1
|
Trochanowska-Pauk N, Walski T, Bohara R, Mikolas J, Kubica K. Platelet Storage-Problems, Improvements, and New Perspectives. Int J Mol Sci 2024; 25:7779. [PMID: 39063021 PMCID: PMC11277025 DOI: 10.3390/ijms25147779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Platelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited to five days due to various factors, including the risk of bacterial contamination and the occurrence of physical and functional changes known as platelet storage lesions. In this article, the problems related to platelet storage lesions are categorized into four groups depending on research areas: storage conditions, additive solutions, new testing methods for platelets (proteomic and metabolomic analysis), and extensive data modeling of platelet production (mathematical modeling, statistical analysis, and artificial intelligence). This article provides extensive information on the challenges, potential improvements, and novel perspectives regarding platelet storage.
Collapse
Affiliation(s)
- Natalia Trochanowska-Pauk
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D.Y. Patil Educational Society, Kolhapur 416006, India;
| | - Julia Mikolas
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Krystian Kubica
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
2
|
Abstract
There is a crucial need for platelet transfusion during an emergency-surgery and treatment of platelet disorders. The unavailability of donors has furthermore increased the demand for platelet storage. Platelets have limited shelf life due to bacterial contamination and storage lesions. Temperature, materials, oxygen availability, media, platelet processing and manufacturing methods influence the platelet quality and viability during storage. The conception of various platelet additive solutions along with the advent of plastic storage during the 1980s led to enormous developments in platelet storage strategies. Cold storage of platelets gained attention despite its inability to contribute to platelet survival post-transfusion as it offers faster haemostasis. Several developments in platelet storage strategies over the years have improved the quality and shelf-life of stored platelets. Despite the progress, the efficacy of platelets during storage beyond a week has not been achieved. Antioxidants as additives have been explored in platelet storage and have proven to enhance the efficacy of platelets during prolonged storage. However, the molecular interactions of antioxidants in platelets can provide a better understanding of their mechanism of action. Optimization of dosage concentrations of antioxidants is also a critical parameter to be considered as they tend to exhibit toxicity at certain levels. This review provides comprehensive insights into the critical factors affecting platelet storage and the evolution of platelet storage. It also emphasizes the role of antioxidants as additives in platelet storage solutions and their future prospects towards better platelet banking.
Collapse
Affiliation(s)
- Vani Rajashekaraiah
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), #34, 1st Cross, JC Road, Bengaluru, 560027, India.
| | - Magdaline Christina Rajanand
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), #34, 1st Cross, JC Road, Bengaluru, 560027, India
| |
Collapse
|
3
|
Görner S, Heim C, Weigmann B, von Silva-Tarouca B, Kuckhahn A, Ramsperger-Gleixner M, Zimmermann R, Weyand M, Ensminger SM. Direct Impact of Human Platelets on the Development of Transplant Arteriosclerosis. Transplantation 2022; 106:1180-1192. [PMID: 34468430 DOI: 10.1097/tp.0000000000003935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Platelets play an important role in the pathogenesis of inflammatory and proliferative vascular changes. The aim of this study was to investigate whether human platelets are able to induce transplant arteriosclerosis in a humanized C57/Bl6-Rag2-/-γc-/- mouse xenograft model. METHODS Nonactivated and in vitro-activated human platelets were analyzed and phenotyped for surface markers by flow cytometry. Side branches of human mammary arteries were implanted into the infrarenal aorta of recipients, followed by daily application of human platelets and histological analyzed on day 30 after transplantation. RESULTS Human platelets collected by apheresis had low levels of platelet activation markers. However, after in vitro activation, expression was markedly increased. Sixty minutes after injection in recipient mice, nonactivated human platelets become significantly activated. Increased adhesion of platelets to the vascular endothelium was detected by in vivo fluorescence microscopy. After intravenous injection of nonactivated or activated platelets, human xenografts showed pronounced intimal proliferation. Immunohistological analysis showed that the group treated with activated human platelets exhibited significantly increased intragraft protein expression of intracellular adhesion molecule-1 and platelet-derived growth factor receptor beta and smooth muscle cell migration into the neointima. CONCLUSIONS These data demonstrate that an isolated daily application of both in vivo- and in vitro-activated human platelets results in the development of transplant arteriosclerosis in a humanized mouse transplantation model.
