1
|
Bar Barroeta A, Albanese P, Kadavá T, Jankevics A, Marquart JA, Meijers JCM, Scheltema RA. Thrombin activation of the factor XI dimer is a multistaged process for each subunit. J Thromb Haemost 2024; 22:1336-1346. [PMID: 38242207 DOI: 10.1016/j.jtha.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Factor (F)XI can be activated by proteases, including thrombin and FXIIa. The interactions of these enzymes with FXI are transient in nature and therefore difficult to study. OBJECTIVES To identify the binding interface between thrombin and FXI and understand the dynamics underlying FXI activation. METHODS Crosslinking mass spectrometry was used to localize the binding interface of thrombin on FXI. Molecular dynamics simulations were applied to investigate conformational changes enabling thrombin-mediated FXI activation after binding. The proposed trajectory of activation was examined with nanobody 1C10, which was previously shown to inhibit thrombin-mediated activation of FXI. RESULTS We identified a binding interface of thrombin located on the light chain of FXI involving residue Pro520. After this initial interaction, FXI undergoes conformational changes driven by binding of thrombin to the apple 1 domain in a secondary step to allow migration toward the FXI cleavage site. The 1C10 binding site on the apple 1 domain supports this proposed trajectory of thrombin. We validated the results with known mutation sites on FXI. As Pro520 is conserved in prekallikrein (PK), we hypothesized and showed that thrombin can bind PK, even though it cannot activate PK. CONCLUSION Our investigations show that the activation of FXI is a multistaged procedure. Thrombin first binds to Pro520 in FXI; thereafter, it migrates toward the activation site by engaging the apple 1 domain. This detailed analysis of the interaction between thrombin and FXI paves a way for future interventions for bleeding or thrombosis.
Collapse
Affiliation(s)
- Awital Bar Barroeta
- Department of Molecular Hematology, Sanquin, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Pascal Albanese
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Tereza Kadavá
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands; Univ. Grenoble Alpes, CNRS, INRAE, CEA, LPCV, INSERM, UMR BioSanté U1292, Grenoble, France
| | - J Arnoud Marquart
- Department of Molecular Hematology, Sanquin, Amsterdam, the Netherlands
| | - Joost C M Meijers
- Department of Molecular Hematology, Sanquin, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands; Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
2
|
Ponczek MB, Shamanaev A, LaPlace A, Dickeson SK, Srivastava P, Sun MF, Gruber A, Kastrup C, Emsley J, Gailani D. The evolution of factor XI and the kallikrein-kinin system. Blood Adv 2020; 4:6135-6147. [PMID: 33351111 PMCID: PMC7757006 DOI: 10.1182/bloodadvances.2020002456] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Factor XI (FXI) is the zymogen of a plasma protease (FXIa) that contributes to hemostasis by activating factor IX (FIX). In the original cascade model of coagulation, FXI is converted to FXIa by factor XIIa (FXIIa), a component, along with prekallikrein and high-molecular-weight kininogen (HK), of the plasma kallikrein-kinin system (KKS). More recent coagulation models emphasize thrombin as a FXI activator, bypassing the need for FXIIa and the KKS. We took an evolutionary approach to better understand the relationship of FXI to the KKS and thrombin generation. BLAST searches were conducted for FXI, FXII, prekallikrein, and HK using genomes for multiple vertebrate species. The analysis shows the KKS appeared in lobe-finned fish, the ancestors of all land vertebrates. FXI arose later from a duplication of the prekallikrein gene early in mammalian evolution. Features of FXI that facilitate efficient FIX activation are present in all living mammals, including primitive egg-laying monotremes, and may represent enhancement of FIX-activating activity inherent in prekallikrein. FXI activation by thrombin is a more recent acquisition, appearing in placental mammals. These findings suggest FXI activation by FXIIa may be more important to hemostasis in primitive mammals than in placental mammals. FXI activation by thrombin places FXI partially under control of the vitamin K-dependent coagulation mechanism, reducing the importance of the KKS in blood coagulation. This would explain why humans with FXI deficiency have a bleeding abnormality, whereas those lacking components of the KKS do not.
