13C3]glucose ± oxidative challenge with superoxide thermal source; SOTS-1), as well as in vivo quantification (following human to mouse RBC xenotransfusion) of (9) blood oxygenation content mapping and flow dynamics (velocity and adhesion). Our revised glycerolization protocol (40% v/v final) resulted in >98.5% RBC recovery following freezing (-80°C) and thawing (37°C), with no difference compared to the standard reported method (40% w/v final). Full deglycerolization (>99.9% glycerol removal) of 40% v/v final samples resulted in total cumulative lysis of ~8%, compared to ~12-15% with the standard method. The post cryopreservation/deglycerolization RBC phenotype was indistinguishable from that for fresh RBCs with regard to physical RBC parameters (morphology, volume, and density), osmotic fragility, deformability, endothelial adhesivity, O2 affinity, vasoregulation, metabolomics, and flow dynamics. These results indicate that RBC cryopreservation/deglycerolization in 40% v/v glycerol final does not significantly impact RBC phenotype (compared to fresh cells).
Collapse
Affiliation(s)
- Stephen C. Rogers
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Laura B. Dosier
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States of America
| | - Timothy J. McMahon
- Department Medicine, Duke University School of Medicine, Durham, NC, United States of America
- Departments of Medicine, Durham VA Medical Center, Durham, NC, United States of America
| | - Hongmei Zhu
- Department Medicine, Duke University School of Medicine, Durham, NC, United States of America
- Departments of Medicine, Durham VA Medical Center, Durham, NC, United States of America
| | - David Timm
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Hengtao Zhang
- Department of Radiation Oncology, Duke Univ. School of Medicine, Durham, NC, United States of America
| | - Joseph Herbert
- Department of Radiation Oncology, Duke Univ. School of Medicine, Durham, NC, United States of America
| | - Jacqueline Atallah
- Department Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - Gregory M. Palmer
- Department of Radiation Oncology, Duke Univ. School of Medicine, Durham, NC, United States of America
| | - Asa Cook
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Melanie Ernst
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Jaya Prakash
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Mark Terng
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Parhom Towfighi
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Reid Doctor
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Ahmed Said
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Matthew S. Joens
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - James A. J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
- Departments of Neuroscience and Cell Biology & Physiology, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Gabi Hanna
- Department of Radiation Oncology, Duke Univ. School of Medicine, Durham, NC, United States of America
| | - Xue Lin
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| | - Julie A. Reisz
- Department of Biochemistry, University of Colorado Denver—Aurora, CO, United States of America
| | - Travis Nemkov
- Department of Biochemistry, University of Colorado Denver—Aurora, CO, United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry, University of Colorado Denver—Aurora, CO, United States of America
| | - Allan Doctor
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University in Saint Louis, School of Medicine, Saint Louis, MO, United States of America
| |
Collapse
|
6
|
Bizjak DA, Jungen P, Bloch W, Grau M. Cryopreservation of red blood cells: Effect on rheologic properties and associated metabolic and nitric oxide related parameters. Cryobiology 2018; 84:59-68. [DOI: 10.1016/j.cryobiol.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
|
7
|
Taghizadeh RR, Cetrulo KJ, Cetrulo CL. Collagenase Impacts the Quantity and Quality of Native Mesenchymal Stem/Stromal Cells Derived during Processing of Umbilical Cord Tissue. Cell Transplant 2018. [PMID: 29562771 DOI: 10.1177/0963689717744787.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymes are commonly used as a biochemical means to liberate cells from a host of tissues for use in in vitro studies and/or in vivo transplantations. However, very little understanding exists of the biological and functional effects that enzymes have on cells during the process of releasing the native cells from a given tissue. One specific reason for this is that no technology has existed as a nonenzymatic control to compare baseline biology and function for a given processed tissue. We have developed a sterile, onetime use, disposable system (referred to as the AuxoCell Processing System or AC:Px®) that allows for processing of solid tissue in a closed, standardized system using mechanical means to liberate cells without the need and/or use of any biochemical, enzymatic digestion. In this report, for the first time, we directly compare the cellular outputs derived from processing the same umbilical cord tissue (UCT) in the presence and absence of collagenase. In the presence of collagenase, we observed on average, approximately a 2.7-fold reduction in native mesenchymal stem/stromal cell (MSC) yields and a reduction in MSC-specific markers CD90, CD29, CD105, CD73, CD44, CD36, CD49b, CD49a, CD146, CD295, and CD166 and in endothelial marker CD31. These data directly exhibit that the use of collagenase to process UCT to release cells impacts cell recovery with respect to number and cell surface marker expression and, hence, could affect the in vivo function of the recovered native cellular population.
