1
|
Rashedi S, Greason CM, Sadeghipour P, Talasaz AH, O'Donoghue ML, Jimenez D, Monreal M, Anderson CD, Elkind MSV, Kreuziger LMB, Lang IM, Goldhaber SZ, Konstantinides SV, Piazza G, Krumholz HM, Braunwald E, Bikdeli B. Fibrinolytic Agents in Thromboembolic Diseases: Historical Perspectives and Approved Indications. Semin Thromb Hemost 2024; 50:773-789. [PMID: 38428841 DOI: 10.1055/s-0044-1781451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Fibrinolytic agents catalyze the conversion of the inactive proenzyme plasminogen into the active protease plasmin, degrading fibrin within the thrombus and recanalizing occluded vessels. The history of these medications dates to the discovery of the first fibrinolytic compound, streptokinase, from bacterial cultures in 1933. Over time, researchers identified two other plasminogen activators in human samples, namely urokinase and tissue plasminogen activator (tPA). Subsequently, tPA was cloned using recombinant DNA methods to produce alteplase. Several additional derivatives of tPA, such as tenecteplase and reteplase, were developed to extend the plasma half-life of tPA. Over the past decades, fibrinolytic medications have been widely used to manage patients with venous and arterial thromboembolic events. Currently, alteplase is approved by the U.S. Food and Drug Administration (FDA) for use in patients with pulmonary embolism with hemodynamic compromise, ST-segment elevation myocardial infarction (STEMI), acute ischemic stroke, and central venous access device occlusion. Reteplase and tenecteplase have also received FDA approval for treating patients with STEMI. This review provides an overview of the historical background related to fibrinolytic agents and briefly summarizes their approved indications across various thromboembolic diseases.
Collapse
Affiliation(s)
- Sina Rashedi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Christie M Greason
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Parham Sadeghipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Trial Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azita H Talasaz
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacy Practice, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York, New York
- Department of Pharmacy, New York-Presbyterian Hospital Columbia University Medical Center, New York, New York
| | - Michelle L O'Donoghue
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Jimenez
- Respiratory Department, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Medicine Department, Universidad de Alcalá (IRYCIS), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Manuel Monreal
- Department of Internal Medicine, Hospital Germans Trias i Pujol, Badalona, Spain
- Universidad Catolica de Murcia, Murcia, Spain
| | - Christopher D Anderson
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, Massachusetts
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Lisa M Baumann Kreuziger
- Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology and Center of Cardiovascular Medicine, Medical University of Vienna, Vienna, Austria
| | - Samuel Z Goldhaber
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stavros V Konstantinides
- Center for Thrombosis and Haemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregory Piazza
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harlan M Krumholz
- YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut
| | - Eugene Braunwald
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Behnood Bikdeli
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
| |
Collapse
|
2
|
Feng K, Ruan Y, Zhang X, Wu X, Liu Z, Sun X. Photothermal-Ionic-Pharmacotherapy of Myocardial Infarction with Enhanced Angiogenesis and Antiapoptosis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38031235 DOI: 10.1021/acsami.3c14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Promoting angiogenesis is an effective therapeutic strategy to repair damaged hearts after myocardial infarction (MI). Copper ions and mild heat (41-42 °C) have been shown to promote angiogenesis, but their efficacy in MI is unknown. Here, a multicomponent hydrogel (EDR@PHCuS HG) is developed by encapsulating edaravone (EDR, a free radical scavenger) loaded porous hollow copper sulfide nanoparticles (PHCuS NPs) in a hyaluronic acid hydrogel (HG). Exposed to 808 nm near-infrared (NIR) light irradiation, the EDR@PHCuS HG exhibits controlled copper-ion release and mild photothermal effect to synergistically promote angiogenesis. In addition, released EDR inhibits cardiomyocyte apoptosis to further repair hearts. In the mouse model of MI, treatment with the EDR@PHCuS HG under an 808 nm laser significantly recovers the cardiac function and inhibits ventricular remodeling. This platform elucidates the cardioprotective effects of copper ions and mild heat and will provide a highly efficient treatment for MI.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinmiao Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojing Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zixuan Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Direct delivery of plasmin using clot-anchoring thrombin-responsive nanoparticles for targeted fibrinolytic therapy. J Thromb Haemost 2022; 21:983-994. [PMID: 36696210 PMCID: PMC10148984 DOI: 10.1016/j.jtha.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrin-rich clot formation in thrombo-occlusive pathologies is currently treated by systemic administration of plasminogen activators (e.g. tPA), to convert fibrin-associated plasminogen to plasmin for fibrinolytic action. However, this conversion is not restricted to clot site only but also occurs on circulating plasminogen, causing systemic fibrinogenolysis and bleeding risks. To address this, past research has explored tPA delivery using clot-targeted nanoparticles. OBJECTIVES We designed a nanomedicine system that can (1) target clots via binding to activated platelets and fibrin, (2) package plasmin instead of tPA as a direct fibrinolytic agent, and (3) release this plasmin triggered by thrombin for clot-localized action. METHODS Clot-targeted thrombin-cleavable nanoparticles (CTNPs) were manufactured using self-assembly of peptide-lipid conjugates. Plasmin loading and its thrombin-triggered release from CTNPs were characterized by UV-visible spectroscopy. CTNP-targeting to clots under flow was studied using microfluidics. Fibrinolytic effect of CTNP-delivered plasmin was studied in vitro using BioFlux imaging and D-dimer analysis and in vivo in a zebrafish thrombosis model. RESULTS Plasmin-loaded CTNPs significantly bound to clots under shear flow and showed thrombin-triggered enhanced release of plasmin. BioFlux studies confirmed that thrombin-triggered plasmin released from CTNPs rendered fibrinolysis similar to free plasmin, further corroborated by D-dimer analysis. In the zebrafish model, CTNP-delivered plasmin accelerated time-to-recanalization, or completely prevented occlusion when infused before thrombus formation. CONCLUSION Considering that the very short circulation half-life (<1 second) of plasmin prevents its systemic use but also makes it safer without off-target drug effects, clot-targeted delivery of plasmin using CTNPs can enable safer and more efficacious fibrinolytic therapy.
