1
|
Kosuru R, Romito O, Sharma GP, Ferraresso F, Ghadrdoost Nakhchi B, Yang K, Mammoto T, Mammoto A, Kastrup CJ, Zhang DX, Goldspink PH, Trebak M, Chrzanowska M. Rap1A Modulates Store-Operated Calcium Entry in the Lung Endothelium: A Novel Mechanism Controlling NFAT-Mediated Vascular Inflammation and Permeability. Arterioscler Thromb Vasc Biol 2024; 44:2271-2287. [PMID: 39324266 PMCID: PMC11495542 DOI: 10.1161/atvbaha.124.321458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Store-operated calcium entry mediated by STIM (stromal interaction molecule)-1-Orai1 (calcium release-activated calcium modulator 1) is essential in endothelial cell (EC) functions, affecting signaling, NFAT (nuclear factor for activated T cells)-induced transcription, and metabolic programs. While the small GTPase Rap1 (Ras-proximate-1) isoforms, including the predominant Rap1B, are known for their role in cadherin-mediated adhesion, EC deletion of Rap1A after birth uniquely disrupts lung endothelial barrier function. Here, we elucidate the specific mechanisms by which Rap1A modulates lung vascular integrity and inflammation. METHODS The role of EC Rap1A in lung inflammation and permeability was examined using in vitro and in vivo approaches. RESULTS We explored Ca2+ signaling in human ECs following siRNA-mediated knockdown of Rap1A or Rap1B. Rap1A knockdown, unlike Rap1B, significantly increased store-operated calcium entry in response to a GPCR (G-protein-coupled receptor) agonist, ATP (500 µmol/L), or thapsigargin (250 nmol/L). This enhancement was attenuated by Orai1 channel blockers 10 μmol/L BTP2 (N-[4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide), 10 μmol/L GSK-7975A, and 5 μmol/L Gd3+. Whole-cell patch clamp measurements revealed enhanced Ca2+ release-activated Ca2+ current density in siRap1A ECs. Rap1A depletion in ECs led to increased NFAT1 nuclear translocation and activity and elevated levels of proinflammatory cytokines (CXCL1 [C-X-C motif chemokine ligand 1], CXCL11 [C-X-C motif chemokine 11], CCL5 [chemokine (C-C motif) ligand 5], and IL-6 [interleukin-6]). Notably, reducing Orai1 expression in siRap1A ECs normalized store-operated calcium entry, NFAT activity, and endothelial hyperpermeability in vitro. EC-specific Rap1A knockout (Rap1AiΔEC) mice displayed an inflammatory lung phenotype with increased lung permeability and inflammation markers, along with higher Orai1 expression. Delivery of siRNA against Orai1 to lung endothelium using lipid nanoparticles effectively normalized Orai1 levels in lung ECs, consequently reducing hyperpermeability and inflammation in Rap1AiΔEC mice. CONCLUSIONS Our findings uncover a novel role of Rap1A in regulating Orai1-mediated Ca2+ entry and expression, crucial for NFAT-mediated transcription and endothelial inflammation. This study distinguishes the unique function of Rap1A from that of the predominant Rap1B isoform and highlights the importance of normalizing Orai1 expression in maintaining lung vascular integrity and modulating endothelial functions.
Collapse
Affiliation(s)
- Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - Olivier Romito
- Department of Pharmacology and Chemical Biology (O.R., M.T.), University of Pittsburgh School of Medicine, PA
| | - Guru Prasad Sharma
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | | | - Kai Yang
- Data Science Institute (K.Y.), Medical College of Wisconsin, Milwaukee
| | - Tadanori Mammoto
- Department of Pediatrics (T.M., A.M.), Medical College of Wisconsin, Milwaukee
| | - Akiko Mammoto
- Department of Pediatrics (T.M., A.M.), Medical College of Wisconsin, Milwaukee
| | - Christian J. Kastrup
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - David X. Zhang
- Department of Medicine (D.X.Z.), Medical College of Wisconsin, Milwaukee
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, University of Illinois Chicago (P.H.G.)
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology (O.R., M.T.), University of Pittsburgh School of Medicine, PA
- Vascular Medicine Institute (M.T.), University of Pittsburgh School of Medicine, PA
- UPMC Hillman Cancer Center (M.T.), University of Pittsburgh School of Medicine, PA
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
- Department of Pharmacology and Toxicology (M.C.), Medical College of Wisconsin, Milwaukee
- Cardiovascular Center (M.C.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
2
|
Tranter JD, Mikami RT, Kumar A, Brown G, Abd El-Aziz TM, Zhao Y, Abraham N, Meyer C, Ajanel A, Xie L, Ashworth K, Hong J, Zhang H, Kumari T, Balutowski A, Liu A, Bark D, Nair VK, Lasky NM, Feng Y, Stitziel NO, Lerner DJ, Campbell RA, Paola JD, Cho J, Sah R. LRRC8 complexes are adenosine nucleotide release channels regulating platelet activation and arterial thrombosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615233. [PMID: 39386563 PMCID: PMC11463368 DOI: 10.1101/2024.09.26.615233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Platelet shape and volume changes are early mechanical events contributing to platelet activation and thrombosis. Here, we identify single-nucleotide polymorphisms in Leucine-Rich Repeat Containing 8 (LRRC8) protein subunits that form the Volume-Regulated Anion Channel (VRAC) which are independently associated with altered mean platelet volume. LRRC8A is required for functional VRAC in megakaryocytes (MKs) and regulates platelet volume, adhesion, and agonist-stimulated activation, aggregation, ATP secretion and calcium mobilization. MK-specific LRRC8A cKO mice have reduced arteriolar thrombus formation and prolonged arterial thrombosis without affecting bleeding times. Mechanistically, platelet LRRC8A mediates swell-induced ATP/ADP release to amplify agonist-stimulated calcium and PI3K-AKT signaling via P2X1, P2Y 1 and P2Y 12 receptors. Small-molecule LRRC8 channel inhibitors recapitulate defects observed in LRRC8A-null platelets in vitro and in vivo . These studies identify the mechanoresponsive LRRC8 channel complex as an ATP/ADP release channel in platelets which regulates platelet function and thrombosis, providing a proof-of-concept for a novel anti-thrombotic drug target.
