1
|
Platelet-targeted hyperfunctional FIX gene therapy for hemophilia B mice even with preexisting anti-FIX immunity. Blood Adv 2021; 5:1224-1238. [PMID: 33646304 DOI: 10.1182/bloodadvances.2020004071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/16/2021] [Indexed: 01/19/2023] Open
Abstract
Gene therapy may lead to a cure for hemophilia B (HB) if it is successful. Data from clinical trials using adeno-associated virus (AAV)-mediated liver-targeted FIX gene therapy are very encouraging. However, this protocol can be applied only to adults who do not have liver disease or anti-AAV antibodies, which occur in 30% to 50% of individuals. Thus, developing a protocol that can be applied to all HB patients is desired. Our previous studies have demonstrated that lentivirus-mediated platelet-specific FIX (2bF9) gene therapy can rescue bleeding diathesis and induce immune tolerance in FIXnull mice, but FIX expression was only ∼2% to 3% in whole blood. To improve the efficacy, we used a codon-optimized hyperfunctional FIX-Padua (2bCoF9R338L) to replace the 2bF9 cassette, resulting in 70% to 122% (35.08-60.77 mU/108 platelets) activity levels in 2bCoF9R338L-transduced FIXnull mice. Importantly, sustained hyperfunctional platelet-FIX expression was achieved in all 2bCoF9R338L-transduced highly immunized recipients with activity levels of 18.00 ± 9.11 and 9.36 ± 12.23 mU/108 platelets in the groups treated with 11 Gy and 6.6 Gy, respectively. The anti-FIX antibody titers declined with time, and immune tolerance was established after 2bCoF9R338L gene therapy. We found that incorporating the proteasome inhibitor bortezomib into preconditioning can help eliminate anti-FIX antibodies. The bleeding phenotype in 2bCoF9R338L-transduced recipients was completely rescued in a tail bleeding test and a needle-induced knee joint injury model once inhibitors dropped to undetectable. The hemostatic efficacy in 2bCoF9R338L-transduced recipients was further confirmed by ROTEM and thrombin generation assay (TGA). Together, our studies suggest that 2bCoF9R338L gene therapy can be a promising protocol for all HB patients, including patients with inhibitors.
Collapse
|
2
|
Multifaceted Functions of Platelets in Cancer: From Tumorigenesis to Liquid Biopsy Tool and Drug Delivery System. Int J Mol Sci 2020; 21:ijms21249585. [PMID: 33339204 PMCID: PMC7765591 DOI: 10.3390/ijms21249585] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Platelets contribute to several types of cancer through plenty of mechanisms. Upon activation, platelets release many molecules, including growth and angiogenic factors, lipids, and extracellular vesicles, and activate numerous cell types, including vascular and immune cells, fibroblasts, and cancer cells. Hence, platelets are a crucial component of cell-cell communication. In particular, their interaction with cancer cells can enhance their malignancy and facilitate the invasion and colonization of distant organs. These findings suggest the use of antiplatelet agents to restrain cancer development and progression. Another peculiarity of platelets is their capability to uptake proteins and transcripts from the circulation. Thus, cancer-patient platelets show specific proteomic and transcriptomic expression patterns, a phenomenon called tumor-educated platelets (TEP). The transcriptomic/proteomic profile of platelets can provide information for the early detection of cancer and disease monitoring. Platelet ability to interact with tumor cells and transfer their molecular cargo has been exploited to design platelet-mediated drug delivery systems to enhance the efficacy and reduce toxicity often associated with traditional chemotherapy. Platelets are extraordinary cells with many functions whose exploitation will improve cancer diagnosis and treatment.