Collapse
Affiliation(s)
- Susann Görner
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Benno Weigmann
- Department of Medicine 1, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | | | - Annika Kuckhahn
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | | | - Robert Zimmermann
- Department of Transfusion Medicine, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Stephan M Ensminger
- Department of Cardiac Surgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
- Present address: Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital Schleswig Holstein, Lübeck, Germany
| |
Collapse
|
4
|
The Missing Pieces to the Cold-Stored Platelet Puzzle. Int J Mol Sci 2022; 23:ijms23031100. [PMID: 35163024 PMCID: PMC8835703 DOI: 10.3390/ijms23031100] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/28/2023] Open
Abstract
Cold-stored platelets are making a comeback. They were abandoned in the late 1960s in favor of room-temperature stored platelets due to the need for longer post-transfusion platelet recoverability and survivability in patients with chronic thrombocytopenia. However, the current needs for platelet transfusions are rapidly changing. Today, more platelets are given to patients who are actively bleeding, such as ones receiving cardiac surgeries. It has been established that cold-stored platelets are more hemostatically effective, have reduced bacterial growth, and have longer potential shelf lives. These compelling characteristics led to the recent interest in bringing back cold-stored platelets to the blood systems. However, before reinstating cold-stored platelets in the clinics again, a thorough investigation of in vitro storage characteristics and in vivo transfusion effects is required. This review aims to provide an update on the recent research efforts into the storage characteristics and functions of cold-stored platelets using modern investigative tools. We will also discuss efforts made to improve cold-stored platelets to be a better and safer product. Finally, we will finish off with discussing the relevance of in vitro data to in vivo transfusion results and provide insights and directions for future investigations of cold-stored platelets.
Collapse
|
5
|
N-acetylcysteine reduce the stress induced by cold storage of platelets: A potential way to extend shelf life of platelets. Transfus Apher Sci 2020; 60:103039. [PMID: 33388248 DOI: 10.1016/j.transci.2020.103039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
The room temperature storage used for platelets worldwide leads to platelet storage lesion (PSL) and risk of bacterial growth, limiting platelet shelf life and safety in transfusion. Thus, there is a need for an alternative storage method that can serve as effective temperature storage for platelet concentrates (PCs). In the previous investigation, we have shown that N-acetylcysteine (NAC) is a potential candidate for an additive solution to retain platelet characteristics during cold storage for up to 5 days. However, the study partially describes the efficacy and has drawbacks to address. Here, we used the apheresis platelet product with 50 mM NAC and stored up to 10 days under refrigerated condition (4 ± 1 °C). Stored platelet concentrates were analyzed for critical parameters such as platelet activation, annexin V binding, sialic acid, reactive oxygen species (ROS), neuraminidase activity, and in vivo efficacy using Prkdcscid mice. Investigation observations revealed that PCs with NAC showed reduced platelet activation, annexin V binding, ROS production, and sialic acid levels. in vivo recovery of PCs showed similar recovery rates stored PCs irrespective of treatment or storage condition. However, on the tenth day after 24 h, recovery in room temperature stored concentrates was about 32 %, whereas in NAC treated refrigerated concentrates, it stands at 47 %. These observations indicate that NAC addition protects refrigerated concentrates during long-term storage retaining the platelet integrity. The study also suggests that extending PC storage beyond 10 days is practically accomplishable with efficacy similar to room temperature (RT) stored PCs.