Collapse
Affiliation(s)
- Michał B Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Alec LaPlace
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - S Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Andras Gruber
- Department of Biomedical Engineering and
- Division of Hematology and Medical Oncology, School of Medicine, Oregon Health and Sciences University, Portland, OR
- Aronora, Inc., Portland, OR
| | - Christian Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; and
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Schaefer M, Buchmueller A, Dittmer F, Straßburger J, Wilmen A. Allosteric Inhibition as a New Mode of Action for BAY 1213790, a Neutralizing Antibody Targeting the Activated Form of Coagulation Factor XI. J Mol Biol 2019; 431:4817-4833. [PMID: 31655039 DOI: 10.1016/j.jmb.2019.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/26/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Factor XI (FXI), the zymogen of activated FXI (FXIa), is an attractive target for novel anticoagulants because FXI inhibition offers the potential to reduce thrombosis risk while minimizing the risk of bleeding. BAY 1213790, a novel anti-FXIa antibody, was generated using phage display technology. Crystal structure analysis of the FXIa-BAY 1213790 complex demonstrated that the tyrosine-rich complementarity-determining region 3 loop of the heavy chain of BAY 1213790 penetrated deepest into the FXIa binding epitope, forming a network of favorable interactions including a direct hydrogen bond from Tyr102 to the Gln451 sidechain (2.9 Å). The newly discovered binding epitope caused a structural rearrangement of the FXIa active site, revealing a novel allosteric mechanism of FXIa inhibition by BAY 1213790. BAY 1213790 specifically inhibited FXIa with a binding affinity of 2.4 nM, and in human plasma, prolonged activated partial thromboplastin time and inhibited thrombin generation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Martina Schaefer
- Bayer AG, Research and Development, Pharmaceuticals, Structural Biology, 13342 Berlin, Germany.
| | - Anja Buchmueller
- Bayer AG, Research and Development, Pharmaceuticals, Cardiovascular, 42096 Wuppertal, Germany
| | - Frank Dittmer
- Bayer AG, Product Supply, Pharmaceuticals, Quality Control, 51368 Leverkusen, Germany
| | - Julia Straßburger
- Bayer AG, Research and Development, Pharmaceuticals, Cardiovascular, 42096 Wuppertal, Germany
| | - Andreas Wilmen
- Bayer AG, Research and Development, Pharmaceuticals, Protein Engineering and Assays, 50829 Cologne, Germany
| |
Collapse
|
4
|
Ely LK, Lolicato M, David T, Lowe K, Kim YC, Samuel D, Bessette P, Garcia JL, Mikita T, Minor DL, Coughlin SR. Structural Basis for Activity and Specificity of an Anticoagulant Anti-FXIa Monoclonal Antibody and a Reversal Agent. Structure 2018; 26:187-198.e4. [PMID: 29336885 DOI: 10.1016/j.str.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/23/2017] [Accepted: 12/13/2017] [Indexed: 11/18/2022]
Abstract
Coagulation factor XIa is a candidate target for anticoagulants that better separate antithrombotic efficacy from bleeding risk. We report a co-crystal structure of the FXIa protease domain with DEF, a human monoclonal antibody that blocks FXIa function and prevents thrombosis in animal models without detectable increased bleeding. The light chain of DEF occludes the FXIa S1 subsite and active site, while the heavy chain provides electrostatic interactions with the surface of FXIa. The structure accounts for the specificity of DEF for FXIa over its zymogen and related proteases, its active-site-dependent binding, and its ability to inhibit substrate cleavage. The inactive FXIa protease domain used to obtain the DEF-FXIa crystal structure reversed anticoagulant activity of DEF in plasma and in vivo and the activity of a small-molecule FXIa active-site inhibitor in vitro. DEF and this reversal agent for FXIa active-site inhibitors may help support clinical development of FXIa-targeting anticoagulants.