Collapse
|
4
|
Cioni P, Gabellieri E, Campanini B, Bettati S, Raboni S. Use of Exogenous Enzymes in Human Therapy: Approved Drugs and Potential Applications. Curr Med Chem 2021; 29:411-452. [PMID: 34259137 DOI: 10.2174/0929867328666210713094722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The development of safe and efficacious enzyme-based human therapies has increased greatly in the last decades, thanks to remarkable advances in the understanding of the molecular mechanisms responsible for different diseases, and the characterization of the catalytic activity of relevant exogenous enzymes that may play a remedial effect in the treatment of such pathologies. Several enzyme-based biotherapeutics have been approved by FDA (the U.S. Food and Drug Administration) and EMA (the European Medicines Agency) and many are undergoing clinical trials. Apart from enzyme replacement therapy in human genetic diseases, which is not discussed in this review, approved enzymes for human therapy find applications in several fields, from cancer therapy to thrombolysis and the treatment, e.g., of clotting disorders, cystic fibrosis, lactose intolerance and collagen-based disorders. The majority of therapeutic enzymes are of microbial origin, the most convenient source due to fast, simple and cost-effective production and manipulation. The use of microbial recombinant enzymes has broadened prospects for human therapy but some hurdles such as high immunogenicity, protein instability, short half-life and low substrate affinity, still need to be tackled. Alternative sources of enzymes, with reduced side effects and improved activity, as well as genetic modification of the enzymes and novel delivery systems are constantly searched. Chemical modification strategies, targeted- and/or nanocarrier-mediated delivery, directed evolution and site-specific mutagenesis, fusion proteins generated by genetic manipulation are the most explored tools to reduce toxicity and improve bioavailability and cellular targeting. This review provides a description of exogenous enzymes that are presently employed for the therapeutic management of human diseases with their current FDA/EMA-approved status, along with those already experimented at the clinical level and potential promising candidates.
Collapse
Affiliation(s)
- Patrizia Cioni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma. Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Samanta Raboni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| |
Collapse
|
5
|
Kim D, Shea SM, Ku DN. Lysis of arterial thrombi by perfusion of N,N'-Diacetyl-L-cystine (DiNAC). PLoS One 2021; 16:e0247496. [PMID: 33630932 PMCID: PMC7906380 DOI: 10.1371/journal.pone.0247496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
The search persists for a safe and effective agent to lyse arterial thrombi in the event of acute heart attacks or strokes due to thrombotic occlusion. The culpable thrombi are composed either primarily of platelets and von Willebrand Factor (VWF), or polymerized fibrin, depending on the mechanism of formation. Current thrombolytics were designed to target red fibrin-rich clots, but may be not be efficacious on white VWF-platelet-rich arterial thrombi. We have developed an in vitro system to study the efficacy of known and proposed thrombolytic agents on white clots formed from whole blood in a stenosis with arterial conditions. The agents and adjuncts tested were tPA, ADAMTS-13, abciximab, N-acetyl cysteine, and N,N'-Diacetyl-L-cystine (DiNAC). Most of the agents, including tPA, had little thrombolytic effect on the white clots. In contrast, perfusion of DiNAC lysed thrombi as quickly as 1.5 min, which ranged up to 30 min at lower concentrations, and resulted in an average reduction in surface area of 71 ± 20%. The clot burden was significantly reduced compared to both tPA and a saline control (p<0.0001). We also tested the efficacy of all agents on red fibrinous clots formed in stagnant conditions. DiNAC did not lyse red clots, whereas tPA significantly lysed red clot over 48 h (p<0.01). These results lead to a novel use for DiNAC as a possible thrombolytic agent against acute arterial occlusions that could mitigate the risk of hyper-fibrinolytic bleeding.