Collapse
|
6
|
Scorer T, Williams A, Reddoch-Cardenas K, Mumford A. Manufacturing variables and hemostatic function of cold-stored platelets: a systematic review of the literature. Transfusion 2019; 59:2722-2732. [PMID: 31184775 DOI: 10.1111/trf.15396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Thomas Scorer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Centre of Defence Pathology, RCDM, Birmingham, United Kingdom.,Coagulation and Blood Research, U.S. Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, Texas
| | - Ashleigh Williams
- Department of Anaesthesia, Derriford Hospital, Plymouth, United Kingdom
| | - Kristin Reddoch-Cardenas
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, Texas
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Hegde S, Akbar H, Zheng Y, Cancelas JA. Towards increasing shelf life and haemostatic potency of stored platelet concentrates. Curr Opin Hematol 2018; 25:500-508. [PMID: 30281037 PMCID: PMC6532779 DOI: 10.1097/moh.0000000000000456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Platelet transfusion is a widely used therapy in treating or preventing bleeding and haemorrhage in patients with thrombocytopenia or trauma. Compared with the relative ease of platelet transfusion, current practice for the storage of platelets is inefficient, costly and relatively unsafe, with platelets stored at room temperature (RT) for upto 5-7 days. RECENT FINDINGS During storage, especially at cold temperatures, platelets undergo progressive and deleterious changes, collectively termed the 'platelet storage lesion', which decrease their haemostatic function and posttransfusion survival. Recent progress in understanding platelet activation and host clearance mechanisms is leading to the consideration of both old and novel storage conditions that use refrigeration and/or cryopreservation to overcome various storage lesions and significantly extend platelet shelf-life with a reduced risk of pathogen contamination. SUMMARY A review of the advantages and disadvantages of alternative methods for platelet storage is presented from both a clinical and biological perspective. It is anticipated that future platelet preservation involving cold, frozen and/or pathogen reduction strategies in a proper platelet additive solution will enable longer term and safer platelet storage.
Collapse
Affiliation(s)
- Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati Academic Health Center
| | - Huzoor Akbar
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Jose A. Cancelas
- Hoxworth Blood Center, University of Cincinnati Academic Health Center
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati
| |
Collapse
|
8
|
Vostal JG, Gelderman MP, Skripchenko A, Xu F, Li Y, Ryan J, Cheng C, Whitley P, Wellington M, Sawyer S, Hanley S, Wagner SJ. Temperature cycling during platelet cold storage improves in vivo recovery and survival in healthy volunteers. Transfusion 2017; 58:25-33. [DOI: 10.1111/trf.14392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Jaroslav G. Vostal
- Laboratory of Cellular HematologyDBCD, OBRR, CBER, FDASilver Spring Maryland
| | | | - Andrey Skripchenko
- Laboratory of Cellular HematologyDBCD, OBRR, CBER, FDASilver Spring Maryland
| | - Fei Xu
- Laboratory of Cellular HematologyDBCD, OBRR, CBER, FDASilver Spring Maryland
| | - Ying Li
- Laboratory of Cellular HematologyDBCD, OBRR, CBER, FDASilver Spring Maryland
| | - Johannah Ryan
- Laboratory of Cellular HematologyDBCD, OBRR, CBER, FDASilver Spring Maryland
| | - Chunrong Cheng
- Office of Biostatistics and EpidemiologyCBER, FDASilver Spring Maryland
| | - Pam Whitley
- Mid‐Atlantic Research FacilityAmerican Red CrossNorfolk Virginia
| | | | - Sherrie Sawyer
- Mid‐Atlantic Research FacilityAmerican Red CrossNorfolk Virginia
| | - Shalene Hanley
- Mid‐Atlantic Research FacilityAmerican Red CrossNorfolk Virginia
| | | |
Collapse
|
9
|
Milford EM, Reade MC. Comprehensive review of platelet storage methods for use in the treatment of active hemorrhage. Transfusion 2017; 56 Suppl 2:S140-8. [PMID: 27100750 DOI: 10.1111/trf.13504] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
Abstract
This review considers the various methods currently in use, or under investigation, for the storage of platelets intended for use in the treatment of active hemorrhage. The current standard practice of storing platelets at room temperature (RT) (20°C-24°C) optimizes circulating time, but at the expense of hemostatic function and logistical considerations. A number of alternatives are under investigation. Novel storage media additives appear to attenuate the deleterious changes that affect RT stored platelets. Cold storage was originally abandoned due to the poor circulating time of platelets stored at 4°C, but such platelets may actually be more hemostatically effective, with a number of other advantages, compared to RT stored platelets. Periodically re-warming cold stored platelets (temperature cycling, TC) may combine the hemostatic efficacy of cold stored platelets with the longer circulating times of RT storage. Alternatives to liquid storage include cryopreservation (freezing) or lyophilization (freeze-drying). The former has had some limited clinical use and larger clinical trials are underway, while the latter is still in the preclinical stage with promising in vitro and in vivo results. The importance of platelet transfusion in the management of active hemorrhage is now well accepted, so it is timely that platelet storage methods are reviewed with consideration of not only their circulating time, but also their hemostatic efficacy.
