1
|
Wang Q, Liu W, Fan J, Guo J, Shen F, Ma Z, Ruan C, Guo L, Jiang M, Zhao Y. von Willebrand factor promotes platelet-induced metastasis of osteosarcoma through activation of the VWF-GPIb axis. J Bone Oncol 2020; 25:100325. [PMID: 33101888 PMCID: PMC7569326 DOI: 10.1016/j.jbo.2020.100325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022] Open
Abstract
Immunohistochemistry results directly show VWF is increased during tumor progression. VWF is expressed as low molecular weight multimer in OS cell line SAOS2. VWF promotes platelet-induced metastasis of OS through VWF-GPIb pathway.
von Willebrand factor (VWF) is exclusively expressed in endothelial cells (ECs) and megakaryocytes, which plays a crucial role in the initiation of arterial thrombosis. Recent studies have shown that VWF is also expressed in osteosarcoma (OS) cells and participates in adhesion of cancer cells to platelets, thus promoting metastasis of OS cells. However, it is unclear how OS cell-derived VWF-platelet interaction contributes to the metastasis of OS. We hypothesized that the interaction is mediated by the binding between VWF A1 and GPIbα of platelets, a molecular mechanism similar to that of thrombosis. The increased expression of VWF in SAOS2 cells may contribute to the enhancement of platelet adhesion through the VWF-GPIb pathway, which could promote the migration and invasion capacities of SAOS2 cells in vitro. Antibodies that block the pathway could significantly inhibit the platelet-induced metastasis of OS cells. Our results suggest a theoretical basis for the development of new anti-OS metastasis drugs, and further enrich the mechanism of OS metastasis.
Collapse
Key Words
- CFSE, 5-(6)-carboxyfluorescein succinimidyl ester
- ECs, Endothelial cells
- ELISA, Enzyme-linked immunosorbent assay
- FBS, Fetal bovine serum
- FITC, Fluorescein isothiocyanate
- GPIb, Glycoprotein Ib
- H&E, Hematoxylin and eosin
- Metastasis
- OS, Osteosarcoma
- Osteosarcoma
- PFA, Paraformaldehyde
- PMA, Phorbol 12-myristate 13-acetate
- Platelet
- UL-VWF, Ultra-large multimer VWF
- VWF
- VWF, von Willebrand factor
- WPB, Weibel-Palade body
- mAb, Monoclonal antibody
Collapse
Affiliation(s)
- Q Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis & Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Pathology Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - W Liu
- Pathology Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - J Fan
- Stomatology Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - J Guo
- Orthopedics Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - F Shen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis & Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Z Ma
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis & Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - C Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis & Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - L Guo
- Pathology Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - M Jiang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis & Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Y Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis & Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| |
Collapse
|
2
|
Schneider MF, Fallah MA, Mess C, Obser T, Schneppenheim R, Alexander-Katz A, Schneider SW, Huck V. Platelet adhesion and aggregate formation controlled by immobilised and soluble VWF. BMC Mol Cell Biol 2020; 21:64. [PMID: 32917131 PMCID: PMC7488753 DOI: 10.1186/s12860-020-00309-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022] Open
Abstract
Background It has been demonstrated that von Willebrand factor (VWF) mediated platelet-endothelium and platelet-platelet interactions are shear dependent. The VWF’s mobility under dynamic conditions (e.g. flow) is pivotal to platelet adhesion and VWF-mediated aggregate formation in the cascade of VWF-platelet interactions in haemostasis. Results Combining microfluidic tools with fluorescence and reflection interference contrast microscopy (RICM), here we show, that specific deletions in the A-domains of the biopolymer VWF affect both, adhesion and aggregation properties independently. Intuitively, the deletion of the A1-domain led to a significant decrease in both adhesion and aggregate formation of platelets. Nevertheless, the deletion of the A2-domain revealed a completely different picture, with a significant increase in formation of rolling aggregates (gain of function). We predict that the A2-domain effectively ‘masks’ the potential between the platelet glycoprotein (GP) Ib and the VWF A1-domain. Furthermore, the deletion of the A3-domain led to no significant variation in either of the two functional characteristics. Conclusions These data demonstrate that the macroscopic functional properties i.e. adhesion and aggregate formation cannot simply be assigned to the properties of one particular domain, but have to be explained by cooperative phenomena. The absence or presence of molecular entities likewise affects the properties (thermodynamic phenomenology) of its neighbours, therefore altering the macromolecular function.
