1
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Histamine H 1 Receptor-Mediated JNK Phosphorylation Is Regulated by G q Protein-Dependent but Arrestin-Independent Pathways. Int J Mol Sci 2024; 25:3395. [PMID: 38542369 PMCID: PMC10970263 DOI: 10.3390/ijms25063395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
2
|
Histamine and diabetic nephropathy: an up-to-date overview. Clin Sci (Lond) 2019; 133:41-54. [PMID: 30606813 DOI: 10.1042/cs20180839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
Abstract
The classification of diabetic nephropathy (DN) as a vascular complication of diabetes makes the possible involvement of histamine, an endogenous amine that is well known for its vasoactive properties, an interesting topic for study. The aim of the present review is to provide an extensive overview of the possible involvement of histamine in the onset and progression of DN. The evidence collected on the role of histamine in kidney function together with its well-known pleiotropic action suggest that this amine may act simultaneously on glomerular hyperfiltration, tubular inflammation, fibrosis development and tubular hypertrophy.
Collapse
|
3
|
Fernández-Castillejo S, Macià A, Motilva MJ, Catalán Ú, Solà R. Endothelial Cells Deconjugate Resveratrol Metabolites to Free Resveratrol: A Possible Role in Tissue Factor Modulation. Mol Nutr Food Res 2019; 63:e1800715. [PMID: 30570816 DOI: 10.1002/mnfr.201800715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/27/2018] [Indexed: 11/09/2022]
Abstract
SCOPE The antithrombotic effects of resveratrol (RV) and its derivatives remain unknown. The objective is to evaluate the modulatory effects of RV, its glucoside form, piceid, and its biological metabolites (RV-3-O-β-d-glucuronide, RV-4'-O-d-glucuronide, and RV-3-O-sulfate) on tissue factor (TF). Moreover, the endothelial metabolism of RV is assessed. METHODS AND RESULTS Human aortic endothelial cells (HAECs) are incubated with trans-piceid, trans-RV, or their biological metabolites and stimulated with tumor necrosis factor-α (TNF-α). TF activity, protein levels, and mRNA expression are determined in cell lysates. Moreover, RV conjugation (phase-II-metabolism) to its sulfated or glucuronidated metabolites and their deconjugation to their parent compound (free RV) are also assessed in cell lysates and culture media. RV decreased TF activity, protein levels, and mRNA expression, whereas piceid and RV metabolites (RVmet) had no effects. RV-3-O-sulfate was the main metabolite generated in the endothelium, while RVmet are deconjugated to free RV. Isomerization of trans-RV and its trans-metabolites to their cis-forms is observed. CONCLUSIONS RV exerts antithrombotic effects by modulating TF. RVmet and piceid does not exert this effect. However, the capacity of endothelial cells to deconjugate RVmet to free RV indicates that RVmet function as an endothelial reservoir for RV regeneration, thus, contributing to the antithrombotic effects of RV.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Functional Nutrition, Oxidation, Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain
| | - Alba Macià
- Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Maria-José Motilva
- Antioxidants Research Group, Food Technology Department, Agrotecnio Center, Universitat de Lleida, Lleida, Spain
| | - Úrsula Catalán
- Functional Nutrition, Oxidation, Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation, Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain.,Hospital Universitari Sant Joan de Reus, Reus, Spain
| |
Collapse
|
4
|
Ng PY, McIntosh KA, Hargrave G, Ho KH, Paul A, Plevin R. Inhibition of cytokine-mediated JNK signalling by purinergic P2Y 11 receptors, a novel protective mechanism in endothelial cells. Cell Signal 2018; 51:59-71. [PMID: 30076967 DOI: 10.1016/j.cellsig.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Previous research from our laboratory has demonstrated a novel phenomenon whereby GPCRs play a role in inhibiting cytokine-mediated c-Jun N-terminal kinase (JNK) signalling. So far this novel phenomenon seems to have been vastly overlooked, with little research in the area. Therefore, in this study we explored this further; by assessing the potential of P2YRs to mediate inhibition of cytokine-mediated JNK signalling and related functional outcomes in human endothelial cells. We utilised primary endothelial cells, and employed the use of endogenous activators of P2YRs and well characterised pharmacological inhibitors, to assess signalling parameters mediated by P2YRs, Interleukin-1β (IL-1β), TNFα and JNK. Activation of P2YRs with adenosine tri-phosphate (ATP) resulted in a time- and concentration-dependent inhibition of IL-1β-mediated phosphorylation of JNK and associated kinase activity. The effect was specific for cytokine-mediated JNK signalling, as ATP was without effect on JNK induced by other non-specific activators (e.g. sorbitol, anisomycin), nor effective against other MAPK pathways such as p38 and the canonical NFκB cascade. Pharmacological studies demonstrated a role for the P2Y11 receptor in mediating this effect, but not the P2Y1 nor the adenosine receptors (A1, A2A, A2B & A3). The novel Gαq/11 inhibitor YM254890 and a protein kinase A (PKA) inhibitor H89 both partially reversed ATP-mediated inhibition of IL-1β-stimulated JNK indicating involvement of both Gαq/11 and Gαs mediated pathways. ATP also partially reversed IL-1β-mediated induction of cyclo‑oxygenase-2 (COX-2) and E-selectin. Collectively, these studies indicate the potential for activation of purinergic receptors to protect the endothelium from inflammatory driven JNK activation and may be a new target for inflammatory disease therapy.