Collapse
|
3
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Luo X, Chen J, Schroeder JA, Allen KP, Baumgartner CK, Malarkannan S, Hu J, Williams CB, Shi Q. Platelet Gene Therapy Promotes Targeted Peripheral Tolerance by Clonal Deletion and Induction of Antigen-Specific Regulatory T Cells. Front Immunol 2018; 9:1950. [PMID: 30237796 PMCID: PMC6136275 DOI: 10.3389/fimmu.2018.01950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Delivery of gene therapy as well as of biologic therapeutics is often hampered by the immune response of the subject receiving the therapy. We have reported that effective gene therapy for hemophilia utilizing platelets as a delivery vehicle engenders profound tolerance to the therapeutic product. In this study, we investigated whether this strategy can be applied to induce immune tolerance to a non-coagulant protein and explored the fundamental mechanism of immune tolerance induced by platelet-targeted gene delivery. We used ovalbumin (OVA) as a surrogate non-coagulant protein and constructed a lentiviral vector in which OVA is driven by the platelet-specific αIIb promoter. Platelet-specific OVA expression was introduced by bone marrow transduction and transplantation. Greater than 95% of OVA was stored in platelet α-granules. Control mice immunized with OVA generated OVA-specific IgG antibodies; however, mice expressing OVA in platelets did not. Furthermore, OVA expression in platelets was sufficient to prevent the rejection of skin grafts from CAG-OVA mice, demonstrating that immune tolerance developed in platelet-specific OVA-transduced recipients. To assess the mechanism(s) involved in this tolerance we used OTII mice that express CD4+ effector T cells specific for an OVA-derived peptide. After platelet-specific OVA gene transfer, these mice showed normal thymic maturation of the T cells ruling against central tolerance. In the periphery, tolerance involved elimination of OVA-specific CD4+ effector T cells by apoptosis and expansion of an OVA-specific regulatory T cell population. These experiments reveal the existence of natural peripheral tolerance processes to platelet granule contents which can be co-opted to deliver therapeutically important products.
Collapse
Affiliation(s)
- Xiaofeng Luo
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Juan Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Jocelyn A Schroeder
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States.,MACC Fund Research Center, Milwaukee, WI, United States
| | - Kenneth P Allen
- Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Subramaniam Malarkannan
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Calvin B Williams
- Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States.,Departments of Pediatrics, Medicine, Microbiology and Immunology, and Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, United States.,MACC Fund Research Center, Milwaukee, WI, United States
| |
Collapse
|
5
|
Bozzi V, Panza E, Barozzi S, Gruppi C, Seri M, Balduini C, Pecci A. Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells. Thromb Haemost 2017; 106:693-704. [DOI: 10.1160/th11-02-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/11/2011] [Indexed: 01/01/2023]
Abstract
SummaryMYH9-related disease (MYH9-RD) is an autosomal-dominant thrombocytopenia caused by mutations in the gene for the heavy chain of nonmuscle myosin-IIA (NMMHC-IIA). Recent in vitro studies led to the hypothesis that thrombocytopenia of MYH9-RD derives from an ectopic platelet release by megakaryocytes in the osteoblastic areas of bone marrow (BM), which are enriched in type I collagen, rather than in vascular spaces. SDF-1-driven migration of megakaryocytes within BM to reach the vascular spaces is a key mechanism for platelet biogenesis. Since myosin-IIA is implicated in polarised migration of different cell types, we hypothesised that MYH9 mutations could interfere with this mechanism. We therefore investigated the SDF-1-driven migration of a megakaryoblastic cell line, Dami cells, on type I collagen or fibrinogen by a modified transwell assay. Inhibition of myosin-IIA ATPase activity suppressed the SDF-1-driven migration of Dami cells, while over-expression of NMMHC-IIA increased the efficiency of chemotaxis, indicat- ing a role for NMMHC-IIA in this mechanism. Transfection of cells with three MYH9 mutations frequently responsible for MYH9-RD (p.R702C, p.D1424H, or p.R1933X) resulted in a defective SDF-1-driven migration with respect to the wild-type counterpart and in increased cell spreading onto collagen. Analysis of differential localisation of wild-type and mutant proteins suggested that mutant NMMHC-IIAs had an impaired cytoplasmic re-organisation in functional cytoskeletal structures after cell adhesion to collagen. These findings support the hypothesis that a defect of SDF-1-driven migration of megakaryocytes induced by MYH9 mutations contributes to ectopic platelet release in the BM osteoblastic areas, resulting in ineffective platelet production.