Collapse
Affiliation(s)
- Matthias F Schneider
- Department of Physics, Medical and Biological Physics, Technical University Dortmund, Emil-Figge-Str. 50, 44227, Dortmund, Germany
| | - Mohammad A Fallah
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457, Constance, Germany
| | - Christian Mess
- University Medical Centre Hamburg-Eppendorf, Centre for Internal Medicine, Martinistr. 52, 20246, Hamburg, Germany
| | - Tobias Obser
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Reinhard Schneppenheim
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineerin, Massachusetts Institute of Technology, 400 Technology Sq. (NE46-605), Cambridge, MA, 02139, USA
| | - Stefan W Schneider
- University Medical Centre Hamburg-Eppendorf, Centre for Internal Medicine, Martinistr. 52, 20246, Hamburg, Germany
| | - Volker Huck
- University Medical Centre Hamburg-Eppendorf, Centre for Internal Medicine, Martinistr. 52, 20246, Hamburg, Germany. .,Heidelberg University, Medical Faculty Mannheim, Experimental Dermatology, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
3
|
Xu Z, Luo C, Lai P, Ling W, Wu S, Huang X, Huang L, Zhang G, Du X, Weng J. von Willebrand Factor as a Predictor for Transplant-Associated Thrombotic Microangiopathy. Clin Appl Thromb Hemost 2020; 26:1076029619892684. [PMID: 32088973 PMCID: PMC7256332 DOI: 10.1177/1076029619892684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
CONCLUSION von Willebrand factor is a useful predictor and prognostic measure for TA-TMA, which may help clinicians identify and manage this life-threatening disease earlier.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Chengwei Luo
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Wei Ling
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Suijing Wu
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Lisi Huang
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Guanrong Zhang
- Information and Statistics Center, Guangdong Provincial People’s Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of
China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong
Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Qi Y, Chen W, Liang X, Xu K, Gu X, Wu F, Fan X, Ren S, Liu J, Zhang J, Li R, Liu J, Liang X. Novel antibodies against GPIbα inhibit pulmonary metastasis by affecting vWF-GPIbα interaction. J Hematol Oncol 2018; 11:117. [PMID: 30223883 PMCID: PMC6142402 DOI: 10.1186/s13045-018-0659-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Platelet glycoprotein Ibα (GPIbα) extracellular domain, which is part of the receptor complex GPIb-IX-V, plays an important role in tumor metastasis. However, the mechanism through which GPIbα participates in the metastatic process remains unclear. In addition, potential bleeding complication remains an obstacle for the clinical use of anti-platelet agents in cancer therapy. METHODS We established a series of screening models and obtained rat anti-mouse GPIbα monoclonal antibodies (mAb) 1D12 and 2B4 that demonstrated potential value in suppressing cancer metastasis. To validate our findings, we further obtained mouse anti-human GPIbα monoclonal antibody YQ3 through the same approach. RESULTS 1D12 and 2B4 affected the von Willebrand factor (vWF)-GPIbα interaction via binding to GPIbα aa 41-50 and aa 277-290 respectively, which markedly inhibited the interaction among platelets, tumor cells, and endothelial cells in vitro, and reduced the mean number of surface nodules in the experimental and spontaneous metastasis models in vivo. As expected, YQ3 inhibited lung cancer adhesion and demonstrated similar value in metastasis. More importantly, for all three mAbs in our study, none of their Fabs induced thrombocytopenia. CONCLUSION Our results therefore supported the hypothesis that GPIbα contributes to tumor metastasis and suggested potential value of using anti-GPIbα mAb to suppress cancer metastasis.