Collapse
Affiliation(s)
- Pei Y Ng
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Kathryn A McIntosh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK.
| | - Gillian Hargrave
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Ka H Ho
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| |
Collapse
|
5
|
Guilarte M, Sala-Cunill A, Luengo O, Labrador-Horrillo M, Cardona V. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis. Front Immunol 2017; 8:846. [PMID: 28798744 PMCID: PMC5526842 DOI: 10.3389/fimmu.2017.00846] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Anaphylaxis is the most severe form of allergic reaction, resulting from the effect of mediators and chemotactic substances released by activated cells. Mast cells and basophils are considered key players in IgE-mediated human anaphylaxis. Beyond IgE-mediated activation of mast cells/basophils, further mechanisms are involved in the occurrence of anaphylaxis. New insights into the potential relevance of pathways other than mast cell and basophil degranulation have been unraveled, such as the activation of the contact and the coagulation systems. Mast cell heparin released upon activation provides negatively charged surfaces for factor XII (FXII) binding and auto-activation. Activated FXII, the initiating serine protease in both the contact and the intrinsic coagulation system, activates factor XI and prekallikrein, respectively. FXII-mediated bradykinin (BK) formation has been proven in the human plasma of anaphylactic patients as well as in experimental models of anaphylaxis. Moreover, the severity of anaphylaxis is correlated with the increase in plasma heparin, BK formation and the intensity of contact system activation. FXII also activates plasminogen in the fibrinolysis system. Mast cell tryptase has been shown to participate in fibrinolysis through plasmin activation and by facilitating the degradation of fibrinogen. Some usual clinical manifestations in anaphylaxis, such as angioedema or hypotension, or other less common, such as metrorrhagia, may be explained by the direct effect of the activation of the coagulation and contact system driven by mast cell mediators.
Collapse
Affiliation(s)
- Mar Guilarte
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Anna Sala-Cunill
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Olga Luengo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Moisés Labrador-Horrillo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Victoria Cardona
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
6
|
Schwameis M, Steiner MM, Schoergenhofer C, Lagler H, Buchtele N, Jilma-Stohlawetz P, Boehm T, Jilma B. D-dimer and histamine in early stage bacteremia: A prospective controlled cohort study. Eur J Intern Med 2015; 26:782-6. [PMID: 26586287 DOI: 10.1016/j.ejim.2015.10.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Plasma histamine levels and D-dimer predict disease severity and mortality in advanced septic shock. We hypothesized that increased plasma histamine levels parallel coagulation activation and yield prognostic significance already at a very early stage of bacteremia. PATIENTS AND METHODS This prospective controlled cohort study enrolled 72 consecutive non-surgical non-ICU-ward inpatients with newly culture-diagnosed bacteremia and a Pitt Bacteremia score ≤2 to determine the extent of histamine and D-dimer release and their predictive role on outcome at the earliest stage of blood stream infection. Age-matched healthy adults served as internal controls (n=36). A binominal logistic regression and a Cox proportional hazards regression analysis were performed to ascertain the effects of D-dimer and histamine on in-hospital mortality. RESULTS In contrast to plasma histamine, D-dimer levels were significantly higher within hours of culture-proven bacteremia. In-hospital mortality occurred in 17%. Histamine levels were neither associated with D-dimer level (r=0.04; p>0.05) nor with ICU admissions (r=0.06; p>0.05) and outcome (crude OR 0.8, 95% CI 0.3-1.9; p=0.6). In contrast, early-elevated D-dimer levels predicted mortality: the odds to die increased with the D-dimer level, and was 12.6 (crude OR, 95% CI 3-52; p=0.001) in patients with a D-dimer ≥4μg/mL (n=13). CONCLUSION Histamine levels are elevated in only few patients (4%) with newly diagnosed bacteremia. Our findings suggest that D-dimer, but not plasma histamine, could be a promising marker of lethality already at a very early stage of blood stream infection.