Collapse
|
3
|
Back V, Asgari A, Franczak A, Saito M, Castaneda Zaragoza D, Sandow SL, Plane F, Jurasz P. Inhibition of platelet aggregation by activation of platelet intermediate conductance Ca 2+ -activated potassium channels. J Thromb Haemost 2022; 20:2587-2600. [PMID: 35867883 DOI: 10.1111/jth.15827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Within the vasculature platelets and endothelial cells play crucial roles in hemostasis and thrombosis. Platelets, like endothelial cells, possess intermediate conductance Ca2+ -activated K+ (IKCa ) channels and generate nitric oxide (NO). Although NO limits platelet aggregation, the role of IKCa channels in platelet function and NO generation has not yet been explored. OBJECTIVES We investigated whether IKCa channel activation inhibits platelet aggregation, and per endothelial cells, enhances platelet NO production. METHODS Platelets were isolated from human volunteers. Aggregometry, confocal microscopy, and a novel flow chamber model, the Quartz Crystal Microbalance (QCM) were used to assess platelet function. Flow cytometry was used to measure platelet NO production, calcium signaling, membrane potential, integrin αIIb /β3 activation, granule release, and procoagulant platelet formation. RESULTS Platelet IKCa channel activation with SKA-31 inhibited aggregation in a concentration-dependent manner, an effect reversed by the selective IKCa channel blocker TRAM-34. The QCM model along with confocal microscopy demonstrated that SKA-31 inhibited platelet aggregation under flow conditions. Surprisingly, IKCa activation by SKA-31 inhibited platelet NO generation, but this could be explained by a concomitant reduction in platelet calcium signaling. IKCa activation by SKA-31 also inhibited dense and alpha-granule secretion and integrin αIIb /β3 activation, but maintained platelet phosphatidylserine surface exposure as a measure of procoagulant response. CONCLUSIONS Platelet IKCa channel activation inhibits aggregation by reducing calcium-signaling and granule secretion, but not by enhancing platelet NO generation. IKCa channels may be novel targets for the development of antiplatelet drugs that limit atherothrombosis, but not coagulation.
Collapse
Affiliation(s)
- Valentina Back
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aleksandra Franczak
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Max Saito
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Diego Castaneda Zaragoza
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaun L Sandow
- Biomedical Sciences, University of the Sunshine Coast, Sydney, Queensland, Australia
- Department of Physiology, University of New South Wales, Sydney, Queensland, Australia
| | - Frances Plane
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Alharbi KS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Afzal O, Alfawaz Altamimi AS, Singh SK, Dua K, Gupta G. A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chem Biol Interact 2022; 363:110011. [PMID: 35728671 DOI: 10.1016/j.cbi.2022.110011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Cardiomyocyte regeneration following cardiac damage is challenging to study because of the inflammatory process, the multiplication of cells in the stroma, and the creation of scar tissue. In addition to the initial damage, the subsequent decrease in cardiac myocytes adds to heart failure. Piezo1 is remarkably understudied in the heart, which may be related to its recent discovery. Despite this, Piezo1 is expressed in a variety of cardiovascular cell populations, notably epithelial cells (EC), cardiac fibroblasts (CF), and cardiac myocytes (CM), in both animal and human samples, with fibroblasts expressing more than myocytes. Researchers have recently shown that disrupting Piezo1 signaling causes defects in zebrafish developing the outflow tract (OFT) and aortic valves. Platelet plasma membranes may provide lipid substrates, such as phosphatidylinositol bisphosphate, that aid in activating the piezo 1 ion channel in the cardiovascular system. In addition, CXC chemokine ligand 8/CXC chemokine receptor 1/2 (CXCL8-CXCR1/2) signaling was identified to establish the proliferation of coronary endothelial cells during cardiac regeneration. Notably, all these pathways are calcium-dependent, and cell proliferation and angiogenesis were necessary to recover myocardial cells. This review will examine the most current findings to understand further how platelet-rich plasma (PRP) and the piezo 1 channel might aid in cardiomyocyte regeneration.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
5
|
Fernández DI, Provenzale I, Cheung HY, van Groningen J, Tullemans BM, Veninga A, Dunster JL, Honarnejad S, van den Hurk H, Kuijpers MJ, Heemskerk JW. Ultra-high-throughput Ca 2+ assay in platelets to distinguish ITAM-linked and G-protein-coupled receptor activation. iScience 2022; 25:103718. [PMID: 35072010 PMCID: PMC8762394 DOI: 10.1016/j.isci.2021.103718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/12/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
Antiplatelet drugs targeting G-protein-coupled receptors (GPCRs), used for the secondary prevention of arterial thrombosis, coincide with an increased bleeding risk. Targeting ITAM-linked receptors, such as the collagen receptor glycoprotein VI (GPVI), is expected to provide a better antithrombotic-hemostatic profile. Here, we developed and characterized an ultra-high-throughput (UHT) method based on intracellular [Ca2+]i increases to differentiate GPVI and GPCR effects on platelets. In 96-, 384-, or 1,536-well formats, Calcium-6-loaded human platelets displayed a slow-prolonged or fast-transient [Ca2+]i increase when stimulated with the GPVI agonist collagen-related peptide or with thrombin and other GPCR agonists, respectively. Semi-automated curve fitting revealed five parameters describing the Ca2+ responses. Verification of the UHT assay was done with a robustness compound library and clinically relevant platelet inhibitors. Taken together, these results present proof of principle of distinct receptor-type-dependent Ca2+ signaling curves in platelets, which allow identification of new inhibitors in a UHT way.
Collapse
Affiliation(s)
- Delia I. Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabella Provenzale
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular and Metabolic Research, University of Reading, RG6 6AX Reading, UK
| | - Hilaire Y.F. Cheung
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- ISASLeibniz-Institut fur Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Institute of Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Bibian M.E. Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Alicia Veninga
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joanne L. Dunster
- Institute for Cardiovascular and Metabolic Research, University of Reading, RG6 6AX Reading, UK
| | | | | | - Marijke J.E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Johan W.M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6214 AC, Maastricht, the Netherlands
| |
Collapse
|
6
|
Zhao W, Wei Z, Xin G, Li Y, Yuan J, Ming Y, Ji C, Sun Q, Li S, Chen X, Fu W, Zhu Y, Niu H, Huang W. Piezo1 initiates platelet hyperreactivity and accelerates thrombosis in hypertension. J Thromb Haemost 2021; 19:3113-3125. [PMID: 34411418 DOI: 10.1111/jth.15504] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Thrombosis is the pathological basis of cardiovascular and cerebrovascular diseases, which seriously threaten human life and health. Among them, nearly half of cardiovascular disease patients suffer from severe hypertension complications. Hypertension is thought to cause abnormal platelet activation and increases the risk of thrombosis, but the related mechanism is still vague. OBJECTIVES This study hypothesized that the abnormal hemodynamics of blood under hypertension might affect platelet function and accelerate thrombosis by activating mechanoreceptor Piezo1. METHODS To assess the activation effect of hypertension on mechanoreceptor Piezo1, we injected Piezo1 agonist Yoda1 and antagonist GsMTx-4 through the tail vein, then examined the platelet activation status and thrombosis. RESULTS Our results displayed that antagonist GsMTx-4 effectively inhibited calcium influx caused by hypertension and agonist Yoda1. Antithrombotic studies proved that the inhibition of Piezo1 effectively inhibited arterial thrombosis and reduced the infarct size of stroke in hypertensive mice. CONCLUSIONS Our study explains the activation of mechanoreceptor Piezo1 under hypertension is the key to abnormal platelet activation and thrombosis while providing novel platelet intervention strategies to prevent thrombosis.