Collapse
|
8
|
Taghizadeh RR, Cetrulo KJ, Cetrulo CL. Collagenase Impacts the Quantity and Quality of Native Mesenchymal Stem/Stromal Cells Derived during Processing of Umbilical Cord Tissue. Cell Transplant 2018; 27:181-193. [PMID: 29562771 PMCID: PMC6434486 DOI: 10.1177/0963689717744787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/15/2022] Open
Abstract
Enzymes are commonly used as a biochemical means to liberate cells from a host of tissues for use in in vitro studies and/or in vivo transplantations. However, very little understanding exists of the biological and functional effects that enzymes have on cells during the process of releasing the native cells from a given tissue. One specific reason for this is that no technology has existed as a nonenzymatic control to compare baseline biology and function for a given processed tissue. We have developed a sterile, onetime use, disposable system (referred to as the AuxoCell Processing System or AC:Px®) that allows for processing of solid tissue in a closed, standardized system using mechanical means to liberate cells without the need and/or use of any biochemical, enzymatic digestion. In this report, for the first time, we directly compare the cellular outputs derived from processing the same umbilical cord tissue (UCT) in the presence and absence of collagenase. In the presence of collagenase, we observed on average, approximately a 2.7-fold reduction in native mesenchymal stem/stromal cell (MSC) yields and a reduction in MSC-specific markers CD90, CD29, CD105, CD73, CD44, CD36, CD49b, CD49a, CD146, CD295, and CD166 and in endothelial marker CD31. These data directly exhibit that the use of collagenase to process UCT to release cells impacts cell recovery with respect to number and cell surface marker expression and, hence, could affect the in vivo function of the recovered native cellular population.
Collapse
|
9
|
Alshalani A, Acker JP. Red blood cell membrane water permeability increases with length of ex vivo storage. Cryobiology 2017; 76:51-58. [PMID: 28456565 DOI: 10.1016/j.cryobiol.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
Abstract
Water transport across the red blood cell (RBC) membrane is an essential cell function that needs to be preserved during ex vivo storage. Progressive biochemical depletion during storage can result in significant conformational and compositional changes to the membrane. Characterizing the changes to RBC water permeability can help in evaluating the quality of stored blood products and aid in the development of improved methods for the cryopreservation of red blood cells. This study aimed to characterize the water permeability (Lp), osmotically inactive fraction (b), and Arrhenius activation energy (Ea) at defined storage time-points throughout storage and to correlate the observed results with other in vitro RBC quality parameters. RBCs were collected from age- and sex-matched blood donors. A stopped flow spectrophotometer was used to determine Lp and b by monitoring changes in hemoglobin autofluorescence when RBCs were exposed to anisotonic solutions. Experimental values of Lp were characterized at three different temperatures (4, 20 and 37 °C) to determine the Ea. Results showed that Lp, b, and Ea of stored RBCs significantly increase by day 21 of storage. Degradation of the RBC membrane with length of storage was seen as an increase in hemolysis and supernatant potassium, and a decrease in deformability, mean corpuscular hemoglobin concentration and supernatant sodium. RBC osmotic characteristics were shown to change with storage and correlate with changes in RBC membrane quality metrics. Monitoring water parameters is a predictor of membrane damage and loss of membrane integrity in ex vivo stored RBCs.
