1
|
Wang SS, Meng ZL, Zhang YW, Yan YS, Li LB. Prion protein E219K polymorphism: from the discovery of the KANNO blood group to interventions for human prion disease. Front Neurol 2024; 15:1392984. [PMID: 39050130 PMCID: PMC11266091 DOI: 10.3389/fneur.2024.1392984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
KANNO is a new human blood group that was recently discovered. The KANNO antigen shares the PRNP gene with the prion protein and the prion protein E219K polymorphism determines the presence or absence of the KANNO antigen and the development of anti-KANNO alloantibodies. These alloantibodies specifically react with prion proteins, which serve as substrates for conversion into pathological isoforms in some prion diseases and may serve as effective targets for resisting prion infection. These findings establish a potential link between the KANNO blood group and human prion disease via the prion protein E219K polymorphism. We reviewed the interesting correlation between the human PRNP gene's E219K polymorphism and the prion proteins it expresses, as well as human red blood cell antigens. Based on the immune serological principles of human blood cells, the prion protein E219K polymorphism may serve as a foundation for earlier molecular diagnosis and future drug development for prion diseases.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Li Meng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Wen Zhang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Shuang Yan
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ling-Bo Li
- Aikang MedTech Co., Ltd., Shenzhen, China
| |
Collapse
|
2
|
Kang HE, Bian J, Kane SJ, Kim S, Selwyn V, Crowell J, Bartz JC, Telling GC. Incomplete glycosylation during prion infection unmasks a prion protein epitope that facilitates prion detection and strain discrimination. J Biol Chem 2020; 295:10420-10433. [PMID: 32513872 PMCID: PMC7383396 DOI: 10.1074/jbc.ra120.012796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/31/2020] [Indexed: 11/06/2022] Open
Abstract
The causative factors underlying conformational conversion of cellular prion protein (PrPC) into its infectious counterpart (PrPSc) during prion infection remain undetermined, in part because of a lack of monoclonal antibodies (mAbs) that can distinguish these conformational isoforms. Here we show that the anti-PrP mAb PRC7 recognizes an epitope that is shielded from detection when glycans are attached to Asn-196. We observed that whereas PrPC is predisposed to full glycosylation and is therefore refractory to PRC7 detection, prion infection leads to diminished PrPSc glycosylation at Asn-196, resulting in an unshielded PRC7 epitope that is amenable to mAb recognition upon renaturation. Detection of PRC7-reactive PrPSc in experimental and natural infections with various mouse-adapted scrapie strains and with prions causing deer and elk chronic wasting disease and transmissible mink encephalopathy uncovered that incomplete PrPSc glycosylation is a consistent feature of prion pathogenesis. We also show that interrogating the conformational properties of the PRC7 epitope affords a direct means of distinguishing different prion strains. Because the specificity of our approach for prion detection and strain discrimination relies on the extent to which N-linked glycosylation shields or unshields PrP epitopes from antibody recognition, it dispenses with the requirement for additional standard manipulations to distinguish PrPSc from PrPC, including evaluation of protease resistance. Our findings not only highlight an innovative and facile strategy for prion detection and strain differentiation, but are also consistent with a mechanism of prion replication in which structural instability of incompletely glycosylated PrP contributes to the conformational conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
- Hae-Eun Kang
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Vanessa Selwyn
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado,Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado,Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado,For correspondence: Glenn C. Telling,
| |
Collapse
|
3
|
Donating blood for research: a potential method for enhancing customer satisfaction of permanently deferred blood donors. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 15:13-19. [PMID: 26674813 DOI: 10.2450/2015.0142-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/21/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Each year, a large number of individuals in Australia are deferred from donating blood. A deferral may have a negative impact on donor satisfaction and subsequent word-of-mouth communication. The Australian Red Cross Blood Service (the Blood Service) is, therefore, investigating options for managing service interactions with deferred donors to maintain positive relationships. While public research institutes in Australia have established independent research donor registries, other countries provide programmes allowing deferred donors to donate blood for research via blood collection agencies. This study examined attitudes towards donating blood for research use in a sample of permanently deferred Australian donors. MATERIALS AND METHODS Donors permanently deferred because of a risk of variant Creutzfeldt-Jakob disease (n=449) completed a postal survey that examined attitudes towards research donation. RESULTS The majority of participants were interested in donating blood for research (96%), and joining a registry of research donors (93%). Participants preferred to donate for transfusion or clinical research, and were willing to travel large distances. Results indicated that positive attitudes towards the Blood Service would be extended if the opportunity to donate blood was provided. These findings indicate a desire for continued engagement with the Blood Service despite deferral. DISCUSSION Donating blood for research is a potential way of maintaining positive relationships with permanently deferred donors which also benefits the health research community. Through maintaining positive relationships with deferred donors, positive word-of-mouth activity can be stimulated. Further work is needed to determine the feasibility of implementing research donation through the Blood Service in Australia.