Collapse
Affiliation(s)
- Dongjune Kim
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Susan M. Shea
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David N. Ku
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Sun M, Miyazawa K, Pendekanti T, Razmi A, Firlar E, Yang S, Shokuhfar T, Li O, Li W, Sen Gupta A. Combination targeting of 'platelets + fibrin' enhances clot anchorage efficiency of nanoparticles for vascular drug delivery. NANOSCALE 2020; 12:21255-21270. [PMID: 33063812 PMCID: PMC8112300 DOI: 10.1039/d0nr03633a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Occlusive thrombosis is a central pathological event in heart attack, stroke, thromboembolism, etc. Therefore, pharmacological thrombolysis or anticoagulation is used for treating these diseases. However, systemic administration of such drugs causes hemorrhagic side-effects. Therefore, there is significant clinical interest in strategies for enhanced drug delivery to clots while minimizing systemic effects. One such strategy is by using drug-carrying nanoparticles surface-decorated with clot-binding ligands. Efforts in this area have focused on binding to singular targets in clots, e.g. platelets, fibrin, collagen, vWF or endothelium. Targeting vWF, collagen or endothelium maybe sub-optimal since in vivo these entities will be rapidly covered by platelets and leukocytes, and thus inaccessible for sufficient nanoparticle binding. In contrast, activated platelets and fibrin are majorly accessible for particle-binding, but their relative distribution in clots is highly heterogeneous. We hypothesized that combination-targeting of 'platelets + fibrin' will render higher clot-binding efficacy of nanoparticles, compared to targeting platelets or fibrin singularly. To test this, we utilized liposomes as model nanoparticles, decorated their surface with platelet-binding peptides (PBP) or fibrin-binding peptides (FBP) or combination (PBP + FBP) at controlled compositions, and evaluated their binding to human blood clots in vitro and in a mouse thrombosis model in vivo. In parallel, we developed a computational model of nanoparticle binding to single versus combination entities in clots. Our studies indicate that combination targeting of 'platelets + fibrin' enhances the clot-anchorage efficacy of nanoparticles while utilizing lower ligand densities, compared to targeting platelets or fibrin only. These findings provide important insights for vascular nanomedicine design.
Collapse
Affiliation(s)
- Michael Sun
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nicklas JM, Gordon AE, Henke PK. Resolution of Deep Venous Thrombosis: Proposed Immune Paradigms. Int J Mol Sci 2020; 21:E2080. [PMID: 32197363 PMCID: PMC7139924 DOI: 10.3390/ijms21062080] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Venous thromboembolism (VTE) is a pathology encompassing deep vein thrombosis (DVT) and pulmonary embolism (PE) associated with high morbidity and mortality. Because patients often present after a thrombus has already formed, the mechanisms that drive DVT resolution are being investigated in search of treatment. Herein, we review the current literature, including the molecular mechanisms of fibrinolysis and collagenolysis, as well as the critical cellular roles of macrophages, neutrophils, and endothelial cells. We propose two general models for the operation of the immune system in the context of venous thrombosis. In early thrombus resolution, neutrophil influx stabilizes the tissue through NETosis. Meanwhile, macrophages and intact neutrophils recognize the extracellular DNA by the TLR9 receptor and induce fibrosis, a complimentary stabilization method. At later stages of resolution, pro-inflammatory macrophages police the thrombus for pathogens, a role supported by both T-cells and mast cells. Once they verify sterility, these macrophages transform into their pro-resolving phenotype. Endothelial cells both coat the stabilized thrombus, a necessary early step, and can undergo an endothelial-mesenchymal transition, which impedes DVT resolution. Several of these interactions hold promise for future therapy.
Collapse
Affiliation(s)
| | | | - Peter K. Henke
- School of Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (J.M.N.); (A.E.G.)
| |
Collapse
|
8
|
Disharoon D, Marr DW, Neeves KB. Engineered microparticles and nanoparticles for fibrinolysis. J Thromb Haemost 2019; 17:2004-2015. [PMID: 31529593 PMCID: PMC6893081 DOI: 10.1111/jth.14637] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Fibrinolytic agents including plasmin and plasminogen activators improve outcomes in acute ischemic stroke and thrombosis by recanalizing occluded vessels. In the decades since their introduction into clinical practice, several limitations of have been identified in terms of both efficacy and bleeding risk associated with these agents. Engineered nanoparticles and microparticles address some of these limitations by improving circulation time, reducing inhibition and degradation in circulation, accelerating recanalization, improving targeting to thrombotic occlusions, and reducing off-target effects; however, many particle-based approaches have only been used in preclinical studies to date. This review covers four advances in coupling fibrinolytic agents with engineered particles: (a) modifications of plasminogen activators with macromolecules, (b) encapsulation of plasminogen activators and plasmin in polymer and liposomal particles, (c) triggered release of encapsulated fibrinolytic agents and mechanical disruption of clots with ultrasound, and (d) enhancing targeting with magnetic particles and magnetic fields. Technical challenges for the translation of these approaches to the clinic are discussed.
Collapse
Affiliation(s)
- Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
9
|
Kaur N, Sinha PK, Sahni G. Site-specific PEGylation of micro-plasmin for improved thrombolytic therapy through engineering enhanced resistance against serpin mediated inhibition. PLoS One 2019; 14:e0217234. [PMID: 31141522 PMCID: PMC6541275 DOI: 10.1371/journal.pone.0217234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 12/03/2022] Open
Abstract
The relatively rapid inhibition of microplasmin by α2-AP leads to short functional half-life of the molecule in vivo, causing inefficient clot dissolution, even after site-specific, local catheter-based delivery. Here, we describe a PEGylation approach for improving the therapeutic potential via improving the survival of microplasmin in presence of its cognate inhibitor, α2-AP, wherein a series of strategically designed cysteine analogs of micro-plasminogen were prepared and expressed in E. coli, and further modified by covalent grafting in vitro with PEG groups of different molecular sizes so as to select single or double PEG chains that increase the molecular weight and hydrodynamic radii of the conjugates, but with a minimal discernible effect on intrinsic plasmin activity and structural framework, as explored by amidolytic activity and CD-spectroscopy, respectively. Interestingly, some of the purified PEG-coupled proteins after conversion to their corresponding proteolytically active forms were found to exhibit significantly reduced inhibition rates (up to 2-fold) by α2-AP relative to that observed with wild-type microplasmin. These results indicate an interesting, and not often observed, effect of PEG groups through reduced/altered dynamics between protease and inhibitor, likely through a steric hindrance mechanism. Thus, the present study successfully identifies single- and double-site PEGylated muteins of microplasmin with significantly enhanced functional half-life through enhanced resistance to inactivation by its in vivo plasma inhibitor. Such an increased survival of bioactivity in situ, holds unmistakable potential for therapeutic exploitation, especially in ischemic strokes where a direct, catheter-based deposition within the cranium has been shown to be promising, but is currently limited by the very short in vivo bioactive half-life of the fibrin dissolving agent/s.