Collapse
Affiliation(s)
- Lauren K Ely
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tovo David
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kate Lowe
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yun Cheol Kim
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Dharmaraj Samuel
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Paul Bessette
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Jorge L Garcia
- PMI PreClinical, 1031 Bing Street, San Carlos, CA 94070, USA
| | - Thomas Mikita
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Mohammed BM, Matafonov A, Ivanov I, Sun MF, Cheng Q, Dickeson SK, Li C, Sun D, Verhamme IM, Emsley J, Gailani D. An update on factor XI structure and function. Thromb Res 2018; 161:94-105. [PMID: 29223926 PMCID: PMC5776729 DOI: 10.1016/j.thromres.2017.10.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Factor XI (FXI) is the zymogen of a plasma protease, factor XIa (FXIa), that contributes to thrombin generation during blood coagulation by proteolytic activation of several coagulation factors, most notably factor IX (FIX). FXI is a homolog of prekallikrein (PK), a component of the plasma kallikrein-kinin system. While sharing structural and functional features with PK, FXI has undergone adaptive changes that allow it to contribute to blood coagulation. Here we review current understanding of the biology and enzymology of FXI, with an emphasis on structural features of the protein as they relate to protease function.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; School of Pharmacy, Department of Clinical Pharmacy, Cairo University, Cairo, Egypt
| | - Anton Matafonov
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivan Ivanov
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mao-Fu Sun
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiufang Cheng
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Kent Dickeson
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chan Li
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - David Sun
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ingrid M Verhamme
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonas Emsley
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - David Gailani
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Castaman G, Giacomelli SH, Caccia S, Riccardi F, Rossetti G, Dragani A, Giuffrida AC, Biasoli C, Duga S. The spectrum of factor XI deficiency in Italy. Haemophilia 2013; 20:106-13. [PMID: 24112640 DOI: 10.1111/hae.12257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2013] [Indexed: 11/29/2022]
Abstract
Factor XI (FXI) deficiency is a rare inherited bleeding disorder invariably caused by mutations in the FXI gene. The disorder is rather frequent in Ashkenazi Jews, in whom around 98% of the abnormal alleles is represented by Glu117X and Phe283Leu mutations. A wide heterogeneity of causative mutations has been previously reported in a few FXI deficient patients from Italy. In this article, we enlarge the knowledge on the genetic background of FXI deficiency in Italy. Over 4 years, 22 index cases, eight with severe deficiency and 14 with partial deficiency, have been evaluated. A total of 21 different mutations in 30 disease-associated alleles were identified, 10 of which were novel. Among them, a novel Asp556Gly dysfunctional mutation was also identified. Glu117X was also detected, as previously reported from other patients in Italy, while again Phe283Leu was not identified. A total of 34 heterozygous relatives were also identified. Bleeding tendency was present in very few cases, being inconsistently related to the severity of FXI deficiency in plasma. In conclusion, at variance with other populations, no single major founder effect is present in Italian patients with FXI deficiency.
Collapse
Affiliation(s)
- G Castaman
- Department of Cell Therapy and Hematology, Hemophilia and Thrombosis Center, San Bortolo Hospital, Vicenza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Factor XI (fXI) is a homodimeric zymogen that is converted to a protease with 1 (1/2-fXIa) or 2 (fXIa) active subunits by factor XIIa (fXIIa) or thrombin. It has been proposed that the dimeric structure is required for normal fXI activation. Consistent with this premise, fXI monomers do not reconstitute fXI-deficient mice in a fXIIa-dependent thrombosis model. FXI activation by fXIIa or thrombin is a slow reaction that can be accelerated by polyanions. Phosphate polymers released from platelets (poly-P) can enhance fXI activation by thrombin and promote fXI autoactivation. Poly-P increased initial rates of fXI activation 30- and 3000-fold for fXIIa and thrombin, respectively. FXI monomers were activated more slowly than dimers by fXIIa in the presence of poly-P. However, this defect was not observed when thrombin was the activating protease, nor during fXI autoactivation. The data suggest that fXIIa and thrombin activate fXI by different mechanisms. FXIIa may activate fXI through a trans-activation mechanism in which the protease binds to 1 subunit of the dimer, while activating the other subunit. For activation by thrombin, or during autoactivation, the data support a cis-activation mechanism in which the activating protease binds to and activates the same fXI subunit.