Collapse
|
4
|
Hammond M, Wik L, Deslys JP, Comoy E, Linné T, Landegren U, Kamali-Moghaddam M. Sensitive detection of aggregated prion protein via proximity ligation. Prion 2015; 8:261-5. [PMID: 25482604 DOI: 10.4161/pri.32231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The DNA assisted solid-phase proximity ligation assay (SP-PLA) provides a unique opportunity to specifically detect prion protein (PrP) aggregates by investigating the collocation of 3 or more copies of the specific protein. We have developed an SP-PLA that can detect PrP aggregates in brain homogenates from infected hamsters even after a 10(7)-fold dilution. In contrast, brain homogenate from uninfected animals did not generate a detectable signal at 100-fold higher concentration. Using either of the 2 monoclonal anti-PrP antibodies, 3F4 and 6H4, we successfully detected low concentrations of aggregated PrP. The presented results provide a proof of concept that this method might be an interesting tool in the development of diagnostic approaches of prion diseases.
Collapse
Key Words
- 263K
- BSE, bovine spongiform encephalopathy
- CJD, Creutzfeldt-Jakob disease
- CSF, cerebrospinal fluid
- FIDA, fluorescence intensity distribution analysis
- PLA, proximity ligation assay
- PMCA, protein misfolding cyclic amplification
- PrP, prion protein
- PrPC, cellular prion protein
- PrPSc, scrapie prion protein
- QuIC, quaking-induced conversion
- SP-PLA, solid phase proximity ligation assay
- diagnosis
- monoclonal antibody
- prion protein
- proximity ligation assay
- qPCR, quantitative real-time PCR
Collapse
Affiliation(s)
- Maria Hammond
- a Department of Immunology, Genetics and Pathology; Science for Life Laboratory ; Uppsala University ; Uppsala , Sweden
| | | | | | | | | | | | | |
Collapse
|
5
|
Abdel-Haq H. Factors intrinsic and extrinsic to blood hamper the development of a routine blood test for human prion diseases. J Gen Virol 2015; 96:479-493. [DOI: 10.1099/vir.0.070979-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hanin Abdel-Haq
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161-Rome, Italy
| |
Collapse
|
6
|
Jackson GS, Burk-Rafel J, Edgeworth JA, Sicilia A, Abdilahi S, Korteweg J, Mackey J, Thomas C, Wang G, Schott JM, Mummery C, Chinnery PF, Mead S, Collinge J. Population screening for variant Creutzfeldt-Jakob disease using a novel blood test: diagnostic accuracy and feasibility study. JAMA Neurol 2014; 71:421-8. [PMID: 24590363 PMCID: PMC4158718 DOI: 10.1001/jamaneurol.2013.6001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Our study indicates a prototype blood-based variant Creutzfeldt-Jakob disease (vCJD) assay has sufficient sensitivity and specificity to justify a large study comparing vCJD prevalence in the United Kingdom with a bovine spongiform encephalopathy-unexposed population. In a clinical diagnostic capacity, the assay's likelihood ratios dramatically change an individual's pretest disease odds to posttest probabilities and can confirm vCJD infection. OBJECTIVES To determine the diagnostic accuracy of a prototype blood test for vCJD and hence its suitability for clinical use and for screening prion-exposed populations. DESIGN, SETTING, AND PARTICIPANTS Retrospective, cross-sectional diagnostic study of blood samples from national blood collection and prion disease centers in the United States and United Kingdom. Anonymized samples were representative of the US blood donor population (n = 5000), healthy UK donors (n = 200), patients with nonprion neurodegenerative diseases (n = 352), patients in whom a prion disease diagnosis was likely (n = 105), and patients with confirmed vCJD (n = 10). MAIN OUTCOME AND MEASURE Presence of vCJD infection determined by a prototype test (now in clinical diagnostic use) that captures, enriches, and detects disease-associated prion protein from whole blood using stainless steel powder. RESULTS The assay's specificity among the presumed negative American donor samples was 100% (95% CI, 99.93%-100%) and was confirmed in a healthy UK cohort (100% specificity; 95% CI, 98.2%-100%). Of potentially cross-reactive blood samples from patients with nonprion neurodegenerative diseases, no samples tested positive (100% specificity; 95% CI, 98.9%-100%). Among National Prion Clinic referrals in whom a prion disease diagnosis was likely, 2 patients with sporadic CJD tested positive (98.1% specificity; 95% CI, 93.3%-99.8%). Finally, we reconfirmed but could not refine our previous sensitivity estimate in a small blind panel of samples from unaffected individuals and patients with vCJD (70% sensitivity; 95% CI, 34.8%-93.3%). CONCLUSIONS AND RELEVANCE In conjunction with the assay's established high sensitivity (71.4%; 95% CI, 47.8%-88.7%), the extremely high specificity supports using the assay to screen for vCJD infection in prion-exposed populations. Additionally, the lack of cross-reactivity and false positives in a range of nonprion neurodegenerative diseases supports the use of the assay in patient diagnosis.