Collapse
Affiliation(s)
- Weiyu Zhao
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Yulong Li
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyan Yuan
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Ming
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengjie Ji
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Jianyang, China
| | - Qiushi Sun
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinchuan Chen
- Division of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Fu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Niu
- College of Mathematics, Sichuan University, Chengdu, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lamponi S. Bioactive Natural Compounds with Antiplatelet and Anticoagulant Activity and Their Potential Role in the Treatment of Thrombotic Disorders. Life (Basel) 2021; 11:1095. [PMID: 34685464 PMCID: PMC8540276 DOI: 10.3390/life11101095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Natural anticoagulant drugs can be obtained from plants, rich in secondary bioactive metabolites which, in addition to being effective antioxidants, also possess anticoagulant and antiplatelet properties and, for this reason, can be excellent candidates for the treatment of thrombotic diseases. This review reports an overview of the hemostatic process and thrombotic disorders together with data on plants, more and less common from around the world, containing bioactive compounds characterized by antiplatelet and anticoagulant activity. The reported literature was obtained from Medline, PubMed, Elsevier, Web of Science, Google Scholar considering only articles in the English language, published in peer-reviewed journals. The number of citations of the articles and the impact factor of the journals were other parameters used to select the scientific papers to be included in the review. The analysis of the literature data selected demonstrates that many plants' bioactive compounds show antiplatelet and anticoagulant activity that make them potential candidates to be used as new natural compounds able to interfere with both primary and secondary hemostasis. Moreover, they could be used together with anticoagulants currently administered in clinical practice to increase their efficacy and to reduce complications in the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Stefania Lamponi
- Department of Biotechnologies, Chemistry and Pharmacy and SienabioACTIVE, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
8
|
Wright JR, Mahaut-Smith MP. Why do platelets express K + channels? Platelets 2021; 32:872-879. [PMID: 33872124 PMCID: PMC8437091 DOI: 10.1080/09537104.2021.1904135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/02/2022]
Abstract
Potassium ions have widespread roles in cellular homeostasis and activation as a consequence of their large outward concentration gradient across the surface membrane and ability to rapidly move through K+-selective ion channels. In platelets, the predominant K+ channels include the voltage-gated K+ channel Kv1.3, and the intermediate conductance Ca2+-activated K+ channel KCa3.1, also known as the Gardos channel. Inwardly rectifying potassium GIRK channels and KCa1.1 large conductance Ca2+-activated K+ channels have also been reported in the platelet, although they remain to be demonstrated using electrophysiological techniques. Whole-cell patch clamp and fluorescent indicator measurements in the platelet or their precursor cell reveal that Kv1.3 sets the resting membrane potential and KCa3.1 can further hyperpolarize the cell during activation, thereby controlling Ca2+ influx. Kv1.3-/- mice exhibit an increased platelet count, which may result from an increased splenic megakaryocyte development and longer platelet lifespan. This review discusses the evidence in the literature that Kv1.3, KCa3.1. GIRK and KCa1.1 channels contribute to a number of platelet functional responses, particularly collagen-evoked adhesion, procoagulant activity and GPCR function. Putative roles for other K+ channels and known accessory proteins which to date have only been detected in transcriptomic or proteomic studies, are also discussed.
Collapse
Affiliation(s)
- Joy R Wright
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| | | |
Collapse
|
9
|
Ablation of Collagen VI leads to the release of platelets with altered function. Blood Adv 2021; 5:5150-5163. [PMID: 34547769 PMCID: PMC9153009 DOI: 10.1182/bloodadvances.2020002671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Megakaryocytes express collagen VI that regulates the release of functional platelets. Collagen VI–null megakaryocytes and platelets display increased mTOR signaling and store-operated calcium entry.
Hemostatic abnormalities and impaired platelet function have been described in patients affected by connective tissue disorders. We observed a moderate bleeding tendency in patients affected by collagen VI–related disorders and investigated the defects in platelet functionality, whose mechanisms are unknown. We demonstrated that megakaryocytes express collagen VI that is involved in the regulation of functional platelet production. By exploiting a collagen VI–null mouse model (Col6a1−/−), we found that collagen VI–null platelets display significantly increased susceptibility to activation and intracellular calcium signaling. Col6a1−/− megakaryocytes and platelets showed increased expression of stromal interaction molecule 1 (STIM1) and ORAI1, the components of store-operated calcium entry (SOCE), and activation of the mammalian target of rapamycin (mTOR) signaling pathway. In vivo mTOR inhibition by rapamycin reduced STIM1 and ORAI1 expression and calcium flows, resulting in a normalization of platelet susceptibility to activation. These defects were cell autonomous, because transplantation of lineage-negative bone marrow cells from Col6a1−/− mice into lethally irradiated wild-type animals showed the same alteration in SOCE and platelet activation seen in Col6a1−/− mice. Peripheral blood platelets of patients affected by collagen VI–related diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy, displayed increased expression of STIM1 and ORAI1 and were more prone to activation. Altogether, these data demonstrate the importance of collagen VI in the production of functional platelets by megakaryocytes in mouse models and in collagen VI–related diseases.