Collapse
Affiliation(s)
- Abdulrahman Alshalani
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Lelkens CCM, Lagerberg JWM, de Korte D. The effect of prefreeze rejuvenation on postthaw storage of red blood cells in AS-3 and SAGM. Transfusion 2017; 57:1448-1458. [PMID: 28369966 DOI: 10.1111/trf.14093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND We investigated whether improving the metabolic status of red blood cell concentrates before freezing could extend the postthaw shelf life beyond 14 days while still meeting the requirements for hemolysis (0.8%) and total adenylate (>82% of original values). STUDY DESIGN AND METHODS At Day 8 after collection, four leukoreduced red blood cell concentrates in saline-adenine-glucose-mannitol (SAGM) were pooled, mixed, and split (n = 4). Of these concentrates, two were rejuvenated in Rejuvesol. In addition, two leukoreduced red blood cell concentrates in phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM) were pooled, mixed, and split at Day 8 after collection (n = 4). All concentrates were glycerolized, frozen, and stored for at least 2 weeks at -80°C. After thawing and deglycerolization, from each pair, one red blood cell concentrate was resuspended in SAGM, and one was suspended in AS-3. During postthaw storage at 2 to 6°C for 35 days, all concentrates were sampled weekly and analyzed for hematologic, metabolic, and morphologic parameters. RESULTS Both Rejuvesol and PAGGGM treatment produced increased adenosine triphosphate and total adenylate and 2,3-diphosphoglycerate levels compared with untreated red blood cell concentrates. Regardless of prefreeze Rejuvesol or PAGGGM treatment, postthaw hemolysis remained below 0.8% during 7 days in SAGM and during 35 days in AS-3. At Day 35 of postthaw storage in AS-3, total adenylate in nonrejuvenated red blood cell concentrates had decreased to 72% of the original values; whereas, in prefreeze Rejuvesol-treated and PAGGGM-treated concentrates, adenylate values were still were at 101% and 98%, respectively. CONCLUSION Based on maximum allowable hemolysis of 0.8% and total adenylate content greater than 82% of the original value, thawed, prefreeze Rejuvesol-treated or PAGGGM-treated red blood cell concentrates can be stored for 35 days at 2 to 6ºC in AS-3.
Collapse
Affiliation(s)
- Charles C M Lelkens
- Department of Blood Cell Research, Sanquin Research.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam
| | - Johan W M Lagerberg
- Landsteiner Laboratory, Academic Medical Center, University of Amsterdam.,Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Dirk de Korte
- Landsteiner Laboratory, Academic Medical Center, University of Amsterdam.,Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Chagas MAB, Chaves DG, Haddad SK, Ubiali EMA, Schmidt LC, Silva-Malta MCF. Effect of red blood cell preservation by droplet freezing with non-permeable cryoprotective agents in blood group antigen reactivity. Transfus Med 2017; 27:142-146. [DOI: 10.1111/tme.12385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 11/27/2022]
Affiliation(s)
- M. A. B. Chagas
- Fundação Centro de Hematologia e Hemoterapia de Minas Gerais - Hemominas; Belo Horizonte MG Brazil
| | - D. G. Chaves
- Fundação Centro de Hematologia e Hemoterapia de Minas Gerais - Hemominas; Belo Horizonte MG Brazil
| | - S. K. Haddad
- Centro Regional de Hemoterapia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Hemocentro de Ribeirão Preto; Ribeirão Preto SP Brazil
| | - E. M. A. Ubiali
- Centro Regional de Hemoterapia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Hemocentro de Ribeirão Preto; Ribeirão Preto SP Brazil
| | - L. C. Schmidt
- Fundação Centro de Hematologia e Hemoterapia de Minas Gerais - Hemominas; Belo Horizonte MG Brazil
| | - M. C. F. Silva-Malta
- Fundação Centro de Hematologia e Hemoterapia de Minas Gerais - Hemominas; Belo Horizonte MG Brazil
| |
Collapse
|
12
|
Winter KM, Johnson L, Webb RG, Marks DC. Gamma-irradiation of deglycerolized red cells does not significantly affect in vitro quality. Vox Sang 2015; 109:231-8. [PMID: 25953334 DOI: 10.1111/vox.12282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/11/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Red cells frozen with glycerol may require gamma-irradiation after thawing and deglycerolization for transfusion to at-risk patients. Both freezing and irradiation are known to cause red cell damage. However, the effect of irradiation on the quality of deglycerolized red cells and the optimal shelf life of such a component is currently unknown. MATERIALS AND METHODS Red cells (<7 days) were pooled, split and glycerolized using an ACP-215 automated cell washer (n = 12 pairs) and frozen at -80°C. Red cells were thawed, deglycerolized and resuspended in SAG-M. One of each pair was gamma-irradiated, while the other served as a control. Products were stored at 2-6°C and sampled for in vitro testing immediately after irradiation, and at 24 and 48 h postirradiation. RESULTS Irradiation of deglycerolized red cells led to a >1·5-fold increase in extracellular potassium, compared to control units at 24 and 48 h postirradiation. Other parameters, including haemolysis, were not significantly affected by irradiation postdeglycerolization. CONCLUSION Deglycerolized, irradiated red cells had increased supernatant potassium, but remained of acceptable quality for 24 h postirradiation.