Collapse
Affiliation(s)
- Graham S Jackson
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Jesse Burk-Rafel
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England2currently with University of Michigan Medical School, Ann Arbor
| | - Julie Ann Edgeworth
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Anita Sicilia
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Sabah Abdilahi
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Justine Korteweg
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Jonathan Mackey
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Claire Thomas
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Guosu Wang
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Catherine Mummery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, England
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England5National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, England5National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| |
Collapse
|
7
|
Identification of misfolded proteins in body fluids for the diagnosis of prion diseases. Int J Cell Biol 2013; 2013:839329. [PMID: 24027585 PMCID: PMC3763259 DOI: 10.1155/2013/839329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/27/2022] Open
Abstract
Transmissible spongiform encephalopathy (TSE) or prion diseases are fatal rare neurodegenerative disorders affecting man and animals and caused by a transmissible infectious agent. TSE diseases are characterized by spongiform brain lesions with neuronal loss and the abnormal deposition in the CNS, and to less extent in other tissues, of an insoluble and protease resistant form of the cellular prion protein (PrPC), named PrPTSE. In man, TSE diseases affect usually people over 60 years of age with no evident disease-associated risk factors. In some cases, however, TSE diseases are unequivocally linked to infectious episodes related to the use of prion-contaminated medicines, medical devices, or meat products as in the variant Creutzfeldt-Jakob disease (CJD). Clinical signs occur months or years after infection, and during this silent period PrPTSE, the only reliable marker of infection, is not easily measurable in blood or other accessible tissues or body fluids causing public health concerns. To overcome the limit of PrPTSE detection, several highly sensitive assays have been developed, but attempts to apply these techniques to blood of infected hosts have been unsuccessful or not yet validated. An update on the latest advances for the detection of misfolded prion protein in body fluids is provided.
Collapse
|
8
|
TSE diagnostics: recent advances in immunoassaying prions. Clin Dev Immunol 2013; 2013:360604. [PMID: 23970925 PMCID: PMC3732588 DOI: 10.1155/2013/360604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/27/2013] [Accepted: 07/02/2013] [Indexed: 02/05/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of rare fatal neurodegenerative diseases, affecting humans and animals. They are believed to be the consequence of the conversion of the cellular prion protein to its aggregation-prone, β-sheet-rich isoform, named prion. Definite diagnosis of TSEs is determined post mortem. For this purpose, immunoassays for analyzing brain tissue have been developed. However, the ultimate goal of TSE diagnostics is an ante mortem test, which would be sensitive enough to detect prions in body fluids, that is, in blood, cerebrospinal fluid, or urine. Such a test would be of paramount importance also for screening of asymptomatic carriers of the disease with the aim of increasing food, drugs, and blood-derived products safety. In the present paper, we have reviewed recent advances in the development of immunoassays for the detection of prions.