Collapse
|
6
|
Megakaryocyte- and megakaryocyte precursor-related gene therapies. Blood 2016; 127:1260-8. [PMID: 26787735 DOI: 10.1182/blood-2015-07-607937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 01/27/2023] Open
Abstract
Hematopoietic stem cells (HSCs) can be safely collected from the body, genetically modified, and re-infused into a patient with the goal to express the transgene product for an individual's lifetime. Hematologic defects that can be corrected with an allogeneic bone marrow transplant can theoretically also be treated with gene replacement therapy. Because some genetic disorders affect distinct cell lineages, researchers are utilizing HSC gene transfer techniques using lineage-specific endogenous gene promoters to confine transgene expression to individual cell types (eg, ITGA2B for inherited platelet defects). HSCs appear to be an ideal target for platelet gene therapy because they can differentiate into megakaryocytes which are capable of forming several thousand anucleate platelets that circulate within blood vessels to establish hemostasis by repairing vascular injury. Platelets play an essential role in other biological processes (immune response, angiogenesis) as well as diseased states (atherosclerosis, cancer, thrombosis). Thus, recent advances in genetic manipulation of megakaryocytes could lead to new and improved therapies for treating a variety of disorders. In summary, genetic manipulation of megakaryocytes has progressed to the point where clinically relevant strategies are being developed for human trials for genetic disorders affecting platelets. Nevertheless, challenges still need to be overcome to perfect this field; therefore, strategies to increase the safety and benefit of megakaryocyte gene therapy will be discussed.
Collapse
|
7
|
Yousef A, Charkari NM. A novel method based on physicochemical properties of amino acids and one class classification algorithm for disease gene identification. J Biomed Inform 2015; 56:300-6. [DOI: 10.1016/j.jbi.2015.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/04/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
8
|
Yousefpour P, Chilkoti A. Co-opting biology to deliver drugs. Biotechnol Bioeng 2014; 111:1699-716. [PMID: 24916780 PMCID: PMC4251460 DOI: 10.1002/bit.25307] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 01/17/2023]
Abstract
The goal of drug delivery is to improve the safety and therapeutic efficacy of drugs. This review focuses on delivery platforms that are either derived from endogenous pathways, long-circulating biomolecules and cells or that piggyback onto long-circulating biomolecules and cells. The first class of such platforms is protein-based delivery systems--albumin, transferrin, and fusion to the Fc domain of antibodies--that have a long-circulation half-life and are designed to transport different molecules. The second class is lipid-based delivery systems-lipoproteins and exosomes-that are naturally occurring circulating lipid particles. The third class is cell-based delivery systems--erythrocytes, macrophages, and platelets--that have evolved, for reasons central to their function, to exhibit a long life-time in the body. The last class is small molecule-based delivery systems that include folic acid. This article reviews the biology of these systems, their application in drug delivery, and the promises and limitations of these endogenous systems for drug delivery.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708
| | | |
Collapse
|
9
|
Schroeder JA, Chen Y, Fang J, Wilcox DA, Shi Q. In vivo enrichment of genetically manipulated platelets corrects the murine hemophilic phenotype and induces immune tolerance even using a low multiplicity of infection. J Thromb Haemost 2014; 12:1283-93. [PMID: 24931217 PMCID: PMC4127102 DOI: 10.1111/jth.12633] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Our previous studies have demonstrated that platelet-specific gene delivery to hematopoietic stem cells can induce sustained therapeutic levels of platelet factor VIII (FVIII) expression in mice with hemophilia A. OBJECTIVE In this study, we aimed to enhance platelet FVIII expression while minimizing potential toxicities. METHODS A novel lentiviral vector (LV), which harbors dual genes, the