Collapse
Affiliation(s)
- K M Winter
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - L Johnson
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - R G Webb
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - D C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| |
Collapse
|
13
|
Letter: the need for a definitive clinical trial of cryopreserved red blood cells. J Trauma Acute Care Surg 2015; 77:1004. [PMID: 25423546 DOI: 10.1097/ta.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Henkelman S, Noorman F, Badloe JF, Lagerberg JWM. Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang 2014; 108:103-12. [PMID: 25471135 DOI: 10.1111/vox.12218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023]
Abstract
Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular deterioration at subzero temperatures, its usage have been hampered due to the more complex and labour intensive procedure and the limited shelf life of thawed products. Since the FDA approval of a closed (de) glycerolization procedure in 2002, allowing a prolonged postthaw storage of red blood cells up to 21 days at 2-6°C, cryopreserved red blood cells have become a more utilized blood product. Currently, cryopreserved red blood cells are mainly used in military operations and to stock red blood cells with rare phenotypes. Yet, cryopreserved red blood cells could also be useful to replenish temporary blood shortages, to prolong storage time before autologous transfusion and for IgA-deficient patients. This review describes the main methods to cryopreserve red blood cells, explores the quality of this blood product and highlights clinical settings in which cryopreserved red blood cells are or could be utilized.
Collapse
Affiliation(s)
- S Henkelman
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
15
|
|
16
|
Assal RE, Guven S, Gurkan UA, Gozen I, Shafiee H, Dalbeyber S, Abdalla N, Thomas G, Fuld W, Illigens BM, Estanislau J, Khoory J, Kaufman R, Zylberberg C, Lindeman N, Wen Q, Ghiran I, Demirci U. Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5815-22. [PMID: 25047246 PMCID: PMC4161503 DOI: 10.1002/adma.201400941] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/12/2014] [Indexed: 05/15/2023]
Abstract
Current red-blood-cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red-blood-cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bioprinting approach.
Collapse
Affiliation(s)
| | | | - Umut Atakan Gurkan
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division for Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-Massachusetts Institute of Technology (MIT) Health Sciences and Technology, Cambridge, MA, 02139, USA, Case Western Reserve University, Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Department of Orthopedics, Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106 USA
| | - Irep Gozen
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division for Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-Massachusetts Institute of Technology (MIT) Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Hadi Shafiee
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division for Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-Massachusetts Institute of Technology (MIT) Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Sedef Dalbeyber
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division for Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-Massachusetts Institute of Technology (MIT) Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Noor Abdalla
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division for Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-Massachusetts Institute of Technology (MIT) Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Gawain Thomas
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609 USA
| | - Wendy Fuld
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Ben M.W. Illigens
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215 USA
| | - Jessica Estanislau
- Division of Infectious Disease and Allergy-Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115 USA
| | - Joseph Khoory
- Division of Infectious Disease and Allergy-Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115 USA
| | - Richard Kaufman
- Brigham and Women’s Hospital Blood Bank, Division of Adult Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | | | - Neal Lindeman
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609 USA
| | - Ionita Ghiran
- Division of Infectious Disease and Allergy-Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115 USA
| | | |
Collapse
|
17
|
|
18
|
Holley A, Marks DC, Johnson L, Reade MC, Badloe JF, Noorman F. Frozen blood products: clinically effective and potentially ideal for remote Australia. Anaesth Intensive Care 2013; 41:10-9. [PMID: 23362885 DOI: 10.1177/0310057x1304100104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The development of effective cryopreservation techniques for both red blood cells and platelets, which maintain ex vivo biological activity, in combination with frozen plasma, provides for a unique blood banking strategy. This technology greatly enhances the storage life of these products. The rationale and potential advantages of using cryopreservation techniques for the provision of blood products to remote and military environments have been effectively demonstrated in several conflicts over the last decade. Current haemostatic resuscitation doctrine for the exsanguinating patient supports the use of red blood cells, platelets and frozen plasma early in the resuscitation. We believe an integrated fresh-frozen blood bank inventory could facilitate provision of blood products, not only in the military setting but also in regional Australia, by overcoming many logistic and geographical challenges. The processes involved in production and point of care thawing are sufficiently well developed and achievable to make this technology a viable option. The potential limitations of cryopreservation and subsequent product thawing need to be considered if such a strategy is to be developed. A substantial body of international experience using cryopreserved products in remote settings has already been accrued. This experience provides a template for the possible creation of an Australian integrated fresh-frozen blood bank inventory that could conceivably enhance the care of patients in both regional Australia and in the military setting.