Collapse
Affiliation(s)
- Navneet Kaur
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Panjab University, Chandigarh, India
| | - Prakash Kumar Sinha
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Panjab University, Chandigarh, India
| | - Girish Sahni
- CSIR-Institute of Microbial Technology, Chandigarh, India
- * E-mail:
| |
Collapse
|
10
|
Fibrinolytic Enzymes for Thrombolytic Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:345-381. [DOI: 10.1007/978-981-13-7709-9_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:633-642. [DOI: 10.1016/j.nano.2017.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023]
|
12
|
Adivitiya, Khasa YP. The evolution of recombinant thrombolytics: Current status and future directions. Bioengineered 2016; 8:331-358. [PMID: 27696935 DOI: 10.1080/21655979.2016.1229718] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disorders are on the rise worldwide due to alcohol abuse, obesity, hypertension, raised blood lipids, diabetes and age-related risks. The use of classical antiplatelet and anticoagulant therapies combined with surgical intervention helped to clear blood clots during the inceptive years. However, the discovery of streptokinase and urokinase ushered the way of using these enzymes as thrombolytic agents to degrade the fibrin network with an issue of systemic hemorrhage. The development of second generation plasminogen activators like anistreplase and tissue plasminogen activator partially controlled this problem. The third generation molecules, majorly t-PA variants, showed desirable properties of improved stability, safety and efficacy with enhanced fibrin specificity. Plasmin variants are produced as direct fibrinolytic agents as a futuristic approach with targeted delivery of these drugs using liposome technlogy. The novel molecules from microbial, plant and animal origin present the future of direct thrombolytics due to their safety and ease of administration.
Collapse
Affiliation(s)
- Adivitiya
- a Department of Microbiology , University of Delhi South Campus , New Delhi , India
| | - Yogender Pal Khasa
- a Department of Microbiology , University of Delhi South Campus , New Delhi , India
| |
Collapse
|
13
|
Reed GL, Houng AK, Singh S, Wang D. α2-Antiplasmin: New Insights and Opportunities for Ischemic Stroke. Semin Thromb Hemost 2016; 43:191-199. [PMID: 27472428 DOI: 10.1055/s-0036-1585077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thrombotic vascular occlusion is the leading cause of ischemic stroke. High blood levels of α2-antiplasmin (a2AP), an ultrafast, covalent inhibitor of plasmin, have been linked in humans to increased risk of ischemic stroke and failure of tissue plasminogen activator (tPA) therapy. Consistent with these observations, a2AP neutralizes the therapeutic benefit of tPA therapy in experimental stroke. In addition, a2AP has deleterious, dose-related effects on ischemic brain injury in the absence of therapy. Experimental therapeutic inactivation of a2AP markedly reduces microvascular thrombosis, ischemic brain injury, brain swelling, brain hemorrhage, and death after thromboembolic stroke. These data provide new insights into the critical importance of a2AP in the pathogenesis of ischemic brain injury and suggest that transiently inactivating a2AP may have therapeutic value in ischemic stroke.
Collapse
Affiliation(s)
- Guy L Reed
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Aiilyan K Houng
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Satish Singh
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Dong Wang
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
| |
Collapse
|
14
|
Liu R, Zhao B, Zhang Y, Gu J, Yu M, Song H, Yu M, Mo W. High-level expression, purification, and enzymatic characterization of truncated human plasminogen (Lys531-Asn791) in the methylotrophic yeast Pichia pastoris. BMC Biotechnol 2015; 15:50. [PMID: 26054637 PMCID: PMC4460660 DOI: 10.1186/s12896-015-0179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/01/2015] [Indexed: 01/28/2023] Open
Abstract
Background Plasmin is a serine protease that plays a critical role in fibrinolysis, which is a process that prevents blood clots from growing and becoming problematic. Recombinant human microplasminogen (rhμPlg) is a derivative of plasmin that solely consists of the catalytic domain of human plasmin and lacks the five kringle domains found in the native protein. Developing an industrial production method that provides high yields of this protein with high purity, quality, and potency is critical for preclinical research. Results The human microplasminogen gene was cloned into the pPIC9K vector, and the recombinant plasmid was transformed into Pichia pastoris strain GS115. The concentration of plasmin reached 510.1 mg/L of culture medium. Under fermentation conditions, the yield of rhμPlg was 1.0 g/L. We purified rhμPlg to 96 % purity by gel-filtration and cation-exchange chromatography. The specific activity of rhμPlg reached 23.6 U/mg. The Km of substrate hydrolysis by recombinant human microplasmin was comparable to that of human plasmin, while rhμPlm had higher kcat/Km values than plasmin. The high purity and activity of the rhμPlg obtained here will likely prove to be a valuable tool for studies of its application in thrombotic diseases and vitreoretinopathies. Conclusions Reliable rhμPlg production (for use in therapeutic applications) is feasible using genetically modified P. pastoris as a host strain. The successful expression of rhμPlg in P. pastoris lays a solid foundation for its downstream application. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0179-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongzeng Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China.
| | - Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China.
| | - Yanling Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China.
| | - Junxiang Gu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China.
| | - Mingrong Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China.
| | - Houyan Song
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Collaborative Innovation Center for Biotherapy, Sichuan University, Huaxi Campus: No.17 People's South Road, Chengdu, 610041, China.
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China.
| | - Wei Mo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyan Rd, Shanghai, 200032, China.
| |
Collapse
|
15
|
Varjú I, Longstaff C, Szabó L, Farkas ÁZ, Varga-Szabó VJ, Tanka-Salamon A, Machovich R, Kolev K. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb Haemost 2015; 113:1289-98. [PMID: 25789443 DOI: 10.1160/th14-08-0669] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/21/2015] [Indexed: 12/22/2022]
Abstract
In response to various inflammatory stimuli, neutrophils secrete neutrophil extracellular traps (NETs), web-like meshworks of DNA, histones and granular components forming supplementary scaffolds in venous and arterial thrombi. Isolated DNA and histones are known to promote thrombus formation and render fibrin clots more resistant to mechanical forces and tissue-type plasminogen activator (tPA)-induced enzymatic digestion. The present study extends our earlier observations to a physiologically more relevant environment including plasma clots and NET-forming neutrophils. A range of techniques was employed including imaging (scanning electron microscopy (SEM), confocal laser microscopy, and photoscanning of macroscopic lysis fronts), clot permeability measurements, turbidimetric lysis and enzyme inactivation assays. Addition of DNA and histones increased the median fibre diameter of plasma clots formed with 16 nM thrombin from 108 to 121 and 119 nm, respectively, and decreased their permeability constant from 6.4 to 3.1 and 3.7×10(-9) cm(2). Histones effectively protected thrombin from antithrombin-induced inactivation, while DNA inhibited plasminogen activation on the surface of plasma clots and their plasmin-induced resolution by 20 and 40 %, respectively. DNA and histones, as well as NETs secreted by phorbol-myristate-acetate-activated neutrophils, slowed down the tPA-driven lysis of plasma clots and the latter effect could be reversed by the addition of DNase (streptodornase). SEM images taken after complete digestion of fibrin in NET-containing plasma clots evidenced retained NET scaffold that was absent in DNase-treated clots. Our results show that DNA and histones alter the fibrin architecture in plasma clots, while NETs contribute to a decreased lytic susceptibility that can be overcome by DNase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Krasimir Kolev
- Krasimir Kolev, Semmelweis University, Department of Medical Biochemistry, Tűzoltó utca 37-47., 1094 Budapest, Hungary, Tel.: +36 1 4591500/60035, Fax: +36 1 2670031, E-mail:
| |
Collapse
|
16
|
Balami JS, Hadley G, Sutherland BA, Karbalai H, Buchan AM. Reply: Intravenous thrombolysis for ischaemic strokes: a call for reappraisal. Brain 2014; 138:e342. [PMID: 25281865 DOI: 10.1093/brain/awu283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joyce S Balami
- 1 Acute Stroke Programme, Department of Medicine and Clinical Geratology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Gina Hadley
- 2 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- 2 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Alastair M Buchan
- 2 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK 3 Medical Sciences Division, University of Oxford, Oxford, UK 4 Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
17
|
Varjú I, Tenekedjiev K, Keresztes Z, Pap AE, Szabó L, Thelwell C, Longstaff C, Machovich R, Kolev K. Fractal Kinetic Behavior of Plasmin on the Surface of Fibrin Meshwork. Biochemistry 2014; 53:6348-56. [DOI: 10.1021/bi500661m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Imre Varjú
- Department
of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary
| | - Kiril Tenekedjiev
- Department
of Information Technology, Nikola Vaptsarov Naval Academy, 9026 Varna, Bulgaria
| | | | - Andrea Edit Pap
- Microtechnology
Department, Institute of Technical Physics and Materials Science,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1121 Budapest, Hungary
| | | | - Craig Thelwell
- Biotherapeutics
Division, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Herts, EN6 3QG, U.K
| | - Colin Longstaff
- Biotherapeutics
Division, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Herts, EN6 3QG, U.K
| | - Raymund Machovich
- Department
of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary
| | - Krasimir Kolev
- Department
of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
18
|
|
19
|
Bizjak N, Bajd F, Vidmar J, Blinc A, Perme MP, Marder VJ, Novokhatny V, Serša I. Direct microscopic monitoring of initial and dynamic clot lysis using plasmin or rt-PA in an in vitro flow system. Thromb Res 2014; 133:908-13. [PMID: 24613694 DOI: 10.1016/j.thromres.2014.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/03/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Plasmin is a direct-acting thrombolytic agent with a favorable safety profile upon intra-arterial delivery in pre-clinical and phase I studies. However, the thrombolytic efficacy of plasmin, relative to that of rt-PA, remains to be established. We have compared the dynamics of clot lysis with plasmin or rt-PA in an in vitro perfusion system, in which thrombolytic agent is administered locally, allowed to induce lysis for short intervals, then washed with plasma in a re-circulation circuit. MATERIALS AND METHODS Whole blood human clots were prepared in observation chambers, exposed to plasmin or rt-PA at equimolar concentrations (1.2/1.0, 1.8/1.5 and 2.4/2.0 mg/ml) for measured intervals of time, followed by perfusion with human plasma. Clot size was monitored by digital analysis of sequential photographs obtained through an optical microscope. RESULTS Plasma perfusion after incubation with thrombolytic agent rapidly removed superficial clot fragments. This initial decrease in clot size was greater with plasmin than with rt-PA when tested at the highest concentrations of agent (0.63 ± 0.11 vs. 0.30 ± 0.11, p=0.001 for clots with non-cross-linked fibrin and 0.53 ± 0.15 vs. 0.14 ± 0.15, p=0.02, for clots with cross-linked-fibrin). Subsequent clot lysis during plasma flow was greater after prior incubation with rt-PA. Longer incubation times of plasmin resulted in larger portions of the clot being washed free. Repeated plasmin incubations and plasma perfusions of a clot successfully induced stepwise reductions in clot size. CONCLUSIONS Initial clot lysis is greater with direct exposure using plasmin than rt-PA. During washout and circulation with plasma, rt-PA induced continued clot lysis, while plasmin lysis was curtailed, presumably because of plasmin inhibition.