Collapse
|
9
|
Yang H, Gijs MAM. Microtextured Substrates and Microparticles Used as in Situ Lenses for On-Chip Immunofluorescence Amplification. Anal Chem 2013; 85:2064-71. [DOI: 10.1021/ac303471x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Yang
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| |
Collapse
|
10
|
Gonzalez-Montalban N, Baskakov IV. Assessment of strain-specific PrP(Sc) elongation rates revealed a transformation of PrP(Sc) properties during protein misfolding cyclic amplification. PLoS One 2012; 7:e41210. [PMID: 22815972 PMCID: PMC3398882 DOI: 10.1371/journal.pone.0041210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
Prion replication is believed to consist of two components, a growth or elongation of infectious isoform of the prion protein (PrP(Sc)) particles and their fragmentation, a process that provides new replication centers. The current study introduced an experimental approach that employs Protein Misfolding Cyclic Amplification with beads (PMCAb) and relies on a series of kinetic experiments for assessing elongation rates of PrP(Sc) particles. Four prion strains including two strains with short incubation times to disease (263K and Hyper) and two strains with very long incubation times (SSLOW and LOTSS) were tested. The elongation rate of brain-derived PrP(Sc) was found to be strain-specific. Strains with short incubation times had higher rates than strains with long incubation times. Surprisingly, the strain-specific elongation rates increased substantially for all four strains after they were subjected to six rounds of serial PMCAb. In parallel to an increase in elongation rates, the percentages of diglycosylated PrP glycoforms increased in PMCAb-derived PrP(Sc) comparing to those of brain-derived PrP(Sc). These results suggest that PMCAb selects the same molecular features regardless of strain initial characteristics and that convergent evolution of PrP(Sc) properties occurred during in vitro amplification. These results are consistent with the hypothesis that each prion strain is comprised of a variety of conformers or 'quasi-species' and that change in the prion replication environment gives selective advantage to those conformers that replicate most effectively under specific environment.
Collapse
Affiliation(s)
- Nuria Gonzalez-Montalban
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
11
|
|
12
|
Makarava N, Savtchenko R, Alexeeva I, Rohwer RG, Baskakov IV. Fast and ultrasensitive method for quantitating prion infectivity titre. Nat Commun 2012; 3:741. [PMID: 22415832 PMCID: PMC3518416 DOI: 10.1038/ncomms1730] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/06/2012] [Indexed: 12/19/2022] Open
Abstract
Bioassay by end-point dilution has been used for decades for routine determination of prion infectivity titre. Here we show that the new protein misfolding cyclic amplification with beads (PMCAb) technique can be used to estimate titres of the infection-specific forms of the prion protein with a higher level of precision and in 3-6 days as opposed to 2 years, when compared with the bioassay. For two hamster strains, 263 K and SSLOW, the median reactive doses determined by PCMAb (PMCAb(50)) were found to be 10(12.8) and 10(12.2) per gram of brain tissue, which are 160- and 4,000-fold higher than the corresponding median infectious dose (ID(50)) values measured by bioassay. The 10(2)- to 10(3)-fold differences between ID(50) and PMCAb(50) values could be due to a large excess of PMCAb-reactive prion protein seeds with little or no infectivity. Alternatively, the differences between ID(50) and PMCAb(50) could be due to higher rate of clearance of infection-specific prion protein seeds in animals versus PMCAb reactions. A well-calibrated PMCAb reaction can be an efficient and cost-effective method for the estimation of infection-specific prion protein titre.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland, 725 W. Lombard Street, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
13
|
Gonzalez-Montalban N, Makarava N, Savtchenko R, Baskakov IV. Relationship between conformational stability and amplification efficiency of prions. Biochemistry 2011; 50:7933-40. [PMID: 21848309 PMCID: PMC3183828 DOI: 10.1021/bi200950v] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies demonstrated that the efficiency, rate, and yield of prion amplification in vitro could be substantially improved by supplementing protein misfolding cyclic amplification (PMCA) with Teflon beads [Gonzalez-Montalban et al. (2011) PLoS Pathog. 7, e1001277]. Here we employed the new PMCA format with beads (PMCAb) to gain insight into the mechanism of prion amplification. Using a panel of six hamster prion strains, the effect of beads on amplification was found to be strain-specific, with the largest improvements in efficiency observed for strains with the highest conformational stability. This result suggests a link between PrP(Sc) conformational stability and its fragmentation rate and that beads improved amplification by assisting fragmentation. Furthermore, while exploring the PrP(Sc)-independent bead effect mechanism, a synergy between the effects of RNA and beads on amplification was observed. Consistent with previous studies, amplification of all six hamster strains tested here was found to be RNA-dependent. Under sonication conditions used for PMCA, large RNA molecules were found to degrade into smaller fragments of a size that was previously shown to be the most effective in facilitating prion conversion. We speculate that sonication-induced changes in RNA size distribution could be one of the rate-limiting steps in prion amplification.