Collapse
Affiliation(s)
- Elissa M Milford
- Australian Defence Force, Australia.,University of Queensland, Australia
| | - Michael C Reade
- Australian Defence Force, Australia.,University of Queensland, Australia
| |
Collapse
|
10
|
Bradley M, Nealeigh M, Oh JS, Rothberg P, Elster EA, Rich NM. Combat casualty care and lessons learned from the past 100 years of war. Curr Probl Surg 2017; 54:315-351. [PMID: 28595716 DOI: 10.1067/j.cpsurg.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Matthew Bradley
- Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD.
| | - Matthew Nealeigh
- Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - John S Oh
- Division of Global Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Philip Rothberg
- Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Norman M Rich
- Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD; Division of Global Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
11
|
Handigund M, Bae TW, Lee J, Cho YG. Evaluation of in vitro storage characteristics of cold stored platelet concentrates with N acetylcysteine (NAC). Transfus Apher Sci 2016; 54:127-38. [PMID: 26847865 DOI: 10.1016/j.transci.2016.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Platelets play a vital role in hemostasis and thrombosis, and their demand and usage has multiplied many folds over the years. However, due to the short life span and storage constraints on platelets, it is allowed to store them for up to 7 days at room temperature (RT); thus, there is a need for an alternative storage strategy for extension of shelf life. Current investigation involves the addition of 50 mM N acetylcysteine (NAC) in refrigerated concentrates. Investigation results revealed that addition of NAC to refrigerated concentrates prevented platelet activation and reduced the sialidase activity upon rewarming as well as on prolonged storage. Refrigerated concentrates with 50 mM NAC expressed a 23.91 ± 6.23% of CD62P (P-Selectin) and 22.33 ± 3.42% of phosphotidylserine (PS), whereas RT-stored platelets showed a 46.87 ± 5.23% of CD62P and 25.9 ± 6.48% of phosphotidylserine (PS) after 5 days of storage. Further, key metabolic parameters such as glucose and lactate accumulation indicated reduced metabolic activity. Taken together, investigation and observations indicate that addition of NAC potentially protects refrigerated concentrates by preventing platelet activation, stabilizing sialidase activity, and further reducing the metabolic activity. Hence, we believe that NAC can be a good candidate for an additive solution to retain platelet characteristics during cold storage and may pave the way for extension of storage shelf life.
Collapse
Affiliation(s)
- Mallikarjun Handigund
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea
| | - Tae Won Bae
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 561180, Republic of Korea
| | - Yong Gon Cho
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 561180, Republic of Korea; Chonbuk National University Hospital branch of National Culture Collection for Pathology, Jeonju 561180, Republic of Korea.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Platelets are a frequently requested blood product today and are often in limited supply because of a shelf life of 5-7 days, depending on the country. Room temperature storage is associated with an increased risk of transfusion-transmitted infection. Plasma used for platelet storage is unavailable for other uses, and allogeneic plasma carries with it risks for adverse transfusion reactions. This review looks at recent activities evaluating alternative conditions for the storage of platelets. RECENT FINDINGS New-generation platelet additive solutions are being evaluated and applied as a strategy to reduce the volume of allogeneic plasma transfused and to support storage following pathogen reduction treatments. There is a renewed interest in refrigerator temperature and frozen storage of platelets to improve availability, to reduce septic transfusion risk, and to enhance hemostatic efficacy in the bleeding patient. SUMMARY Use of platelet additive solutions has been shown to reduce the incidence of allergic and nonhemolytic febrile transfusion reactions in two large studies. Results of ongoing research and new clinical trials in cold storage methods will be forthcoming and may present solutions for platelet availability problems and new choices for therapeutic transfusion of the bleeding patient.