Collapse
Affiliation(s)
| | | | - Jernej Vidmar
- Institute of Physiology, Medical Faculty of Ljubljana, Slovenia
| | - Aleš Blinc
- Department of Vascular Diseases, University of Ljubljana Medical Center, Slovenia
| | - Maja Pohar Perme
- Institute of Biomedical Informatics, Medical Faculty of Ljubljana, Slovenia
| | - Victor J Marder
- Division of Hematology/Medical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Igor Serša
- Jožef Stefan Institute, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R, Alt K, Huang D, Jia F, Ahrens I, Medcalf RL, Peter K, Hagemeyer CE. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 2014; 114:1083-93. [PMID: 24508759 DOI: 10.1161/circresaha.114.302514] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Fibrinolysis is a valuable alternative for the treatment of myocardial infarction when percutaneous coronary intervention is not available in a timely fashion. For acute ischemic stroke, fibrinolysis is the only treatment option with a very narrow therapeutic window. Clinically approved thrombolytics have significant drawbacks, including bleeding complications. Thus their use is highly restricted, leaving many patients untreated. OBJECTIVE We developed a novel targeted fibrinolytic drug that is directed against activated platelets. METHODS AND RESULTS We fused single-chain urokinase plasminogen activator (scuPA) to a small recombinant antibody (scFvSCE5), which targets the activated form of the platelet-integrin glycoprotein IIb/IIIa. Antibody binding and scuPA activity of this recombinant fusion protein were on par with the parent molecules. Prophylactic in vivo administration of scFvSCE5-scuPA (75 U/g body weight) prevented carotid artery occlusion after ferric chloride injury in a plasminogen-dependent process compared with saline (P<0.001), and blood flow recovery was similar to high-dose nontargeted urokinase (500 U/g body weight). Tail bleeding time was significantly prolonged with this high dose of nontargeted urokinase, but not with equally effective targeted scFvSCE5-scuPA at 75 U/g body weight. Real-time in vivo molecular ultrasound imaging demonstrates significant therapeutic reduction of thrombus size after administration of 75 U/g body weight scFvSCE5-scuPA as compared with the same dose of a mutated, nontargeting scFv-scuPA or vehicle. The ability of scFvSCE5-scuPA to lyse thrombi was lost in plasminogen-deficient mice, but could be restored by intravenous injection of plasminogen. CONCLUSIONS Targeting of scuPA to activated glycoprotein IIb/IIIa allows effective thrombolysis and the potential novel use as a fibrinolytic agent for thromboprophylaxis without bleeding complications.
Collapse
Affiliation(s)
- Xiaowei Wang
- From Atherothrombosis and Vascular Biology Laboratory (X.W., J.P., Y.G., J.D.H., E.W., K.A., D.H., F.J., I.A., K.P.), and Vascular Biotechnology Laboratory (R.K., K.A., C.E.H.), Baker IDI, Melbourne, Australia; Department of Cardiology and Angiology, University Hospital Freiburg, Germany (I.A.); Fibrinolysis and Gene Regulation Laboratory, Australian Centre for Blood Diseases, Melbourne, Australia (R.L.M.); and Central Clinical School, Monash University, Melbourne, Australia (R.L.M., K.P., C.E.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Comparison of local thrombolytic efficacy of plasmin and rt-PA in an in-vitro flow system; a pilot study. Blood Coagul Fibrinolysis 2013; 24:711-4. [DOI: 10.1097/mbc.0b013e328361bd48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Galanaud JP, Laroche JP, Righini M. The history and historical treatments of deep vein thrombosis. J Thromb Haemost 2013; 11:402-11. [PMID: 23297815 DOI: 10.1111/jth.12127] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deep vein thrombosis (DVT) is a common disease. However, unlike that of varicose veins, which have been depicted since antiquity in art and literature, its description was more recent in the history of medicine. The first well-documented case of DVT was reported during the Middle Ages: in 1271, Raoul developed a unilateral edema in the ankle, which then extended to the leg. The number of reported DVT cases steadily increased thereafter, particularly in pregnant and postpartum women. During the first half of the 20th century, well before the discovery of anticoagulants, many therapeutic approaches were used, and arose from the pathologic hypotheses that prevailed at their time. Despite the development of anticoagulants, and the fact that they were thought to dramatically decrease DVT mortality, numerous complementary treatments have also been developed during the last 50 years: they include vena cava clips and surgical thrombectomy, and are intended to decrease mortality or to prevent late complications. Most of these treatments have now been abandoned, or even forgotten. In this review, we recall also the discovery and the use of vitamin K antagonists and heparin, which have constituted the mainstay of treatment for decades. We also bring some perspective to historical aspects of this disease and its treatment, notably regarding elastic compression and early mobilization, but also abandoned and complementary treatments. In these times of change regarding DVT treatment, mainly marked by the arrival of new oral anticoagulants, efforts of physicians through the ages to treat this common disease provide a beautiful example of the history of knowledge.