FVIII gene driven by the αIIb promoter (2bF8) and a drug-resistance gene, the MGMT(P140K) cassette, was constructed. Platelet FVIII expression in mice with hemophilia A was introduced by transduction of hematopoietic stem cells and transplantation. The recipients were treated with O(6)-benzylguanine followed by 1,3-bis-2 chloroethyl-1-nitrosourea monthly three or four times. Animals were analyzed by using polymerase chain reaction (PCR), quantitative PCR, FVIII:C assays, and inhibitor assays. Phenotypic correction was assessed by tail clipping tests and rotational thromboelastometry analysis. RESULTS Even using a low multiplicity of infection of 1 and a non-myeloablative conditioning regimen, after in vivo selection, the levels of platelet FVIII expression in recipients increased to 4.33 ± 5.48 mU per 10(8) platelets (n = 16), which were 19.7-fold higher than the levels obtained from the recipients before treatment. Quantitative PCR results confirmed that 2bF8/MGMT-LV-transduced cells were effectively enriched after drug-selective treatment. Fifteen of 16 treated animals survived tail clipping. Blood loss and whole blood clotting time were normalized in the treated recipients. Notably, no anti-FVIII antibodies were detected in the treated animals even after recombinant human B-domain deleted FVIII challenge. CONCLUSION we have established an effective in vivo selective system that allows us to enrich 2bF8LV-transduced cells, enhancing platelet FVIII expression while reducing the potential toxicities associated with platelet gene therapy.
Collapse
Affiliation(s)
- J A Schroeder
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA; Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
10
|
Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells. Blood 2013; 123:395-403. [PMID: 24269957 DOI: 10.1182/blood-2013-08-520478] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies have demonstrated that platelet FVIII (2bF8) gene therapy can improve hemostasis in hemophilia A mice, even in the presence of inhibitory antibodies, but none of our studies has targeted human cells. Here, we evaluated the feasibility for lentivirus (LV)-mediated human platelet gene therapy of hemophilia A. Human platelet FVIII expression was introduced by 2bF8LV-mediated transduction of human cord blood (hCB) CD34(+) cells followed by xenotransplantation into immunocompromised NSG mice or NSG mice in an FVIII(null) background (NSGF8KO). Platelet FVIII was detected in all recipients that received 2bF8LV-transduced hCB cells as long as human platelet chimerism persisted. All NSGF8KO recipients (n = 7) that received 2bF8LV-transduced hCB cells survived tail clipping if animals had greater than 2% of platelets derived from 2bF8LV-transduced hCB cells, whereas 5 of 7 survived when human platelets were 0.3% to 2%. Whole blood clotting time analysis confirmed that hemostasis was improved in NSGF8KO mice that received 2bF8LV-transduced hCB cells. We demonstrate, for the first time, the feasibility of 2bF8LV gene delivery to human hematopoietic stem cells to introduce FVIII expression in human platelets and that human platelet-derived FVIII can improve hemostasis in hemophilia A.
Collapse
|
11
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Drake AC, Chen Q, Chen J. Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol Immunol 2012; 9:215-24. [PMID: 22425741 DOI: 10.1038/cmi.2012.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Humanized mice are immunodeficient animals engrafted with human hematopoietic stem cells that give rise to various lineages of human blood cells throughout the life of the mouse. This article reviews recent advances in the generation of humanized mice, focusing on practical considerations. We discuss features of different immunodeficient recipient mouse strains, sources of human hematopoietic stem cells, advances in expansion and genetic modification of hematopoietic stem cells, and techniques to modulate the cytokine environment of recipient mice, in order to enhance reconstitution of specific human blood lineage cells. We highlight the opportunities created by new technologies and discuss practical considerations on how to make best use of the widening array of basic models for specific research applications.