Collapse
|
10
|
Almeida CGM, Costa-Higuchi K, Piovesan AR, Moro CF, Venturin GT, Greggio S, Costa-Ferro ZS, Salamoni SD, Peigneur S, Tytgat J, de Lima ME, Silva CND, Vinadé L, Rowan EG, DaCosta JC, Dal Belo CA, Carlini CR. Neurotoxic and convulsant effects induced by jack bean ureases on the mammalian nervous system. Toxicology 2021; 454:152737. [PMID: 33631299 DOI: 10.1016/j.tox.2021.152737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022]
Abstract
Ureases are microbial virulence factors either because of the enzymatic release of ammonia or due to many other non-enzymatic effects. Here we studied two neurotoxic urease isoforms, Canatoxin (CNTX) and Jack Bean Urease (JBU), produced by the plant Canavalia ensiformis, whose mechanisms of action remain elusive. The neurotoxins provoke convulsions in rodents (LD50 ∼2 mg/kg) and stimulate exocytosis in cell models, affecting intracellular calcium levels. Here, electrophysiological and brain imaging techniques were applied to elucidate their mode of action. While systemic administration of the toxins causes tonic-clonic seizures in rodents, JBU injected into rat hippocampus induced spike-wave discharges similar to absence-like seizures. JBU reduced the amplitude of compound action potential from mouse sciatic nerve in a tetrodotoxin-insensitive manner. Hippocampal slices from CNTX-injected animals or slices treated in vitro with JBU failed to induce long term potentiation upon tetanic stimulation. Rat cortical synaptosomes treated with JBU released L-glutamate. JBU increased the intracellular calcium levels and spontaneous firing rate in rat hippocampus neurons. MicroPET scans of CNTX-injected rats revealed increased [18]Fluoro-deoxyglucose uptake in epileptogenesis-related areas like hippocampus and thalamus. Curiously, CNTX did not affect voltage-gated sodium, calcium or potassium channels currents, neither did it interfere on cholinergic receptors, suggesting an indirect mode of action that could be related to the ureases' membrane-disturbing properties. Understanding the neurotoxic mode of action of C. ensiformis ureases could help to unveil the so far underappreciated relevance of these toxins in diseases caused by urease-producing microorganisms, in which the human central nervous system is affected.
Collapse
Affiliation(s)
- Carlos Gabriel Moreira Almeida
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kiyo Costa-Higuchi
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Materials Technology and Engineering, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Regina Piovesan
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Celular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlo Frederico Moro
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gianina Teribele Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Zaquer Susana Costa-Ferro
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Denise Salamoni
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Maria Elena de Lima
- Institute of Teaching and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Lúcia Vinadé
- Laboratory of Neurobiology and Toxinology (Lanetox), Universidade Federal do Pampa, São Gabriel, RS, Brazil
| | - Edward G Rowan
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jaderson Costa DaCosta
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratory of Neurobiology and Toxinology (Lanetox), Universidade Federal do Pampa, São Gabriel, RS, Brazil.
| | - Celia Regina Carlini
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Scholl of Medicine, Pontificía Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Kalev-Zylinska ML, Morel-Kopp MC, Ward CM, Hearn JI, Hamilton JR, Bogdanova AY. Ionotropic glutamate receptors in platelets: opposing effects and a unifying hypothesis. Platelets 2020; 32:998-1008. [PMID: 33284715 DOI: 10.1080/09537104.2020.1852542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ionotropic glutamate receptors include α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), kainate receptors (KAR), and N-methyl-D-aspartate receptors (NMDAR). All function as cation channels; AMPAR and KAR are more permeable to sodium and NMDAR to calcium ions. Compared to the brain, receptor assemblies in platelets are unusual, suggesting distinctive functionalities.There is convincing evidence that AMPAR and KAR amplify platelet function and thrombus formation in vitro and in vivo. Transgenic mice lacking GluA1 and GluK2 (AMPAR and KAR subunits, respectively) have longer bleeding times and prolonged time to thrombosis in an arterial model. In humans, rs465566 KAR gene polymorphism associates with altered in vitro platelet responses suggesting enhanced aspirin effect. The NMDAR contribution to platelet function is less well defined. NMDA at low concentrations (≤10 μM) inhibits platelet aggregation and high concentrations (≥100 μM) have no effect. However, open NMDAR channel blockers interfere with platelet activation and aggregation induced by other agonists in vitro; anti-GluN1 antibodies interfere with thrombus formation under high shear rates ex vivo; and rats vaccinated with GluN1 develop iron deficiency anemia suggestive of mild chronic bleeding. In this review, we summarize data on glutamate receptors in platelets and propose a unifying model that reconciles some of the opposing effects observed.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - James I Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Anna Y Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
12
|
Fan C, Yang X, Wang WW, Wang J, Li W, Guo M, Huang S, Wang Z, Liu K. Role of Kv1.3 Channels in Platelet Functions and Thrombus Formation. Arterioscler Thromb Vasc Biol 2020; 40:2360-2375. [PMID: 32787516 DOI: 10.1161/atvbaha.120.314278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Platelet activation by stimulatory factors leads to an increase in intracellular calcium concentration ([Ca
2+
]
i
), which is essential for almost all platelet functions. Modulation of Ca
2+
influx and [Ca
2+
]
i
in platelets has been emerging as a possible strategy for preventing and treating platelet-dependent thrombosis. Voltage-gated potassium 1.3 channels (Kv1.3) are highly expressed in platelets and able to regulate agonist-evoked [Ca
2+
]
i
increase. However, the role of Kv1.3 channels in regulating platelet functions and thrombosis has not yet been elucidated. In addition, it is difficult to obtain a specific blocker for this channel, since Kv1.3 shares identical drug-binding sites with other K
+
channels. Here, we investigate whether specific blockade of Kv1.3 channels by monoclonal antibodies affects platelet functions and thrombosis.
Approach and Results:
In this study, we produced the anti-Kv1.3 monoclonal antibody 6E12#15, which could specifically recognize both human and mouse Kv1.3 proteins and sufficiently block Kv1.3 channel currents. We found Kv1.3 blockade by 6E12#15 inhibited platelet aggregation, adhesion, and activation upon agonist stimulation. In vivo treatment with 6E12#15 alleviated thrombus formation in a mesenteric arteriole thrombosis mouse model and protected mice from collagen/epinephrine-induced pulmonary thromboembolism. Furthermore, we observed Kv1.3 regulated platelet functions by modulating Ca
2+
influx and [Ca
2+
]
i
elevation, and that this is mediated in part by P2X
1
. Interestingly,
Kv1.3
−/−
mice showed impaired platelet aggregation while displayed no abnormalities in in vivo thrombus formation. This phenomenon was related to more megakaryocytes and platelets produced in
Kv1.3
−/−
mice compared with wild-type mice.
Conclusions:
We showed specific inhibition of Kv1.3 by the novel monoclonal antibody 6E12#15 suppressed platelet functions and platelet-dependent thrombosis through modulating platelet [Ca
2+
]
i
elevation. These results indicate that Kv1.3 could act as a promising therapeutic target for antiplatelet therapies.