Collapse
Affiliation(s)
- A Holley
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Freeze drying (lyophilization) red blood cells. J Trauma Acute Care Surg 2012; 72:1454-5; author reply 1455. [PMID: 22673287 DOI: 10.1097/ta.0b013e3182516a27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Pallotta V, D'Amici GM, D'Alessandro A, Rossetti R, Zolla L. Red blood cell processing for cryopreservation: from fresh blood to deglycerolization. Blood Cells Mol Dis 2012; 48:226-32. [DOI: 10.1016/j.bcmd.2012.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/11/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
21
|
Schmid P, Huvard MJ, Lee-Stroka AH, Lee JY, Byrne KM, Flegel WA. Red blood cell preservation by droplet freezing with polyvinylpyrrolidone or sucrose-dextrose and by bulk freezing with glycerol. Transfusion 2011; 51:2703-8. [PMID: 21790629 DOI: 10.1111/j.1537-2995.2011.03258.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Red blood cell (RBC) preservation is essential to transfusion medicine. Many blood group reference laboratories need a method to preserve rare blood samples for serologic testing at a later date. This study offers a comparison of three common cryoprotective agents and protocols used today: bulk preservation with glycerol and droplet freezing with sucrose-dextrose (S+D) or polyvinylpyrrolidone (PVP). STUDY DESIGN AND METHODS Human blood from 14 volunteers was collected and frozen at set intervals over 2 weeks with PVP, S+D, or glycerol. The frozen RBCs were later thawed and the percentage of surviving RBCs was determined. Detailed protocols and an instructional video are supplied. RESULTS Over a 2-week period, RBCs preserved with glycerol and thawed with a widely used protocol showed a recovery of 41 ± 16% (mean ± standard deviation) while those thawed with a modified glycerol protocol showed a recovery of 76 ± 8%. RBCs preserved by droplet freezing with S+D showed a recovery of 56 ± 11% while those preserved by droplet freezing with PVP showed a recovery of 85 ± 6%. Recovery values were similar with ethylenediaminetetraacetic acid or heparin anticoagulants, differing freezing rates, and varying droplet volumes. CONCLUSION Droplet freezing with PVP offered the greatest recovery. While bulk freezing with glycerol can also be effective, droplet freezing may be a more convenient method overall. It requires less effort to thaw, needs much less storage room, and allows blood group laboratories to be frugal with thawing rare samples.
Collapse
Affiliation(s)
- Pirmin Schmid
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zerimech F, Huyvaert H, Matran R, Nadif R. Usefulness of a new dialysis device adapted to small volume of red blood cells and its interest in epidemiology. Clin Biochem 2011; 44:739-41. [PMID: 21406190 DOI: 10.1016/j.clinbiochem.2011.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/20/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We checked the efficiency of a new dialysis device adapted to small volumes to remove glycerol from cryopreserved red blood cells. DESIGN AND METHODS Dialysis was performed on D-Tube96™ Dialyzer Mini device. In a preliminary trial, we measured the residual glycerol before, and 2, 4 and 24 h after dialysis. Glycerol and hemoglobin concentrations and antioxidant enzymes activities were measured in three samples with or without glycerolization/deglycerolization procedure. The mini dialysis was then applied to 96 samples from the French Epidemiological study on the Genetics and Environment of Asthma. RESULTS Ninety-two percent of glycerol was removed after 24 h of dialysis. Hemoglobin content and activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase were recovered. No significant loss of volume was observed. Results obtained for the 96 samples perfectly fitted with reference values of our laboratory. CONCLUSION This new dialysis method seems to be particularly adapted for processing a large number of samples of RBCs cryoconserved in small volumes from epidemiological studies.
Collapse
Affiliation(s)
- Farid Zerimech
- Laboratoire de Biochimie Biologie Moléculaire, CHRU de Lille, 59037 Lille, France.
| | | | | | | |
Collapse
|