Collapse
Affiliation(s)
- Adam C Drake
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
13
|
Kanaji S, Kuether EL, Fahs SA, Schroeder JA, Ware J, Montgomery RR, Shi Q. Correction of murine Bernard-Soulier syndrome by lentivirus-mediated gene therapy. Mol Ther 2012; 20:625-32. [PMID: 22044935 PMCID: PMC3293608 DOI: 10.1038/mt.2011.231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/28/2011] [Indexed: 12/29/2022] Open
Abstract
Bernard-Soulier syndrome (BSS) is an inherited bleeding disorder caused by a defect in the platelet glycoprotein (GP) Ib-IX-V complex. The main treatment for BSS is platelet transfusion but it is often limited to severe bleeding episodes or surgical interventions due to the risk of alloimmunization. We have previously reported successful expression of human GPIbα (hGPIbα) in human megakaryocytes using a lentiviral vector (LV) encoding human GP1BA under control of the platelet-specific integrin αIIb promoter (2bIbα). In this study, we examined the efficacy of this strategy for the gene therapy of BSS using GPIbα(null) as a murine model of BSS. GPIbα(null) hematopoietic stem cells (HSC) transduced with 2bIbα LV were transplanted into lethally irradiated GPIbα(null) littermates. Therapeutic levels of hGPIbα expression were achieved that corrected the tail bleeding time and improved the macrothrombocytopenia. Sequential bone marrow (BM) transplants showed sustained expression of hGPIbα with similar phenotypic correction. Antibody response to hGPIbα was documented in 1 of 17 total recipient mice but was tolerated without any further treatment. These results demonstrate that lentivirus-mediated gene transfer can provide sustained phenotypic correction of murine BSS, indicating that this approach may be a promising strategy for gene therapy of BSS patients.
Collapse
Affiliation(s)
- Sachiko Kanaji
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Erin L Kuether
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scot A Fahs
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jocelyn A Schroeder
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jerry Ware
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert R Montgomery
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qizhen Shi
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
14
|
Abstract
Although platelets are the smallest cells in the blood, they are implied in various processes ranging from immunology and oncology to thrombosis and hemostasis. Many large-scale screening programs, genome-wide association, and "omics" studies have generated lists of genes and loci that are probably involved in the formation or physiology of platelets under normal and pathologic conditions. This creates an increasing demand for new and improved model systems that allow functional assessment of the corresponding gene products in vivo. Such animal models not only render invaluable insight in the platelet biology, but in addition, provide improved test systems for the validation of newly developed anti-thrombotics. This review summarizes the most important models to generate transgenic platelets and to study their influence on platelet physiology in vivo. Here we focus on the zebrafish morpholino oligonucleotide technology, the (platelet-specific) knockout mouse, and the transplantation of genetically modified human or murine platelet progenitor cells in myelo-conditioned mice. The various strengths and pitfalls of these animal models are illustrated by recent examples from the platelet field. Finally, we highlight the latest developments in genetic engineering techniques and their possible application in platelet research.
Collapse
|
15
|
Shi Q, Montgomery RR. Platelets as delivery systems for disease treatments. Adv Drug Deliv Rev 2010; 62:1196-203. [PMID: 20619307 DOI: 10.1016/j.addr.2010.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/29/2010] [Indexed: 12/23/2022]
Abstract
Platelets are small, anucleate, discoid shaped blood cells that play a fundamental role in hemostasis. Platelets contain a large number of biologically active molecules within cytoplasmic granules that are critical to normal platelet function. Because platelets circulate in blood through out the body, release biological molecules and mediators on demand and participate in hemostasis as well as many other pathophysiologic processes, targeting expression of proteins of interest to platelets and utilizing platelets as delivery systems for disease treatment would be a logical approach. This paper reviews the genetic therapy for inherited bleeding disorders utilizing platelets as delivery system, with a particular focus on platelet-derived FVIII for hemophilia A treatment.