Collapse
Affiliation(s)
- Michael Schwameis
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 A Vienna, Austria
| | | | | | - Heimo Lagler
- Department of Internal Medicine I, Medical University of Vienna, 1090 A Vienna, Austria
| | - Nina Buchtele
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 A Vienna, Austria
| | - Petra Jilma-Stohlawetz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, 1090 A Vienna, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 A Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 A Vienna, Austria.
| |
Collapse
|
7
|
Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. Int J Inflam 2011; 2011:367284. [PMID: 21941675 PMCID: PMC3176495 DOI: 10.4061/2011/367284] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence shows a broad spectrum of biological functions of tissue factor (TF). TF classical role in initiating the extrinsic blood coagulation and its direct thrombotic action in close relation to cardiovascular risks have long been established. TF overexpression/hypercoagulability often observed in many clinical conditions certainly expands its role in proinflammation, diabetes, obesity, cardiovascular diseases, angiogenesis, tumor metastasis, wound repairs, embryonic development, cell adhesion/migration, innate immunity, infection, pregnancy loss, and many others. This paper broadly covers seminal observations to discuss TF pathogenic roles in relation to diverse disease development or manifestation. Biochemically, extracellular TF signaling interfaced through protease-activated receptors (PARs) elicits cellular activation and inflammatory responses. TF diverse biological roles are associated with either coagulation-dependent or noncoagulation-mediated actions. Apparently, TF hypercoagulability refuels a coagulation-inflammation-thrombosis circuit in “autocrine” or “paracrine” fashions, which triggers a wide spectrum of pathophysiology. Accordingly, TF suppression, anticoagulation, PAR blockade, or general anti-inflammation offers an array of therapeutical benefits for easing diverse pathological conditions.
Collapse
Affiliation(s)
- Arthur J Chu
- Division of Biological and Physical Sciences, Delta State University, Cleveland, MS 38733, USA
| |
Collapse
|
8
|
Breitenstein A, Stein S, Holy EW, Camici GG, Lohmann C, Akhmedov A, Spescha R, Elliott PJ, Westphal CH, Matter CM, Lüscher TF, Tanner FC. Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells. Cardiovasc Res 2010; 89:464-72. [PMID: 20978007 DOI: 10.1093/cvr/cvq339] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIMS The mammalian silent information regulator-two 1 (Sirt1) blunts the noxious effects of cardiovascular risk factors such as type 2 diabetes mellitus and obesity. Nevertheless, the role of Sirt1 in regulating the expression of tissue factor (TF), the key trigger of coagulation, and arterial thrombus formation remains unknown. METHODS AND RESULTS Human as well as mouse cell lines were used for in vitro experiments, and C57Bl/6 mice for in vivo procedures. Sirt1 inhibition by splitomicin or sirtinol enhanced cytokine-induced endothelial TF protein expression as well as surface activity, while TF pathway inhibitor protein expression did not change. Sirt1 inhibition further enhanced TF mRNA expression, TF promoter activity, and nuclear translocation as well as DNA binding of the p65 subunit of nuclear factor-kappa B (NFκB/p65). Sirt1 siRNA enhanced TF protein and mRNA expression, and this effect was reduced in NFκB/p65(-/-) mouse embryonic fibroblasts reconstituted with non-acetylatable Lys(310)-mutant NFκB/p65. Activation of the mitogen-activated protein kinases p38, c-Jun NH(2)-terminal kinase, and p44/42 (ERK) remained unaffected. In vivo, mice treated with the Sirt1 inhibitor splitomicin exhibited enhanced TF activity in the arterial vessel wall and accelerated carotid artery thrombus formation in a photochemical injury model. CONCLUSION We provide pharmacological and genetic evidence that Sirt1 inhibition enhances TF expression and activity by increasing NFκB/p65 activation in human endothelial cells. Furthermore, Sirt1 inhibition induces arterial thrombus formation in vivo. Hence, modulation of Sirt1 may offer novel therapeutic options for targeting thrombosis.