Collapse
Affiliation(s)
- Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Xiaofang Yang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, China (X.Y.)
| | | | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.W.)
| | - Wenzhu Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (W.L.)
| | - Mengyuan Guo
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Kun Liu
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.L.)
| |
Collapse
|
13
|
Clarke R, Hossain K, Cao K. Physiological roles of transverse lipid asymmetry of animal membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183382. [DOI: 10.1016/j.bbamem.2020.183382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
14
|
Kurz M, Krett AL, Bünemann M. Voltage Dependence of Prostanoid Receptors. Mol Pharmacol 2020; 97:267-277. [DOI: 10.1124/mol.119.118372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
|
15
|
Molica F, Meens MJ, Pelli G, Hautefort A, Emre Y, Imhof BA, Fontana P, Scemes E, Morel S, Kwak BR. Selective inhibition of Panx1 channels decreases hemostasis and thrombosis in vivo. Thromb Res 2019; 183:56-62. [PMID: 31669824 DOI: 10.1016/j.thromres.2019.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hemostasis is a tightly regulated physiological process to rapidly induce hemostatic plugs at sites of vascular injury. Inappropriate activation of this process may lead to thrombosis, i.e. pathological blood clot formation in uninjured vessels or on atherosclerotic lesions. ATP release through Pannexin1 (Panx1) membrane channels contributes to collagen-induced platelet aggregation in vitro. OBJECTIVE To investigate the effects of genetic and pharmacological inhibition of Panx1 on hemostasis and thrombosis in vivo. RESULTS Bleeding time after tail clipping was increased by 2.5-fold in Panx1-/- mice compared to wild-type controls, suggesting that Panx1 deficiency impairs primary hemostasis. Wire myography on mesenteric arteries revealed diminished vasoconstriction in response to phenylephrine or U446619 in Panx1-/- mice. Mice with platelet-specific deletion of Panx1 (Panx1PDel) displayed 2-fold longer tail bleeding times than Panx1fl/fl controls. Moreover, venous thromboembolism (VTE) after injection of collagen/epinephrine in the jugular vein was reduced in Panx1-/- and Panx1PDel mice. Panx1PDel mice also showed reduced FeCl3-induced thrombosis in mesenteric arteries. BrilliantBlue-FCF, a Panx1 channel inhibitor, decreased collagen-induced platelet aggregation in vitro, increased tail bleeding time and reduced VTE in wild-type mice. Furthermore, we developed a specific Panx1 blocking antibody targeting a Panx1 extracellular loop, which reduced ATP release from platelets in vitro. Treating wild-type mice with this antibody increased tail bleeding time and decreased VTE compared to control antibody. CONCLUSIONS Panx1 channel deletion or inhibition diminishes clot formation during hemostasis and thrombosis in vivo. Blocking Panx1 channels may be an attractive strategy for modulating platelet aggregation in thrombotic disease.
Collapse
Affiliation(s)
- Filippo Molica
- Dept of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Merlijn J Meens
- Dept of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Graziano Pelli
- Dept of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Aurélie Hautefort
- Dept of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Yalin Emre
- Dept of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Beat A Imhof
- Dept of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Pierre Fontana
- Division of Angiology and Haemostasis, Geneva University Hospitals and Geneva Platelet Group, University of Geneva, Geneva, Switzerland
| | - Eliana Scemes
- Dept of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Sandrine Morel
- Dept of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Dept of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Dept of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
16
|
Yang CH, Hsia CW, Jayakumar T, Sheu JR, Hsia CH, Khamrang T, Chen YJ, Manubolu M, Chang Y. Structure⁻Activity Relationship Study of Newly Synthesized Iridium-III Complexes as Potential Series for Treating Thrombotic Diseases. Int J Mol Sci 2018; 19:ijms19113641. [PMID: 30463221 PMCID: PMC6274890 DOI: 10.3390/ijms19113641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023] Open
Abstract
Platelets play a major role in hemostatic events and are associated with various pathological events, such as arterial thrombosis and atherosclerosis. Iridium (Ir) compounds are potential alternatives to platinum compounds, since they exert promising anticancer effects without cellular toxicity. Our recent studies found that Ir compounds show potent antiplatelet properties. In this study, we evaluated the in vitro antiplatelet, in vivo antithrombotic and structure⁻activity relationship (SAR) of newly synthesized Ir complexes, Ir-1, Ir-2 and Ir-4, in agonists-induced human platelets. Among the tested compounds, Ir-1 was active in inhibiting platelet aggregation induced by collagen; however, Ir-2 and Ir-4 had no effects even at their maximum concentrations of 50 μM against collagen and 500 μM against U46619-induced aggregation. Similarly, Ir-1 was potently inhibiting of adenosine triphosphate (ATP) release, calcium mobilization ([Ca2+]i) and P-selectin expression induced by collagen-induced without cytotoxicity. Likewise, Ir-1 expressively suppressed collagen-induced Akt, PKC, p38MAPKs and JNK phosphorylation. Interestingly, Ir-2 and Ir-4 had no effect on platelet function analyzer (PFA-100) collagen-adenosine diphosphate (C-ADP) and collagen-epinephrine (C-EPI) induced closure times in mice, but Ir-1 caused a significant increase when using C-ADP stimulation. Other in vivo studies revealed that Ir-1 significantly prolonged the platelet plug formation, increased tail bleeding times and reduced the mortality of adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism in mice. Ir-1 has no substitution on its phenyl group, a water molecule (like cisplatin) can replace its chloride ion and, hence, the rate of hydrolysis might be tuned by the substituent on the ligand system. These features might have played a role for the observed effects of Ir-1. These results indicate that Ir-1 may be a lead compound to design new antiplatelet drugs for the treatment of thromboembolic diseases.
Collapse
Affiliation(s)
- Chih-Hao Yang
- Department of Pharmacology, Schools of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Joen-Rong Sheu
- Department of Pharmacology, Schools of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Themmila Khamrang
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India.
| | - Yen-Jen Chen
- Department of Pharmacology, Schools of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA.
| | - Yi Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, No. 95, Wen Chang Rd., Taipei 111, Taiwan.