Collapse
|
16
|
Factor IX ectopically expressed in platelets can be stored in alpha-granules and corrects the phenotype of hemophilia B mice. Blood 2010; 116:1235-43. [PMID: 20445020 DOI: 10.1182/blood-2009-11-255612] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We developed 2bF9 transgenic mice in a hemophilia B mouse model with the expression of human factor IX (FIX) under control of the platelet-specific integrin alphaIIb promoter, to determine whether ectopically expressing FIX in megakaryocytes can enable the storage of FIX in platelet alpha-granules and corrects the murine hemophilia B phenotype. FIX was detected in the platelets and plasma of 2bF9 transgenic mice by both antigen and activity assays. Approximately 90% of total FIX in blood was stored in platelets, most of which is releasable on activation of platelets. Immunostaining demonstrated that FIX was expressed in platelets and megakaryocytes and stored in alpha-granules. All 2bF9 transgenic mice survived tail clipping, suggesting that platelet-derived FIX normalizes hemostasis in the hemophilia B mouse model. This protection can be transferred by bone marrow transplantation or platelet transfusion. However, unlike our experience with platelet FVIII, the efficacy of platelet-derived FIX was limited in the presence of anti-FIX inhibitory antibodies. These results demonstrate that releasable FIX can be expressed and stored in platelet alpha-granules and that platelet-derived FIX can correct the bleeding phenotype in hemophilia B mice. Our studies suggest that targeting FIX expression to platelets could be a new gene therapy strategy for hemophilia B.
Collapse
|
17
|
Abstract
During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.
Collapse
Affiliation(s)
- Caroline Pendaries
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
18
|
Lavenu-Bombled C, Izac B, Legrand F, Cambot M, Vigier A, Massé JM, Dubart-Kupperschmitt A. Glycoprotein Ibalpha promoter drives megakaryocytic lineage-restricted expression after hematopoietic stem cell transduction using a self-inactivating lentiviral vector. Stem Cells 2007; 25:1571-7. [PMID: 17379771 DOI: 10.1634/stemcells.2006-0321] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Megakaryocytic (MK) lineage is an attractive target for cell/gene therapy approaches, aiming at correcting platelet protein deficiencies. However, MK cells are short-lived cells, and their permanent modification requires modification of hematopoietic stem cells with an integrative vector such as a lentiviral vector. Glycoprotein (Gp) IIb promoter, the most studied among the MK regulatory sequences, is also active in stem cells. To strictly limit transgene expression to the MK lineage after transduction of human CD34(+) hematopoietic cells with a lentiviral vector, we looked for a promoter activated later during MK differentiation. Human cord blood, bone marrow, and peripheral-blood mobilized CD34(+) cells were transduced with a human immunodeficiency virus-derived self-inactivating lentiviral vector encoding the green fluorescent protein (GFP) under the transcriptional control of GpIbalpha, GpIIb, or EF1alpha gene regulatory sequences. Both GpIbalpha and GpIIb promoters restricted GFP expression (analyzed by flow cytometry and immunoelectron microscopy) in MK cells among the maturing progeny of transduced cells. However, only the GpIbalpha promoter was strictly MK-specific, whereas GpIIb promoter was leaky in immature progenitor cells not yet engaged in MK cell lineage differentiation. We thus demonstrate the pertinence of using a 328-base-pair fragment of the human GpIbalpha gene regulatory sequence, in the context of a lentiviral vector, to tightly restrict transgene expression to the MK lineage after transduction of human CD34(+) hematopoietic cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Cécile Lavenu-Bombled
- Institut Cochin, Department of Hematology, Hôpital de Port-Royal, 123 Bd de Port-Royal, Paris 75014, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Shi Q, Wilcox DA, Fahs SA, Fang J, Johnson BD, DU LM, Desai D, Montgomery RR. Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia A. J Thromb Haemost 2007; 5:352-61. [PMID: 17269937 DOI: 10.1111/j.1538-7836.2007.02346.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies from our laboratory have demonstrated that lineage-targeted synthesis of factor VIII (FVIII) under the direction of the platelet-specific integrin alphaIIb gene promoter (2bF8) can correct the murine haemophilia A phenotype even in the presence of high titer inhibitory antibodies in a transgenic mouse model. OBJECTIVE In this study, we assessed the efficacy of using a genetic therapy approach to correct haemophilia A in FVIII-deficient (FVIII(null)) mice by transplantation of bone marrow (BM) transduced with a lentivirus (LV)-based gene transfer cassette encoding 2bF8. RESULTS Functional FVIII activity (FVIII:C) was detected in platelet lysates from treated mice and the levels were similar to 2bF8 heterozygous transgenic mice. Mice transplanted with 2bF8 LV-transduced BM survived tail clipping and we did not detected inhibitory or non-inhibitory FVIII antibodies over the period of this study (11 months). Furthermore, BM transferred from the primary transplant recipients into FVIII(null) secondary recipients demonstrated sustained platelet-FVIII expression leading to correction of the haemophilia A phenotype showing that gene transfer occurred within long-term repopulating haematopoietic stem cells. CONCLUSIONS These results demonstrate that ectopic expression of FVIII in platelets by lentivirus-mediated bone marrow transduction/transplantation may be a promising strategy for gene therapy of haemophilia A in humans.