Collapse
Affiliation(s)
- Nuria Gonzalez-Montalban
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
14
|
Quadrio I, Perret-Liaudet A, Kovacs GG. Molecular diagnosis of human prion disease. ACTA ACUST UNITED AC 2011; 5:291-306. [PMID: 23484550 DOI: 10.1517/17530059.2011.576664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Human prion diseases (PrDs) are transmissible fatal nervous system disorders with public health implications. They are characterized by the presence of a disease-associated form of the physiological cellular prion protein. Development of diagnostic procedures is important to avoid transmission, including through blood products. Methods used for the detection of disease-associated PrP have implications for other neurodegenerative diseases. AREAS COVERED In this review, the authors discuss recent progress in the understanding of the molecular background of phenotypic variability of human PrDs, and the current concepts of molecular diagnosis. Also, the authors provide a critical summary of the diagnostic methods with regard to the molecular subtypes. EXPERT OPINION In spite of a lack of specific tests to detect disease-associated PrP in body fluids, the constellation of clinical symptoms, detection of protein 14-3-3 in cerebrospinal fluid, electroencephalogram, cranial MRI and prion protein gene examinations, together have increased the specificity and sensitivity of in vivo diagnostics. As new forms of PrDs are reported, continuous evaluation of their incidence and the search for their etiology is crucial. Recent studies, suggesting prion-like properties of certain proteinopathies associated with Parkinson's or Alzheimer's disease, have again brought PrDs to the center of interest as a model of diseases with disordered protein processing.
Collapse
Affiliation(s)
- Isabelle Quadrio
- Hospices Civils de Lyon/Claude Bernard University , Groupement Hospitalier Est, Prion Disease Laboratory, Pathology and Biochemistry, 59 bd Pinel , 69677, BRON Cedex , France
| | | | | |
Collapse
|
15
|
Edgeworth JA, Farmer M, Sicilia A, Tavares P, Beck J, Campbell T, Lowe J, Mead S, Rudge P, Collinge J, Jackson GS. Detection of prion infection in variant Creutzfeldt-Jakob disease: a blood-based assay. Lancet 2011; 377:487-93. [PMID: 21295339 DOI: 10.1016/s0140-6736(10)62308-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Variant Creutzfeldt-Jakob disease (vCJD) is a fatal neurodegenerative disorder originating from exposure to bovine-spongiform-encephalopathy-like prions. Prion infections are associated with long and clinically silent incubations. The number of asymptomatic individuals with vCJD prion infection is unknown, posing risk to others via blood transfusion, blood products, organ or tissue grafts, and contaminated medical instruments. We aimed to establish the sensitivity and specificity of a blood-based assay for detection of vCJD prion infection. METHODS We developed a solid-state binding matrix to capture and concentrate disease-associated prion proteins and coupled this method to direct immunodetection of surface-bound material. Quantitative assay sensitivity was assessed with a serial dilution series of 10⁻⁷ to 10⁻¹⁰ of vCJD prion-infected brain homogenate into whole human blood, with a baseline control of normal human brain homogenate in whole blood (10⁻⁶). To establish the sensitivity and specificity of the assay for detection of endogenous vCJD, we analysed a masked panel of 190 whole blood samples from 21 patients with vCJD, 27 with sporadic CJD, 42 with other neurological diseases, and 100 normal controls. Samples were masked and numbered by individuals independent of the assay and analysis. Each sample was tested twice in independent assay runs; only samples that were reactive in both runs were scored as positive overall. FINDINGS We were able to distinguish a 10⁻¹⁰ dilution of exogenous vCJD prion-infected brain from a 10⁻⁶ dilution of normal brain (mean chemiluminescent signal, 1·3×10⁵ [SD 1·1×10⁴] for vCJD vs 9·9×10⁴ [4·5×10³] for normal brain; p<0·0001)—an assay sensitivity that was orders of magnitude higher than any previously reported. 15 samples in the masked panel were scored as positive. All 15 samples were from patients with vCJD, showing an assay sensitivity for vCJD of 71·4% (95% CI 47·8–88·7) and a specificity of 100% (95% CIs between 97·8% and 100%). INTERPRETATION These initial studies provide a prototype blood test for diagnosis of vCJD in symptomatic individuals, which could allow development of large-scale screening tests for asymptomatic vCJD prion infection. FUNDING UK Medical Research Council.
Collapse
Affiliation(s)
- Julie Ann Edgeworth
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|