- School of Medicine, Fu-Jen Catholic University, No. 510, Zhong Zheng Rd, Xin Zhuang Dist., New Taipei City 242, Taiwan.
| |
Collapse
|
17
|
Leiva O, Leon C, Kah Ng S, Mangin P, Gachet C, Ravid K. The role of extracellular matrix stiffness in megakaryocyte and platelet development and function. Am J Hematol 2018; 93:430-441. [PMID: 29247535 DOI: 10.1002/ajh.25008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is a key acellular structure in constant remodeling to provide tissue cohesion and rigidity. Deregulation of the balance between matrix deposition, degradation, and crosslinking results in fibrosis. Bone marrow fibrosis (BMF) is associated with several malignant and nonmalignant pathologies severely affecting blood cell production. BMF results from abnormal deposition of collagen fibers and enhanced lysyl oxidase-mediated ECM crosslinking within the marrow, thereby increasing marrow stiffness. Bone marrow stiffness has been recently recognized as an important regulator of blood cell development, notably by modifying the fate and differentiation process of hematopoietic or mesenchymal stem cells. This review surveys the different components of the ECM and their influence on stem cell development, with a focus on the impact of the ECM composition and stiffness on the megakaryocytic lineage in health and disease. Megakaryocyte maturation and the biogenesis of their progeny, the platelets, are thought to respond to environmental mechanical forces through a number of mechanosensors, including integrins and mechanosensitive ion channels, reviewed here.
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| | - Catherine Leon
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Seng Kah Ng
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| | - Pierre Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Katya Ravid
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| |
Collapse
|
18
|
Koupenova M, Ravid K. Biology of Platelet Purinergic Receptors and Implications for Platelet Heterogeneity. Front Pharmacol 2018; 9:37. [PMID: 29441021 PMCID: PMC5797577 DOI: 10.3389/fphar.2018.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
Platelets are small anucleated cells present only in mammals. Platelets mediate intravascular hemostatic balance, prevent interstitial bleeding, and have a major role in thrombosis. Activation of platelet purinergic receptors is instrumental in initiation of hemostasis and formation of the hemostatic plug, although this activation process becomes problematic in pathological settings of thrombosis. This review briefly outlines the roles and function of currently known platelet purinergic receptors (P1 and P2) in the setting of hemostasis and thrombosis. Additionally, we discuss recent novel studies on purinergic receptor distribution according to heterogeneous platelet size, and the possible implication of this distribution on hemostatic function.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Katya Ravid
- Departments of Medicine and Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
19
|
Ilkan Z, Watson S, Watson SP, Mahaut-Smith MP. P2X1 Receptors Amplify FcγRIIa-Induced Ca2+ Increases and Functional Responses in Human Platelets. Thromb Haemost 2018; 118:369-380. [PMID: 29443373 PMCID: PMC6260114 DOI: 10.1160/th17-07-0530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platelets express key receptors of the innate immune system such as FcγRIIa and Toll-like receptors (TLR). P2X1 cation channels amplify the platelet responses to several major platelet stimuli, particularly glycoprotein (GP)VI and TLR2/1, whereas their contribution to Src tyrosine kinase-dependent FcγRIIa receptors remains unknown. We investigated the role of P2X1 receptors during activation of FcγRIIa in human platelets, following stimulation by cross-linking of an anti-FcγRIIa monoclonal antibody (mAb) IV.3, or bacterial stimulation with
Streptococcus sanguinis
. Activation was assessed in washed platelet suspensions via measurement of intracellular Ca
2+
([Ca
2+
]
i
) increases, ATP release and aggregation. P2X1 activity was abolished by pre-addition of α,β-meATP, exclusion of apyrase or the antagonist NF449. FcγRIIa activation evoked a robust increase in [Ca
2+
]
i
(441 ± 33 nM at 30 μg/mL mAb), which was reduced to a similar extent (to 66–70% of control) by NF449, pre-exposure to α,β-meATP or apyrase omission, demonstrating a significant P2X1 receptor contribution. FcγRIIa activation-dependent P2X1 responses were partially resistant to nitric oxide (NO), but abrogated by 500 nM prostacyclin (PGI
2
). Aggregation responses to bacteria and FcγRIIa activation were also inhibited by P2X1 receptor desensitization (to 66 and 42% of control, respectively). However, FcγRIIa-mediated tyrosine phosphorylation and ATP release were not significantly altered by the loss of P2X1 activity. In conclusion, we show that P2X1 receptors enhance platelet FcγRIIa receptor-evoked aggregation through an increase in [Ca
2+
]
i
downstream of the initial tyrosine phosphorylation events and early dense granule release. This represents a further route whereby ATP-gated cation channels can contribute to platelet-dependent immune responses in vivo.
Collapse
Affiliation(s)
- Zeki Ilkan
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, Institute of Biomedical Research Building, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Institute of Biomedical Research Building, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
20
|
Kamal T, Green TN, Hearn JI, Josefsson EC, Morel-Kopp MC, Ward CM, During MJ, Kalev-Zylinska ML. N-methyl-d-aspartate receptor mediated calcium influx supports in vitro differentiation of normal mouse megakaryocytes but proliferation of leukemic cell lines. Res Pract Thromb Haemost 2017; 2:125-138. [PMID: 30046713 PMCID: PMC5974914 DOI: 10.1002/rth2.12068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Background N-methyl-d-aspartate receptors (NMDARs) contribute calcium influx in megakaryocytic cells but their roles remain unclear; both pro- and anti-differentiating effects have been shown in different contexts. Objectives The aim of this study was to clarify NMDAR contribution to megakaryocytic differentiation in both normal and leukemic cells. Methods Meg-01, Set-2, and K-562 leukemic cell lines were differentiated using phorbol-12-myristate-13-acetate (PMA, 10 nmol L-1) or valproic acid (VPA, 500 μmol L-1). Normal megakaryocytes were grown from mouse marrow-derived hematopoietic progenitors (lineage-negative and CD41a-enriched) in the presence of thrombopoietin (30-40 nmol L-1). Marrow explants were used to monitor proplatelet formation in the native bone marrow milieu. In all culture systems, NMDARs were inhibited using memantine and MK-801 (100 μmol L-1); their effects compared against appropriate controls. Results The most striking observation from our studies was that NMDAR antagonists markedly inhibited proplatelet formation in all primary cultures employed. Proplatelets were either absent (in the presence of memantine) or short, broad and intertwined (with MK-801). Earlier steps of megakaryocytic differentiation (acquisition of CD41a and nuclear ploidy) were maintained, albeit reduced. In contrast, in leukemic Meg-01 cells, NMDAR antagonists inhibited differentiation in the presence of PMA and VPA but induced differentiation when applied by themselves. Conclusions NMDAR-mediated calcium influx is required for normal megakaryocytic differentiation, in particular proplatelet formation. However, in leukemic cells, the main NMDAR role is to inhibit differentiation, suggesting diversion of NMDAR activity to support leukemia growth. Further elucidation of the NMDAR and calcium pathways in megakaryocytic cells may suggest novel ways to modulate abnormal megakaryopoiesis.