Collapse
Affiliation(s)
- Q Shi
- Department of Pediatrics, Medical College of Wisconsin Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wilcox DA, White GC. Gene Therapy for Platelet Disorders. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Liu J, DeNofrio J, Yuan W, Wang Z, McFadden AW, Parise LV. Genetic Manipulation of Megakaryocytes to Study Platelet Function. Curr Top Dev Biol 2007; 80:311-35. [DOI: 10.1016/s0070-2153(07)80008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
22
|
Shi Q, Wilcox DA, Fahs SA, Weiler H, Wells CW, Cooley BC, Desai D, Morateck PA, Gorski J, Montgomery RR. Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. J Clin Invest 2006; 116:1974-82. [PMID: 16823491 PMCID: PMC1483176 DOI: 10.1172/jci28416] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/18/2006] [Indexed: 11/17/2022] Open
Abstract
Inhibitory immune response to exogenously infused factor VIII (FVIII) is a major complication in the treatment of hemophilia A. Generation of such inhibitors has the potential to disrupt gene therapy for hemophilia A. We explore what we believe to be a novel approach to overcome this shortcoming. Human B-domain-deleted FVIII (hBDDFVIII) was expressed under the control of the platelet-specific alphaIIb promoter in platelets of hemophilic (FVIIInull) mice to create 2bF8trans mice. The FVIII transgene product was stored in platelets and released at the site of platelet activation. In spite of the lack of FVIII in the plasma of 2bF8trans mice, the bleeding phenotype of FVIIInull mice was corrected. More importantly, the bleeding phenotype was corrected in the presence of high inhibitory antibody titers introduced into the mice by infusion or by spleen cell transfer from recombinant hBDDFVIII-immunized mice. Our results demonstrate that this approach to the targeted expression of FVIII in platelets has the potential to correct hemophilia A, even in the presence of inhibitory immune responses to infused FVIII.
Collapse
Affiliation(s)
- Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - David A. Wilcox
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scot A. Fahs
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hartmut Weiler
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Clive W. Wells
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C. Cooley
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Drashti Desai
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Patricia A. Morateck
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jack Gorski
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert R. Montgomery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA.
Departments of Pediatrics, Physiology, Microbiology, and Orthopedics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To overview inherited syndromes that affect platelets and to discuss current data on the molecular origin and management of these rare diseases. RECENT FINDINGS An increasing number of genes responsible for inherited thrombocytopenias have been identified and these now extend to glycosylation defects. Although Glanzmann thrombasthenia remains the predominant disorder of platelet function, knowledge is increasing of pathologies concerning primary receptors for adhesion and signalling, the activation and secretory pathways, and even the development of procoagulant activity. SUMMARY These syndromes affect cell adhesion, cell activation, and cell-to-cell contact interactions fundamental in cell biology. Studies on the pathophysiology of alphaIIbbeta3 in platelets have helped unravel the molecular mechanisms of integrin function, and the information gained has resulted in improved antithrombotic therapy. The establishment of national registries and the use of state-of-the-art genomic and proteomic technologies will accelerate progress and help to define how mutations affecting a much larger range of proteins contribute alone or in combination to defining specific platelet phenotypes.