Collapse
Affiliation(s)
- Alexander Breitenstein
- Cardiovascular Research, Physiology Institute, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu ZZ, Luo Q. Recent advances in research of vascular targeting strategy for tumor therapy. Shijie Huaren Xiaohua Zazhi 2010; 18:2889-2893. [DOI: 10.11569/wcjd.v18.i27.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor angiogenesis is a complicated pathologic process and plays an important role in the growth and metastasis of many solid tumors. There are two vascular targeting strategies for tumor therapy: inhibition of tumor angiogenesis and blockage of tumor blood flow. The former aims to inhibit tumor neovascularization, while the latter seeks to induce a rapid and selective tumor vascular shutdown so that the blood flow to tumors, especially large tumors, is arrested. Vascular targeting therapy is a potential new and important mean of treatment for malignant tumors. In this paper, we summarize the recent advances in research of vascular targeting strategy for tumor therapy.
Collapse
|
10
|
Paclitaxel potentiates inflammatory cytokine-induced prothrombotic molecules in endothelial cells. J Cardiovasc Pharmacol 2010; 55:276-85. [PMID: 20075745 DOI: 10.1097/fjc.0b013e3181d263f7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To overcome the limitations of balloon expandible metal stent-induced neointimal smooth muscle cell proliferation, drug-coated stent devices have been developed. Drug eluting stents release high concentrations of antiproliferative agents, such as paclitaxel, to reduce neointimal hyperplasia. The proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), is known to cause severe endothelial dysfunction and accelerate atherosclerotic lesion progression. The interaction of TNF-alpha and paclitaxel on the release of prothrombotic molecules was examined in endothelial cells. Treatment of endothelial cells with paclitaxel had no direct effect on tissue factor (TF) expression, but TNF-alpha increased TF. Cotreatment of paclitaxel with TNF-alpha markedly augmented the release of TF. TNF-alpha induced release of plasminogen activator inhibitor but no synergism occurred with paclitaxel. Treatment of endothelial cells with paclitaxel and TNF-alpha reduced expression of thrombomodulin and protein C receptor. Tissue factor pathway inhibitor expression was reduced by prolonged treatment with either paclitaxel or TNF-alpha. The adhesion molecule, CD62 E, was induced by TNF-alpha; however, CD31, CD62 P, and CD106 were not affected by paclitaxel and TNF-alpha. Apoptosis was not observed with cotreatment of endothelial cells with paclitaxel and TNF-alpha. CD59-positive microparticles were released in response to TNF-alpha, but the release was not augmented by paclitaxel. Paclitaxel and TNF-alpha increased the nitrotyrosination of proteins. These findings indicate that paclitaxel enhances TNF-alpha-induced release of TF, and downregulated thrombomodulin, increased protein nitration, which may subsequently favor prothrombotic intimal surface.
Collapse
|
11
|
Rozenberg I, Sluka SHM, Rohrer L, Hofmann J, Becher B, Akhmedov A, Soliz J, Mocharla P, Borén J, Johansen P, Steffel J, Watanabe T, Lüscher TF, Tanner FC. Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoproteins. Arterioscler Thromb Vasc Biol 2010; 30:923-30. [PMID: 20203300 DOI: 10.1161/atvbaha.109.201079] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Enhanced endothelial permeability leading to intimal accumulation of low-density lipoproteins (LDL) stimulates the formation of atherosclerotic lesions. Histamine is known to increase vascular permeability. Whether this affects the formation of atherosclerotic lesions, however, remains elusive. METHODS AND RESULTS Apolipoprotein E-null (ApoE(-/-)) mice treated with a histamine H1 receptor but not an H2 receptor antagonist developed 40% fewer atherosclerotic lesions in the aorta than placebo-treated controls. Similarly, genetic deletion of the H1 but not the H2 receptor resulted in a 60% reduction of lesions compared with ApoE(-/-) controls. The H1 receptor enhanced LDL permeability and lipid accumulation in the aorta, whereas plasma lipoprotein levels remained unaltered. In contrast, the H1 receptor did not affect proliferation and migration of vascular smooth muscle cells. Bone marrow transplantation confirmed that the formation of atherosclerotic lesions depended on the H1 receptor in vascular cells, whereas its presence in bone marrow-derived cells was irrelevant for plaque development. Mice expressing the H1 receptor exhibited higher levels of the chemokine (C-C motif) ligand 5 and higher numbers of macrophages and T-helper lymphocytes in plaques, higher numbers of circulating lymphocytes, and larger spleens. CONCLUSION These data indicate that H1 but not H2 receptor activation drives the formation of atherosclerotic lesions through an increased vascular permeability for LDL, which is associated with an enhanced secondary aortic and systemic inflammation. These data open novel perspectives for the prevention and treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Izabela Rozenberg