Collapse
|
8
|
He R, Chen D, He S. Factor XI: hemostasis, thrombosis, and antithrombosis. Thromb Res 2011; 129:541-50. [PMID: 22197449 DOI: 10.1016/j.thromres.2011.11.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Coagulation factor FXI (FXI), a plasma serine protease zymogen, has important roles in both intrinsic and extrinsic coagulation pathways and bridges the initiation and amplification phases of plasmatic hemostasis. Recent studies have provided new insight into the molecular structure and functional features of FXI and have demonstrated distinct structural and biological differences between activated factor XII (FXIIa)-mediated FXI activation and tissue factor/thrombin-mediated FXI activation. The former is important in thrombosis; the latter is more essential in hemostasis. Activated partial thromboplastin tine (aPTT) artificially reflects FXIIa-initiated intrinsic coagulation pathway in vitro. Conversely, FXIIa-inhibited diluted thromboplastin time assay may reflect tissue factor/thrombin-mediated FXI activation in vivo. Further explication of the genetic mutations of FXI deficiency has improved the understanding of the structure-function relationship of FXI. Besides its procoagulant activity, the antifibrinolytic activity of FXI was well documented in a wealth of literature. Finally, the new emerging concept of inhibiting FXI as a novel antithrombotic approach with an improved benefit-risk ratio has been supported through observations from human FXI deficiency and various animal models. Large- and small-molecule FXI inhibitors have shown promising antithrombotic effects. The present review summarizes the recent advancements in the molecular physiology of FXI and the molecular pathogenesis of FXI deficiency and discusses the evidence and progress of FXI-targeting antithrombotics development.
Collapse
Affiliation(s)
- Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
9
|
Zucker M, Rosenberg N, Peretz H, Green D, Bauduer F, Zivelin A, Seligsohn U. Point mutations regarded as missense mutations cause splicing defects in the factor XI gene. J Thromb Haemost 2011; 9:1977-84. [PMID: 21718436 DOI: 10.1111/j.1538-7836.2011.04426.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Point mutations within exons are frequently defined as missense mutations. In the factor (F)XI gene, three point mutations, c.616C>T in exon 7, c.1060G>A in exon 10 and c.1693G>A in exon 14 were reported as missense mutations P188S, G336R and E547K, respectively, according to their exonic positions. Surprisingly, expression of the three mutations in cells yielded substantially higher FXI antigen levels than was expected from the plasma of patients bearing these mutations. OBJECTIVES To test the possibility that the three mutations, albeit their positions within exons, cause splicing defects. METHODS AND RESULTS Platelet mRNA analysis of a heterozygous patient revealed that the c.1693A mutation caused aberrant splicing. Platelet mRNA of a second compound heterozygote for c.616T and c.1060A mutations was undetectable suggesting its degradation. Cells transfected with a c.616T minigene favored production of an aberrantly spliced mRNA that skips exon 7. Cells transfected with a mutated minigene spanning exons 8-10 exhibited a significant decrease in the amount of normally spliced mRNA. In silico analysis revealed that the three mutations are located within sequences of exonic splicing enhancers (ESEs) that bind special proteins and are potentially important for correct splicing. Compensatory mutations created near the natural mutations corrected the putative function of ESEs thereby restoring normal splicing of exons 7 and 10. CONCLUSIONS The present findings define a new mechanism of mutations in F11 and underscore the need to perform expression studies and mRNA analysis of point mutations before stating that they are missense mutations.