Collapse
Affiliation(s)
- Yingxue Qi
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xinyu Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ke Xu
- Central laboratory, General Surgery, Putuo Hospital, and Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai, 200062, People's Republic of China.
| | - Xiangyu Gu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
5
|
Yan B, Xu M, Zhao Y, Guo H, Xia L, Ruan C, Zhao Y. Development of a novel flow cytometric immunobead array to quantify VWF: Ag and VWF: GPIbR and its application in acute myocardial infarction. Eur J Haematol 2017; 99:207-215. [PMID: 28523822 DOI: 10.1111/ejh.12905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Both von Willebrand disease (VWD) and acute myocardial infarction (AMI) involve quantitative and qualitative changes in von Willebrand factor (VWF). Our objective was to develop a rapid and precise flow cytometric immunobead array (FCIA) to quantify VWF antigen (VWF:Ag) and ristocetin-triggered platelet glycoprotein Ib binding (VWF:GPIbR) and apply it in a clinical setting. METHODS Microbeads, coated with monoclonal antibodies for SZ29 or SZ151 IgG, were incubated with diluted plasma. VWF-binding microbeads were detected with FITC-conjugated sheep-anti-human VWF IgG by flow cytometry. Plasma VWF:Ag and VWF:GPIbR levels in normal controls (CTL; n=105), patients with VWD (n=21), and patients with AMI (n=146) were tested by FCIA and ELISA in parallel. ADAMTS13 activity and VWF multimer analyses were also implemented. RESULTS Our novel FCIA showed a strong correlation with the ELISA results (VWF:Ag, r=.855; VWF:GPIbR, r=.813). The intra-assay coefficient variations (CVs) of VWF:Ag-FCIA and VWF:GPIbR-FCIA were 9.2% and 7.7%, respectively, and the interassay CVs were 12.6% and 13.5%, respectively. Plasma VWF:Ag and VWF:GPIbR levels were significantly higher in patients with AMI than in CTL (P<.0001), whereas the ratios of ADAMTS13/VWF:Ag and ADAMTS13/VWF:GPIbR were significantly lower (P<.0001). Levels of plasma ultra-large VWF (UL-VWF) were dramatically increased in patients with AMI. CONCLUSIONS The novel VWF:Ag and VWF:GPIbR-FCIA assays were found to be simpler, more specific, and more accurate than the classical ELISA method. In addition, elevated VWF:GPIbR and UL-VWF may contribute to the pathogenesis of AMI.
Collapse
Affiliation(s)
- Bin Yan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengqiao Xu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yunxiao Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haijun Guo
- Department of Clinical Laboratory, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Ji S, Jiang M, Yan B, Shen F, He Y, Wan A, Xia L, Ruan C, Zhao Y. The chimeric monoclonal antibody MHCSZ-123 against human von Willebrand factor A3 domain inhibits high-shear arterial thrombosis in a Rhesus monkey model. J Hematol Oncol 2017; 10:111. [PMID: 28526067 PMCID: PMC5438484 DOI: 10.1186/s13045-017-0475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/02/2017] [Indexed: 01/24/2023] Open
Abstract
Background SZ-123, a murine monoclonal antibody that targets the human von Willebrand factor (VWF) A3 domain and blocks the binding of collagen, is a powerful antithrombotic. In a Rhesus monkey model of thrombosis, SZ-123 had no side effects, such as bleeding or thrombocytopenia. Methods The mouse/human chimeric version of SZ-123, MHCSZ-123, was developed and maintained inhibitory capacities in vitro and ex vivo after injection into monkeys. CHO-S cells were selected for stable expression of MHCSZ-123. Cell clones with high levels of MHCSZ-123 expression were screened with G418 then adapted to serum-free suspension culture. The antithrombotic effect of MHCSZ-123 on acute platelet-mediated thrombosis was studied in monkeys where thrombus formation was induced by injury and stenosis of the femoral artery, which allowed for cyclic flow reductions (CFRs). CFRs were measured in the femoral artery of anesthetized Rhesus monkeys before and after intravenous administration of MHCSZ-123. Ex vivo VWF binding to collagen, platelet aggregation, platelet counts, and template bleeding time were used as measurements of antithrombotic activity. In addition, plasma VWF and VWF occupancy were measured by ELISA. Results Injection of 0.1, 0.3, and 0.6 mg/kg MHCSZ-123 significantly reduced CFRs by 29.4%, 57.9%, and 73.1%, respectively. When 0.3 and 0.6 mg/kg MHCSZ-123 were administered, 46.6%–65.8% inhibition of ristocetin-induced platelet aggregation was observed between 15 and 30 min after injection. We observed minimal effects on bleeding time, minimal blood loss, and no spontaneous bleeding or thrombocytopenia. Conclusions The VWF-A3 inhibitor MHCSZ-123 significantly reduced thrombosis in Rhesus monkeys and appeared to be safe and well tolerated.