Collapse
Affiliation(s)
- Tania Kamal
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand
| | - Taryn N Green
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand
| | - James I Hearn
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research Parkville Vic. Australia.,Department of Medical Biology University of Melbourne Melbourne Vic. Australia
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine Royal North Shore Hospital Sydney NSW Australia.,Northern Blood Research Centre Kolling Institute University of Sydney Sydney NSW Australia
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine Royal North Shore Hospital Sydney NSW Australia.,Northern Blood Research Centre Kolling Institute University of Sydney Sydney NSW Australia
| | - Matthew J During
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand.,Departments of Molecular Virology, Immunology and Medical Genetics Neuroscience and Neurological Surgery Ohio State University Columbus OH USA
| | - Maggie L Kalev-Zylinska
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand.,LabPlus Haematology Auckland City Hospital Auckland New Zealand
| |
Collapse
|
21
|
Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology 2017; 127:124-138. [PMID: 28689025 DOI: 10.1016/j.neuropharm.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Voltage-gated potassium channels play a key role in human physiology and pathology. Reflecting their importance, numerous channelopathies have been characterised that arise from mutations in these channels or from autoimmune attack on the channels. Voltage-gated potassium channels are also the target of a broad range of peptide toxins from venomous organisms, including sea anemones, scorpions, spiders, snakes and cone snails; many of these peptides bind to the channels with high potency and selectivity. In this review we describe the various classes of peptide toxins that block these channels and illustrate the broad range of three-dimensional structures that support channel blockade. The therapeutic opportunities afforded by these peptides are also highlighted. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
22
|
Pugh N, Maddox BD, Bihan D, Taylor KA, Mahaut-Smith MP, Farndale RW. Differential integrin activity mediated by platelet collagen receptor engagement under flow conditions. Thromb Haemost 2017; 117:1588-1600. [PMID: 28536721 PMCID: PMC6291897 DOI: 10.1160/th16-12-0906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/22/2017] [Indexed: 11/15/2022]
Abstract
The platelet receptors glycoprotein (Gp)VI, integrin α
2
β
1
and GpIb/V/IX mediate platelet adhesion and activation during thrombogenesis. Increases of intracellular Ca
2+
([Ca
2+
]
i
) are key signals during platelet activation; however, their relative importance in coupling different collagen receptors to functional responses under shear conditions remains unclear. To study shear-dependent, receptor-specific platelet responses, we used collagen or combinations of receptor-specific collagen-mimetic peptides as substrates for platelet adhesion and activation in whole human blood under arterial flow conditions and compared real-time and endpoint parameters of thrombus formation alongside [Ca
2+
]
i
measurements using confocal imaging. All three collagen receptors coupled to [Ca
2+
]
i
signals, but these varied in amplitude and temporal pattern alongside variable integrin activation. GpVI engagement produced large, sustained [Ca
2+
]
i
signals leading to realtime increases in integrins α
2
β
1
− and α
IIb
β
3
-mediated platelet adhesion. α
IIb
β
3
-dependent platelet aggregation was dependent on P
2
Y
12
signalling. Co-engagement of α
2
β
1
and GpIb/V/IX generated transient [Ca
2+
]
i
spikes and low amplitude [Ca
2+
]
i
responses that potentiated GpVI-dependent [Ca
2+
]
i
signalling. Therefore α
2
β
1
GpIb/V/IX and GpVI synergise to generate [Ca
2+
]
i
signals that regulate platelet behaviour and thrombus formation. Antagonism of secondary signalling pathways reveals distinct, separate roles for α
IIb
β
3
in stable platelet adhesion and aggregation.
Supplementary Material to this article is available online at
www.thrombosis-online.com
.
Collapse
Affiliation(s)
- Nicholas Pugh
- Nicholas Pugh, Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK, Tel.: +44 8451962661, E-mail:
| | | | | | | | | | | |
Collapse
|
23
|
Ilkan Z, Wright JR, Goodall AH, Gibbins JM, Jones CI, Mahaut-Smith MP. Evidence for shear-mediated Ca 2+ entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line. J Biol Chem 2017; 292:9204-9217. [PMID: 28416610 PMCID: PMC5454102 DOI: 10.1074/jbc.m116.766196] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/17/2017] [Indexed: 02/02/2023] Open
Abstract
The role of mechanosensitive (MS) Ca2+-permeable ion channels in platelets is unclear, despite the importance of shear stress in platelet function and life-threatening thrombus formation. We therefore sought to investigate the expression and functional relevance of MS channels in human platelets. The effect of shear stress on Ca2+ entry in human platelets and Meg-01 megakaryocytic cells loaded with Fluo-3 was examined by confocal microscopy. Cells were attached to glass coverslips within flow chambers that allowed applications of physiological and pathological shear stress. Arterial shear (1002.6 s-1) induced a sustained increase in [Ca2+] i in Meg-01 cells and enhanced the frequency of repetitive Ca2+ transients by 80% in platelets. These Ca2+ increases were abrogated by the MS channel inhibitor Grammostola spatulata mechanotoxin 4 (GsMTx-4) or by chelation of extracellular Ca2+ Thrombus formation was studied on collagen-coated surfaces using DiOC6-stained platelets. In addition, [Ca2+] i and functional responses of washed platelet suspensions were studied with Fura-2 and light transmission aggregometry, respectively. Thrombus size was reduced 50% by GsMTx-4, independently of P2X1 receptors. In contrast, GsMTx-4 had no effect on collagen-induced aggregation or on Ca2+ influx via TRPC6 or Orai1 channels and caused only a minor inhibition of P2X1-dependent Ca2+ entry. The Piezo1 agonist, Yoda1, potentiated shear-dependent platelet Ca2+ transients by 170%. Piezo1 mRNA transcripts and protein were detected with quantitative RT-PCR and Western blotting, respectively, in both platelets and Meg-01 cells. We conclude that platelets and Meg-01 cells express the MS cation channel Piezo1, which may contribute to Ca2+ entry and thrombus formation under arterial shear.