Collapse
Affiliation(s)
- M Zucker
- The Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | |
Collapse
|
10
|
Gaso-Sokac D, Kovac S, Clifton J, Josic D. Therapeutic plasma proteins--application of proteomics in process optimization, validation, and analysis of the final product. Electrophoresis 2011; 32:1104-17. [PMID: 21544836 DOI: 10.1002/elps.201000641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An overview is given on the application of proteomic technology in the monitoring of different steps during the production of therapeutic proteins from human plasma. Recent advances in this technology enable the use of proteomics as an advantageous tool for the validation of already existing processes, the development and fine tuning of new production steps, the characterization and quality control of final products, the detection of both harmful impurities and modifications of the therapeutic protein and the auditing of batch-to-batch variations. Further, use of proteomics for preclinical testing of new products, which can be either recombinant or plasma-derived, is also discussed.
Collapse
Affiliation(s)
- Dajana Gaso-Sokac
- Department of Chemistry, J. J. Strossmayer Univeristy, Osijek, Croatia
| | | | | | | |
Collapse
|
11
|
|
12
|
Abstract
Factor XI (FXI) deficiency is a rare autosomal bleeding disease associated with genetic defects in the FXI gene. It is a heterogeneous disorder with variable tendency in bleeding and variable causative FXI gene mutations. It is characterized as a cross-reacting material-negative (CRM-) FXI deficiency due to decreased FXI levels or cross-reacting material-positive (CRM+) FXI deficiency due to impaired FXI function. Increasing number of mutations has been reported in FXI mutation database, and most of the mutations are affecting serine protease (SP) domain of the protein. Functional characterization for the mutations helps to better understand the molecular basis of FXI deficiency. Prevalence of the disease is higher in certain populations such as Ashkenazi Jews. The purpose of this review is to give an overview of the molecular basis of congenital FXI deficiency.
Collapse
Affiliation(s)
- Ergul Berber
- Department of Molecular Biology and Genetics, Halic University, Istanbul, Turkey.
| |
Collapse
|
13
|
Abstract
Factor XI (FXI) is the zymogen of an enzyme (FXIa) that contributes to hemostasis by activating factor IX. Although bleeding associated with FXI deficiency is relatively mild, there has been resurgence of interest in FXI because of studies indicating it makes contributions to thrombosis and other processes associated with dysregulated coagulation. FXI is an unusual dimeric protease, with structural features that distinguish it from vitamin K-dependent coagulation proteases. The recent availability of crystal structures for zymogen FXI and the FXIa catalytic domain have enhanced our understanding of structure-function relationships for this molecule. FXI contains 4 "apple domains" that form a disk structure with extensive interfaces at the base of the catalytic domain. The characterization of the apple disk structure, and its relationship to the catalytic domain, have provided new insight into the mechanism of FXI activation, the interaction of FXIa with the substrate factor IX, and the binding of FXI to platelets. Analyses of missense mutations associated with FXI deficiency have provided additional clues to localization of ligand-binding sites on the protein surface. Together, these data will facilitate efforts to understand the physiology and pathology of this unusual protease, and development of therapeutics to treat thrombotic disorders.
Collapse
|
14
|
Abstract
Abstract
The management of factor XI deficiency is not straightforward for three reasons: firstly, the role of this factor in the coagulation pathway is not clearly understood; secondly, the bleeding tendency, although mild, is unpredictable and does not clearly relate to the factor XI level; and thirdly, all treatment products, although available, have some potentially serious side effects. These factors (or enigmas) contribute to the variable management of patients with this coagulation factor deficiency, but recent research is helping to clarify some of these areas.
Collapse
|