Collapse
Affiliation(s)
- Shundong Ji
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Miao Jiang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Bin Yan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Fei Shen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Yang He
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Aini Wan
- MOE Key Laboratory of Industrial Biotechnology, School of Biotechnology of Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Lijun Xia
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, 188 Shizi Street, Suzhou, Jiangsu, 215006, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Changgeng Ruan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Yiming Zhao
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, 188 Shizi Street, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
7
|
Zhao YM, Jiang M, Ji SD, He Y, Shen F, Li XM, Ruan CG. Anti-human VWF monoclonal antibody SZ-123 prevents arterial thrombus formation by inhibiting VWF-collagen and VWF-platelet interactions in Rhesus monkeys. Biochem Pharmacol 2013; 85:945-53. [PMID: 23295157 DOI: 10.1016/j.bcp.2012.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/22/2012] [Accepted: 12/27/2012] [Indexed: 01/12/2023]
Abstract
The interactions between collagen, von Willebrand factor (VWF), and glycoprotein Ib (GPIb) are crucial for hemostasis and thrombosis. This axis represents a promising target for the development of new antithrombotic agents. In this study, we investigate the in vivo antithrombotic efficacy of an anti-VWF monoclonal antibody SZ-123 and its potential underlying mechanisms. Cyclic flow reductions (CFRs), an indicator of arterial thrombosis, were measured in the femoral artery of anesthetized Rhesus monkeys before and after intravenous administration of SZ-123. Ex vivo VWF binding to collagen, platelet agglutination, platelet count, and template bleeding time were used as measurements of antithrombotic activity. In addition, plasma VWF and SZ-123 levels, and VWF occupancy were measured by ELISA. Administration of 0.1, 0.3, and 0.6 mg/kg SZ-123 resulted in 45.3%, 78.2%, and 100% reductions in CFRs, respectively. When 0.3 and 0.6 mg/kg SZ-123 were administered, 100% of VWF was occupied by the antibody. Moreover, 100% ex vivo inhibition of VWF-collagen binding and 60-95% inhibition of platelet agglutination were observed from 15 min to 1 h. None of the doses resulted in significant prolongation of bleeding time. In vitro experiments revealed that SZ-123 not only blocks the collagen-VWF A3 interaction but also indirectly inhibits VWF A1 binding to GPIbα induced by ristocetin. Thus, we demonstrate that SZ-123 prevents in vivo arterial thrombus formation under high shear conditions by inhibiting VWF A3-collagen and VWF A1-platelet interactions and does not significantly prolong bleeding time.
Collapse
Affiliation(s)
- Yi-ming Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 215006, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Fang X, Fang Y, Liu L, Liu G, Wu J. Mapping paratope on antithrombotic antibody 6B4 to epitope on platelet glycoprotein Ibalpha via molecular dynamic simulations. PLoS One 2012; 7:e42263. [PMID: 22860101 PMCID: PMC3408434 DOI: 10.1371/journal.pone.0042263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/04/2012] [Indexed: 11/19/2022] Open
Abstract
Binding of platelet receptor glycoprotein Ibα (GPIbα) to the A1 domain of von Willebrand factor (vWF) is a critical step in both physiologic hemostasis and pathologic thrombosis, for initiating platelet adhesion to subendothelium of blood vessels at sites of vascular injury. Gain-of-function mutations in GPIbα contribute to an abnormally high-affinity binding of platelets to vWF and can lead to thrombosis, an accurate complication causing heart attack and stroke. Of various antithrombotic monoclonal antibodies (mAbs) targeting human GPIbα, 6B4 is a potent one to inhibit the interaction between GPIbα and vWF-A1 under static and flow conditions. Mapping paratope to epitope with mutagenesis experiments, a traditional route in researches of these antithrombotic mAbs, is usually expensive and time-consuming. Here, we suggested a novel computational procedure, which combines with homology modeling, rigid body docking, free and steered molecular dynamics (MD) simulations, to identify key paratope residues on 6B4 and their partners on GPIbα, with hypothesis that the stable hydrogen bonds and salt bridges are the important linkers between paratope and epitope residues. Based on a best constructed model of 6B4 bound with GPIbα, the survival ratios and rupture times of all detected hydrogen bonds and salt bridges in binding site were examined via free and steered MD simulations and regarded as indices of thermal and mechanical stabilizations of the bonds, respectively. Five principal paratope residues with their partners were predicted with their high survival ratios and/or long rupture times of involved hydrogen bonds, or with their hydrogen bond stabilization indices ranked in top 5. Exciting, the present results were in good agreement with previous mutagenesis experiment data, meaning a wide application prospect of our novel computational procedure on researches of molecular of basis of ligand-receptor interactions, various antithrombotic mAbs and other antibodies as well as theoretically design of biomolecular drugs.