Collapse
Affiliation(s)
- J-P Galanaud
- Department of Internal Medicine, Montpellier University Hospital, Montpellier, France
| | | | | |
Collapse
|
23
|
Plasmin Activation of Glial Cells through Protease-Activated Receptor 1. PATHOLOGY RESEARCH INTERNATIONAL 2013; 2013:314709. [PMID: 23431500 PMCID: PMC3568866 DOI: 10.1155/2013/314709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
Abstract
The objective of this study was to determine whether plasmin could induce morphological changes in human glial cells via PAR1. Human glioblastoma A172 cells were cultured in the presence of plasmin or the PAR1 specific activating hexapeptide, SFLLRN. Cells were monitored by flow cytometry to detect proteolytic activation of PAR1 receptor. Morphological changes were recorded by photomicroscopy and apoptosis was measured by annexinV staining. Plasmin cleaved the PAR1 receptor on glial cells at 5 minutes (P = 0.02). After 30 minutes, cellular processes had begun to retract from the basal substratum and by 4 hours glial cells had become detached. Similar results were obtained by generating plasmin de novo from plasminogen. Morphological transformation was blocked by plasmin inhibitors aprotinin or epsilon-aminocaproic acid (P = 0.03). Cell viability was unimpaired during early morphological changes, but by 24 hours following plasmin treatment 22% of glial cells were apoptotic. PAR1 activating peptide SFLLRN (but not inactive isomer FSLLRN) promoted analogous glial cell detachment (P = 0.03), proving the role for PAR1 in this process. This study has identified a plasmin/PAR1 axis of glial cell activation, linked to changes in glial cell morophology. This adds to our understanding of pathophysiological disease mechanisms of plasmin and the plasminogen system in neuroinjury.
Collapse
|
24
|
Crescente M, Thomas GM, Demers M, Voorhees JR, Wong SL, Ho-Tin-Noé B, Wagner DD. ADAMTS13 exerts a thrombolytic effect in microcirculation. Thromb Haemost 2012; 108:527-32. [PMID: 22782575 DOI: 10.1160/th12-01-0046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/07/2012] [Indexed: 01/09/2023]
Abstract
Recombinant tissue plasminogen activator (r-tPA) is the drug of choice for thrombolysis, but it is associated with a significant risk of bleeding and is not always successful. By cleaving von Willebrand factor (VWF), the metalloprotease ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type I repeats-13) down-regulates thrombus formation in injured vessels. We investigated whether recombinant ADAMTS13 (r-ADAMTS13) induces thrombolysis in vivo in mice. Thrombosis was produced by ferric chloride-induced (FeCl(3)) injury in the venules of a dorsal skinfold chamber. Phosphate-buffered saline (PBS, vehicle), r-tPA or r-ADAMTS13, supplemented with hirudin (to stop on-going thrombin generation), was directly applied onto the occluded vessel, and thrombus dissolution was evaluated by intravital microscopy. The incidence of blood flow restoration significantly increased 30 minutes (min) after r-ADAMTS13 vs. PBS treatment (60% vs. 0%, p<0.05) and 60 min after r-tPA treatment (75% vs. 17%, p<0.05). Both r-tPA and r-ADAMTS13 significantly reduced thrombus size 60 min after their superfusion (53.2% and 62.3% of the initial thrombus size, p<0.05 and p<0.01, respectively). Bleeding occurred in all r-tPA-treated chambers, while it was absent in mice treated with r-ADAMTS13 or PBS. We observed that, similar to r-tPA, r-ADAMTS13 can dissolve occlusive thrombi induced by FeCl(3) injury in venules. In contrast to r-tPA, the in vivo thrombolytic effect of ADAMTS13 was not associated with any signs of haemorrhage. ADAMTS13 could represent a new therapeutic option for thrombolysis.