- Cardiovascular Research, Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Holy EW, Tanner FC. Tissue factor in cardiovascular disease pathophysiology and pharmacological intervention. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:259-92. [PMID: 20933205 DOI: 10.1016/s1054-3589(10)59009-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tissue factor (TF) is the major trigger of the coagulation cascade and thereby crucially involved in the maintenance of vascular hemostasis. By binding factor VIIa, the resulting TF:VIIa complex activates the coagulation factors IX and X ultimately leading to fibrin and clot formation. In the vessel wall, TF expression and activity is detectable in vascular smooth muscle cells and fibroblasts and, at a much lower level, in endothelial cells and can be induced by various stimuli including cytokines. In addition, TF is found in the bloodstream in circulating cells such as monocytes, in TF containing microparticles, and as a soluble splicing isoform. Besides its well-known extracellular role as a trigger of coagulation, TF also functions as a transmembrane receptor, and TF-dependent intracellular signaling events regulate the expression of genes involved in cellular responses such as proliferation and migration. TF indeed appears to be involved in the pathogenesis of neointima formation and tumor growth, and increased levels of TF have been detected in patients with cardiovascular risk factors or coronary artery disease as well as in those with cancer. Therefore, pharmacological or genetic inhibition of TF may be an attractive target for the treatment of cardiovascular disease and cancer. Different strategies for inhibition of TF have been developed such as inhibition of TF synthesis and blockade of TF action. Clinical applications of such strategies need to be tested in appropriate trials, in particular for evaluating the advantages of targeted versus systemic delivery of the inhibitors.
Collapse
Affiliation(s)
- Erik W Holy
- Cardiovascular Research, Physiology Institute, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Holy EW, Stämpfli SF, Akhmedov A, Holm N, Camici GG, Lüscher TF, Tanner FC. Laminin receptor activation inhibits endothelial tissue factor expression. J Mol Cell Cardiol 2009; 48:1138-45. [PMID: 19712679 DOI: 10.1016/j.yjmcc.2009.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 08/14/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
Abstract
Tissue factor (TF) is an important trigger of arterial thrombosis. The green tea catechin epigallocatechin-3-gallate (EGCG) is a ligand of the 67-kDa laminin receptor (67LR) and exhibits cardioprotective effects. This study investigates whether 67LR regulates TF expression in human endothelial cells. Immunofluorescence demonstrated that human aortic endothelial cells expressed 67LR. Cells grown on laminin expressed 35% less TF in response to TNF-alpha (TNF-alpha) than those grown on fibronectin (n=6; p<0.001). EGCG (1-30 microM) inhibited TNF-alpha and histamine induced endothelial TF expression and activity in a concentration dependent manner resulting in 87% reduction of TF expression (n=5; p<0.001); in contrast, expression of tissue factor pathway inhibitor was not affected (n=4; p=NS). In vivo administration of EGCG (30 mg/kg/day) inhibited TF activity in carotid arteries of C57BL6 mice. Real-time PCR and promoter studies revealed that EGCG decreased TF expression at the transcriptional level and impaired activation of the mitogen activated protein (MAP) kinase JNK 1/2, but not ERK or p38. Similarly, the JNK 1/2 inhibitor SP600125 (1 microM) impaired TF promoter activity (n=4; p<0.001) and protein expression (n=4; p<0.001). 67LR blocking antibodies blunted the inhibitory effect of EGCG on both TF protein expression and JNK activation. In contrast, vascular cell adhesion molecule 1 (VCAM-1) was not affected by laminin nor EGCG, and its expression was not regulated by JNK. EGCG did not affect TNF-alpha stimulated NFkB activation. Laminin receptor activation inhibits endothelial TF expression by impairing JNK phosphorylation. Thus, 67LR may be a potential target for the development of novel anti-thrombotic therapies.
Collapse
Affiliation(s)
- Erik W Holy
- Cardiovascular Research, Physiology Institute, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|