Collapse
Affiliation(s)
- Xiang Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- * E-mail: (YF); (JW)
| | - Li Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Guangjian Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- * E-mail: (YF); (JW)
| |
Collapse
|
9
|
von Willebrand factor (VWF) propeptide binding to VWF D'D3 domain attenuates platelet activation and adhesion. Blood 2012; 119:4769-78. [PMID: 22452980 DOI: 10.1182/blood-2011-10-387548] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Noncovalent association between the von Willebrand factor (VWF) propeptide (VWFpp) and mature VWF aids N-terminal multimerization and protein compartmentalization in storage granules. This association is currently thought to dissipate after secretion into blood. In the present study, we examined this proposition by quantifying the affinity and kinetics of VWFpp binding to mature VWF using surface plasmon resonance and by developing novel anti-VWF D'D3 mAbs. Our results show that the only binding site for VWFpp in mature VWF is in its D'D3 domain. At pH 6.2 and 10mM Ca(2+), conditions mimicking intracellular compartments, VWFpp-VWF binding occurs with high affinity (K(D) = 0.2nM, k(off) = 8 × 10(-5) s(-1)). Significant, albeit weaker, binding (K(D) = 25nM, k(off) = 4 × 10(-3) s(-1)) occurs under physiologic conditions of pH 7.4 and 2.5mM Ca(2+). This interaction was also observed in human plasma (K(D) = 50nM). The addition of recombinant VWFpp in both flow-chamber-based platelet adhesion assays and viscometer-based shear-induced platelet aggregation and activation studies reduced platelet adhesion and activation partially. Anti-D'D3 mAb DD3.1, which blocks VWFpp binding to VWF-D'D3, also abrogated platelet adhesion, as shown by shear-induced platelet aggregation and activation studies. Our data demonstrate that VWFpp binding to mature VWF occurs in the circulation, which can regulate the hemostatic potential of VWF by reducing VWF binding to platelet GpIbα.
Collapse
|
10
|
Bu Z, Pan Y, Shang B, Cao Z, Zhou Q, Ruan C. SZ-117, a monoclonal antibody against matrix metalloproteinase-2 inhibits tumor cell-mediated angiogenesis. Hybridoma (Larchmt) 2012; 31:63-67. [PMID: 22142190 DOI: 10.1089/hyb.2011.0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, using an in vitro tube formation model, we observed that SZ117, a monoclonal antibody against matrix metalloproteinase-2 (MMP2), attenuated a capillary-like tube structure formed by tumor endothelial cell 3B11 and human sarcoma cell MG63. In addition, gelatin zymography showed that SZ117 markedly inhibited MMP2 activity, but did not affect the capability of MMP9-mediated gelatin degradation. These data suggest that SZ117 might have an anti-tumor angiogenic effect and that angiogenic tumor cells and MMP2 may be targeted by monoclonal antibodies for novel anti-tumor angiogenic and anti-cancerous drug discovery.