Collapse
Affiliation(s)
- Alan T Nurden
- Centre de Référence des Pathologies Plaquettaires, Institut Fédératif de Recherche n 4, CHU Bordeaux, Pessac, France.
| | | |
Collapse
|
24
|
Abstract
Qualitative disorders of platelet function and production form a large group of rare diseases which cover a multitude of genetic defects that by and large have as a common symptom, excessive mucocutaneous bleeding. Glanzmann thrombasthenia, is enabling us to learn much about the pathophysiology of integrins and of how alphaIIb beta3 functions. Bernard-Soulier syndrome, an example of macrothrombocytopenia, combines the production of large platelets with a deficit or non-functioning of the major adhesion receptor of platelets, the GPIb-IX-V complex. Amino acid substitutions in GPIb alpha, may lead to up-regulation and spontaneous binding of von Willebrand factor as in Platelet-type von Willebrand disease. In disorders with defects in the MYH9 gene, macrothrombocytopenias are linked to modifications in kidney, eye or ear, whereas other inherited thrombocytopenias variously link a low platelet count with a propensity to leukemia, skeletal defects, learning impairment, and abnormal red cells. Defects of secretion from platelets include an abnormal alpha-granule formation as in the gray platelet syndrome (with marrow myelofibrosis), and of organelle biogenesis in the Hermansky-Pudlak and Chediak-Higashi syndromes where platelet dense body defects are linked to abnormalities of other lysosomal-like organelles including melanosomes. Finally, defects involving surface receptors (P2Y(12), TPalpha) for activating stimuli, of proteins essential for signaling pathways (including Wiskott-Aldrich syndrome), and of platelet-derived procoagulant activity (Scott syndrome) show how studies on platelet disorders are helping unravel the pathways of primary hemostasis.
Collapse
Affiliation(s)
- A T Nurden
- Institut Fédératif de Recherche N 4, CHU Bordeaux, Pessac, France.
| |
Collapse
|
25
|
Feng S, Lu X, Kroll MH. Filamin A Binding Stabilizes Nascent Glycoprotein Ibα Trafficking and Thereby Enhances Its Surface Expression. J Biol Chem 2005; 280:6709-15. [PMID: 15623510 DOI: 10.1074/jbc.m413590200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycoprotein (Gp) Ib-IX-V complex is essential for platelet-mediated hemostasis and thrombosis. The cytoplasmic domain of its largest polypeptide subunit GpIbalpha possesses a binding region for filamin A, which links GpIb-IX-V to the platelet cytoskeleton. There is evidence that filamin A binding to GpIbalpha directs the surface expression of GpIb-IX. To investigate the mechanism of this effect, we examined GpIbalpha biosynthesis in Chinese hamster ovary (CHO) cells stably co-expressing wild-type or mutant GpIbalpha with GpIbbeta, GpIX with and without filamin A. We observed that surface GpIbalpha expression is enhanced in CHO cells co-expressing human filamin A. In comparison with cells expressing only GpIbalpha, GpIbbeta, and GpIX (CHO-GpIbalpha/betaIX), lysates from CHO-GpIbalpha/betaIX + filamin A-expressing cells showed greater amounts of immature, incompletely O-glycosylated and fully mature GpIbalpha, but lesser amounts of the approximately 15-kDa C-terminal peptide released when the extracellular domain of GpIbalpha is cleaved by proteases. When filamin A binding is eliminated by truncation of GpIbalpha at C-terminal residue 557 or by a deletion between amino acids 560-570, the decreased synthesis of mature GpIbalpha is accompanied by decreased immature GpIbalpha and by an increased immunodetectable C-terminal peptide. The synthesis of mature GpIbalpha in CHO-GpIbalpha/betaIX cells is eliminated by brefeldin A (which inhibits transport out of the endoplasmic reticulum (ER)) and restored by lactacystin (which inhibits proteasomal degradation). These results suggest that GpIbalpha binds to filamin A within the ER and that filamin A binding directs post-ER trafficking of GpIbalpha to the cell surface.
Collapse
Affiliation(s)
- Shuju Feng
- Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine and Rice University, Houston, Texas 77030, USA
| | | | | |
Collapse
|