Collapse
Affiliation(s)
- Marilena Crescente
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Marder VJ, Comerota AJ, Shlansky-Goldberg RD, Davis JP, Deng C, Hanna K, Fineberg D. Safety of catheter-delivered plasmin in patients with acute lower extremity arterial or bypass graft occlusion: phase I results. J Thromb Haemost 2012; 10:985-91. [PMID: 22487025 DOI: 10.1111/j.1538-7836.2012.04728.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Current treatment of acute peripheral artery or bypass graft occlusion utilizes catheter-directed thrombolysis of a plasminogen activator (PA). Plasmin is a direct-acting thrombolytic with a striking safety advantage over PA in preclinical models. OBJECTIVES To report the first use of purified plasmin for acute lower extremity arterial or bypass graft thrombosis in a phase I dose-escalation study of a catheter-delivered agent. METHODS Eighty-three patients with non-embolic occlusion of infrainguinal native arteries or bypass grafts were enrolled (safety population) into seven sequential dose cohorts to receive 25-175 mg of plasmin by intrathrombus infusion over 5 h. Arteriograms were performed at baseline, 2 h, and 5 h, and subjects were monitored for 30 days for clinical outcomes and laboratory parameters of systemic fibrinolysis. RESULTS Major bleeding occurred in four patients (4.8%), and minor bleeding alone in 13 (15.7%), with no trend towards more bleeding at higher dosages of plasmin. There was a trend towards lower plasma concentrations of fibrinogen, α(2) -antiplasmin and α(2) -macroglobulin with increasing doses of plasmin, but the nadir fibrinogen concentration was > 350 mg dL(-1) at the highest plasmin dose. Individual nadir values were above 200 mg dL(-1) in 82 of 83 subjects, and were not different in patients with or without bleeding. Thrombolysis (≥ 50%) occurred in 79% of subjects receiving 125-175 mg of plasmin, as compared with 50% who received 25-100 mg. CONCLUSIONS Catheter-delivered plasmin can be safely administered to patients with acute lower extremity arterial occlusion at dosages of 25-175 mg.
Collapse
Affiliation(s)
- V J Marder
- Division of Hematology/Medical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Crumrine RC, Marder VJ, Taylor GM, LaManna JC, Tsipis CP, Novokhatny V, Scuderi P, Petteway SR, Arora V. Safety evaluation of a recombinant plasmin derivative lacking kringles 2-5 and rt-PA in a rat model of transient ischemic stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2012; 4:10. [PMID: 22591588 PMCID: PMC3464715 DOI: 10.1186/2040-7378-4-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/28/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Tissue type plasminogen activator is the only approved thrombolytic agent for the treatment of ischemic stroke. However, it carries the disadvantage of a 10-fold increase in symptomatic and asymptomatic intracranial hemorrhage. A safer thrombolytic agent may improve patient prognosis and increase patient participation in thrombolytic treatment. A novel direct-acting thrombolytic agent, Δ(K2-K5) plasmin, promising an improved safety profile was examined for safety in the snare ligature model of stroke in the rat. METHODS Male spontaneously hypertensive rats were subjected to 6 hours middle cerebral artery occlusion followed by 18 hours reflow. Beginning 1 minute before reflow, they were dosed with saline, vehicle, Δ(K2-K5) plasmin (0.15, 0.5, 1.5, and 5 mg/kg) or recombinant tissue-type plasminogen activator (10 and 30 mg/kg) by local intra-arterial infusion lasting 10 to 60 minutes. The rats were assessed for bleeding score, infarct volume, modified Bederson score and general behavioral score. In a parallel study, temporal progression of infarct volume was determined. In an in vitro study, whole blood clots from humans, canines and rats were exposed to Δ(K2-K5). Clot lysis was monitored by absorbance at 280 nm. RESULTS The main focus of this study was intracranial hemorrhage safety. Δ(K2-K5) plasmin treatment at the highest dose caused no more intracranial hemorrhage than the lowest dose of recombinant tissue type plasminogen activator, but showed at least a 5-fold superior safety margin. Secondary results include: temporal infarct volume progression shows that the greatest expansion of infarct volume occurs within 2-3 hours of middle cerebral artery occlusion in the spontaneously hypertensive rat. A spike in infarct volume was observed at 6 hours ischemia with reflow. Δ(K2-K5) plasmin tended to reduce infarct volume and improve behavior compared to controls. In vitro data suggests that Δ(K2-K5) plasmin is equally effective at lysing clots from humans, canines and rats. CONCLUSIONS The superior intracranial hemorrhage safety profile of the direct-acting thrombolytic Δ(K2-K5) plasmin compared with recombinant tissue type plasminogen activator makes this agent a good candidate for clinical evaluation in the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- R Christian Crumrine
- Research and Pre-clinical Development, Grifols Therapeutics, Inc., Research Triangle Park, North Carolina, USA
| | - Victor J Marder
- Division of Hematology/Medical Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - G McLeod Taylor
- Research and Pre-clinical Development, Grifols Therapeutics, Inc., Research Triangle Park, North Carolina, USA
| | - Joseph C LaManna
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Constantinos P Tsipis
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Valery Novokhatny
- Research and Pre-clinical Development, Grifols Therapeutics, Inc., Research Triangle Park, North Carolina, USA
| | - Philip Scuderi
- Research and Pre-clinical Development, Grifols Therapeutics, Inc., Research Triangle Park, North Carolina, USA
| | - Stephen R Petteway
- Research and Pre-clinical Development, Grifols Therapeutics, Inc., Research Triangle Park, North Carolina, USA
| | - Vikram Arora
- Research and Pre-clinical Development, Grifols Therapeutics, Inc., Research Triangle Park, North Carolina, USA
| |
Collapse
|