Collapse
Affiliation(s)
- Zibin Bu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 199 Ren Ai Road, Suzhou, China
| | | | | | | | | | | |
Collapse
|
11
|
Jiang M, Zhao Y, Shen F, Wang F, He Y, Ruan C. Epitope mapping of human VWF A3 recognized by monoclonal antibody SZ-123 and SZ-125 using MALDI mass spectrometry. Int J Hematol 2011; 94:241-247. [DOI: 10.1007/s12185-011-0904-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
|
12
|
A conformation-sensitive monoclonal antibody against the A2 domain of von Willebrand factor reduces its proteolysis by ADAMTS13. PLoS One 2011; 6:e22157. [PMID: 21779388 PMCID: PMC3133621 DOI: 10.1371/journal.pone.0022157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/19/2011] [Indexed: 11/19/2022] Open
Abstract
The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.
Collapse
|
13
|
Yang J, Ji S, Dong N, Zhao Y, Ruan C. Engineering and characterization of a chimeric anti-platelet glycoprotein Ibalpha monoclonal antibody and preparation of its Fab fragment. Hybridoma (Larchmt) 2010; 29:125-32. [PMID: 20443704 DOI: 10.1089/hyb.2009.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycoprotein Ibalpha (GPIbalpha) is a platelet-specific membrane protein. It mediates platelet adhesion to collagen exposed at the vascular injury site by binding to von Willebrand factor (VWF) in plasma. This process is crucial for arterial thrombus formation. Blocking interaction between GPIbalpha and VWF may prevent platelet adhesion and thrombus formation. We previously generated a high affinity monoclonal antibody against human platelet GPIbalpha, SZ2, which inhibits both ristocetin- and botrocetin-induced platelet aggregation in vitro. To convert SZ2 into mouse/human chimeric antibody for anti-platelet therapy in humans, in this study, we constructed a mouse/human chimeric antibody derived from the hybridoma cells producing murine antibody against platelet glycoprotein Ibalpha, conducted its expression in dihydrofolate reductase-deficient Chinese hamster ovary (CHO) cells, and prepared its chimeric Fab fragment. Results from ELISA and Western blot analysis showed that the chimeric antibody was secreted from the cells and that the heavy and light chains were assembled correctly. Flow cytometry analysis confirmed specific binding of the chimeric antibody to the GPIb-expressing CHO cells. In vitro functional studies revealed that the chimeric antibody and its Fab fragment prevented platelet adhesion to VWF under high shear stress and inhibited ristocetin-induced platelet aggregation in a dose-dependent manner. These results demonstrated that the chimeric antibody was successfully engineered and suggested that the Fab fragment of chimeric antibody against GPIbalpha is a promising therapeutic antibody more suitable for prevention and treatment of human arterial thrombosis.
Collapse
Affiliation(s)
- Jianfeng Yang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Heath, Suzhou, China
| | | | | | | | | |
Collapse
|
14
|
von Willebrand factor self-association on platelet GpIbalpha under hydrodynamic shear: effect on shear-induced platelet activation. Blood 2010; 116:3990-8. [PMID: 20696943 DOI: 10.1182/blood-2010-02-269266] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the mechanosensitive, multimeric blood protein von Willebrand factor (VWF) is dependent on its size. We tested the hypothesis that VWF may self-associate on the platelet glycoprotein Ibα (GpIbα) receptor under hydrodynamic shear. Consistent with this proposition, whereas Alexa-488-conjugated VWF (VWF-488) bound platelets at modest levels, addition of unlabeled VWF enhanced the extent of VWF-488 binding. Recombinant VWF lacking the A1-domain was conjugated with Alexa-488 to produce ΔA1-488. Although ΔA1-488 alone did not bind platelets under shear, this protein bound GpIbα on addition of either purified plasma VWF or recombinant full-length VWF. The extent of self-association increased with applied shear stress more than ∼ 60 to 70 dyne/cm(2). ΔA1-488 bound platelets in the milieu of plasma. On application of fluid shear to whole blood, half of the activated platelets had ΔA1-488 bound, suggesting that VWF self-association may be necessary for cell activation. Shearing platelets with 6-μm beads bearing either immobilized VWF or anti-GpIbα mAb resulted in cell activation at shear stress down to 2 to 5 dyne/cm(2). Taken together, the data suggest that fluid shear in circulation can increase the effective size of VWF bound to platelet GpIbα via protein self-association. This can trigger mechanotransduction and cell activation by enhancing the drag force applied on the cell-surface receptor.
Collapse
|