Collapse
|
13
|
Skripchenko A, Gelderman MP, Awatefe H, Turgeon A, Thompson-Montgomery D, Cheng C, Vostal JG, Wagner SJ. Automated cold temperature cycling improves in vitro platelet properties and in vivo recovery in a mouse model compared to continuous cold storage. Transfusion 2015; 56:24-32. [PMID: 26331697 DOI: 10.1111/trf.13273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Platelets (PLTs) stored at cold temperatures (CTs) for prolonged time have dramatically reduced bacterial growth but poor survival when infused. A previous study demonstrated that human PLTs stored with manual cycling between 4 °C (12 hr) and 37 °C (30 min) and infused into severe combined immunodeficient (SCID) mice had survivals similar to or greater than those stored at room temperature (RT). In this study, the in vitro and in vivo properties of PLTs stored in an automated incubator programmed to cycle between 5 °C (11 hr) and 37 °C (1 hr) were evaluated. STUDY DESIGN AND METHODS A Trima apheresis unit (n = 12) was aliquoted (60 mL) in CLX bags. One sample was stored with continuous agitation (RT), a second sample was stored at 4-6 °C without agitation (CT), and a third sample was placed in an automated temperature cycler with 5 minutes of agitation during the warm-up period (thermocycling [TC]). PLTs were assayed for several relevant quality variables. On Day 7, PLTs were infused into SCID mice and in vivo recovery was assessed at predetermined time points after transfusion. RESULTS The glucose consumption rate, morphology score, hypotonic shock recovery level, and aggregation levels were increased and mitochondrial reactive oxygen species accumulations were decreased in TC-PLTs compared to those of CT-PLTs. The pH and Annexin V binding were comparable to those of RT-PLTs. All TC-PLTs had greater recovery than CT-PLTs and were comparable to RT-PLTs. CONCLUSION PLTs stored under automated TC conditions have improved in vivo recovery and improved results for a number of in vitro measures compared to CT-PLTs.
Collapse
Affiliation(s)
- Andrey Skripchenko
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, Maryland
| | | | - Helen Awatefe
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, Maryland
| | - Annette Turgeon
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, Maryland
| | | | - Chunrong Cheng
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland
| | | | - Stephen J Wagner
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, Maryland
| |
Collapse
|
14
|
Bosch-Marcé M, Mohan KV, Gelderman MP, Ryan PL, Russek-Cohen E, Atreya CD. Preclinical safety evaluation of human platelets treated with antimicrobial peptides in severe combined immunodeficient mice. Transfusion 2013; 54:569-76. [DOI: 10.1111/trf.12318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Marta Bosch-Marcé
- Section of Cell Biology, Laboratory of Cellular Hematology, Division of Hematology; Food and Drug Administration; Bethesda Maryland
- Division of Biostatistics, Center for Biologics Evaluation and Research; Food and Drug Administration; Bethesda Maryland
| | - Ketha V.K. Mohan
- Section of Cell Biology, Laboratory of Cellular Hematology, Division of Hematology; Food and Drug Administration; Bethesda Maryland
- Division of Biostatistics, Center for Biologics Evaluation and Research; Food and Drug Administration; Bethesda Maryland
| | - Monique P. Gelderman
- Section of Cell Biology, Laboratory of Cellular Hematology, Division of Hematology; Food and Drug Administration; Bethesda Maryland
- Division of Biostatistics, Center for Biologics Evaluation and Research; Food and Drug Administration; Bethesda Maryland
| | - Patricia L. Ryan
- Section of Cell Biology, Laboratory of Cellular Hematology, Division of Hematology; Food and Drug Administration; Bethesda Maryland
- Division of Biostatistics, Center for Biologics Evaluation and Research; Food and Drug Administration; Bethesda Maryland
| | - Estelle Russek-Cohen
- Section of Cell Biology, Laboratory of Cellular Hematology, Division of Hematology; Food and Drug Administration; Bethesda Maryland
- Division of Biostatistics, Center for Biologics Evaluation and Research; Food and Drug Administration; Bethesda Maryland
| | - Chintamani D. Atreya
- Section of Cell Biology, Laboratory of Cellular Hematology, Division of Hematology; Food and Drug Administration; Bethesda Maryland
- Division of Biostatistics, Center for Biologics Evaluation and Research; Food and Drug Administration; Bethesda Maryland
| |
Collapse
|