Collapse
Affiliation(s)
- Zeki Ilkan
- From the Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Joy R Wright
- From the Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom.,the Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, United Kingdom, and
| | - Alison H Goodall
- the Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, United Kingdom, and
| | - Jonathan M Gibbins
- the School of Biological Sciences, University of Reading, Reading RG6 6AS, United Kingdom
| | - Chris I Jones
- the School of Biological Sciences, University of Reading, Reading RG6 6AS, United Kingdom
| | - Martyn P Mahaut-Smith
- From the Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom,
| |
Collapse
|
24
|
Molica F, Stierlin FB, Fontana P, Kwak BR. Pannexin- and Connexin-Mediated Intercellular Communication in Platelet Function. Int J Mol Sci 2017; 18:E850. [PMID: 28420171 PMCID: PMC5412434 DOI: 10.3390/ijms18040850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
The three major blood cell types, i.e., platelets, erythrocytes and leukocytes, are all produced in the bone marrow. While red blood cells are the most numerous and white cells are the largest, platelets are small fragments and account for a minor part of blood volume. However, platelets display a crucial function by preventing bleeding. Upon vessel wall injury, platelets adhere to exposed extracellular matrix, become activated, and form a platelet plug preventing hemorrhagic events. However, when platelet activation is exacerbated, as in rupture of an atherosclerotic plaque, the same mechanism may lead to acute thrombosis causing major ischemic events such as myocardial infarction or stroke. In the past few years, major progress has been made in understanding of platelet function modulation. In this respect, membrane channels formed by connexins and/or pannexins are of particular interest. While it is still not completely understood whether connexins function as hemichannels or gap junction channels to inhibit platelet aggregation, there is clear-cut evidence for a specific implication of pannexin1 channels in collagen-induced aggregation. The focus of this review is to summarize current knowledge of the role of connexins and pannexins in platelet aggregation and to discuss possible pharmacological approaches along with their limitations and future perspectives for new potential therapies.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| | - Florian B Stierlin
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
| | - Pierre Fontana
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
- Division of Angiology and Haemostasis, Geneva University Hospitals, 1211 Geneva, Switzerland.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
Green TN, Hamilton JR, Morel-Kopp MC, Zheng Z, Chen TYT, Hearn JI, Sun PP, Flanagan JU, Young D, Barber PA, During MJ, Ward CM, Kalev-Zylinska ML. Inhibition of NMDA receptor function with an anti-GluN1-S2 antibody impairs human platelet function and thrombosis. Platelets 2017; 28:799-811. [PMID: 28277064 DOI: 10.1080/09537104.2017.1280149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GluN1 is a mandatory component of N-methyl-D-aspartate receptors (NMDARs) best known for their roles in the brain, but with increasing evidence for relevance in peripheral tissues, including platelets. Certain anti-GluN1 antibodies reduce brain infarcts in rodent models of ischaemic stroke. There is also evidence that human anti-GluN1 autoantibodies reduce neuronal damage in stroke patients, but the underlying mechanism is unclear. This study investigated whether anti-GluN1-mediated neuroprotection involves inhibition of platelet function. Four commercial anti-GluN1 antibodies were screened for their abilities to inhibit human platelet aggregation. Haematological parameters were examined in rats vaccinated with GluN1. Platelet effects of a mouse monoclonal antibody targeting the glycine-binding region of GluN1 (GluN1-S2) were tested in assays of platelet activation, aggregation and thrombus formation. The epitope of anti-GluN1-S2 was mapped and the mechanism of antibody action modelled using crystal structures of GluN1. Our work found that rats vaccinated with GluN1 had a mildly prolonged bleeding time and carried antibodies targeting mostly GluN1-S2. The monoclonal anti-GluN1-S2 antibody (from BD Biosciences) inhibited activation and aggregation of human platelets in the presence of adrenaline, adenosine diphosphate, collagen, thrombin and a protease-activated receptor 1-activating peptide. When human blood was flowed over collagen-coated surfaces, anti-GluN1-S2 impaired thrombus growth and stability. The epitope of anti-GluN1-S2 was mapped to α-helix H located within the glycine-binding clamshell of GluN1, where the antibody binding was computationally predicted to impair opening of the NMDAR channel. Our results indicate that anti-GluN1-S2 inhibits function of human platelets, including dense granule release and thrombus growth. Findings add to the evidence that platelet NMDARs regulate thrombus formation and suggest a novel mechanism by which anti-GluN1 autoantibodies limit stroke-induced neuronal damage.
Collapse
Affiliation(s)
- Taryn N Green
- a Department of Molecular Medicine and Pathology , University of Auckland , Auckland , New Zealand
| | - Justin R Hamilton
- b Australian Centre for Blood Diseases, Monash University , Melbourne , Australia
| | - Marie-Christine Morel-Kopp
- c Department of Haematology and Transfusion Medicine , Royal North Shore Hospital , Sydney , Australia.,d Northern Blood Research Centre, Kolling Institute, University of Sydney , Sydney , Australia
| | - Zhaohua Zheng
- b Australian Centre for Blood Diseases, Monash University , Melbourne , Australia
| | - Ting-Yu T Chen
- a Department of Molecular Medicine and Pathology , University of Auckland , Auckland , New Zealand.,e Department of Pharmacology and Clinical Pharmacology , University of Auckland , Auckland , New Zealand
| | - James I Hearn
- a Department of Molecular Medicine and Pathology , University of Auckland , Auckland , New Zealand
| | - Peng P Sun
- a Department of Molecular Medicine and Pathology , University of Auckland , Auckland , New Zealand
| | - Jack U Flanagan
- f Auckland Cancer Society Research Centre, University of Auckland , Auckland , New Zealand.,g Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , Auckland , New Zealand
| | - Deborah Young
- e Department of Pharmacology and Clinical Pharmacology , University of Auckland , Auckland , New Zealand
| | - P Alan Barber
- h Department of Neurology , Auckland City Hospital , Auckland , New Zealand.,i Centre for Brain Research , University of Auckland , Auckland , New Zealand
| | - Matthew J During
- a Department of Molecular Medicine and Pathology , University of Auckland , Auckland , New Zealand.,j Departments of Molecular Virology, Immunology and Medical Genetics , Neuroscience and Neurological Surgery, Ohio State University , Columbus , OH , USA
| | - Christopher M Ward
- c Department of Haematology and Transfusion Medicine , Royal North Shore Hospital , Sydney , Australia.,d Northern Blood Research Centre, Kolling Institute, University of Sydney , Sydney , Australia
| | - Maggie L Kalev-Zylinska
- a Department of Molecular Medicine and Pathology , University of Auckland , Auckland , New Zealand.,k LabPlus Haematology , Auckland City Hospital , Auckland , New Zealand
| |
Collapse
|
26
|
Taylor KA, Pugh N. The contribution of zinc to platelet behaviour during haemostasis and thrombosis. Metallomics 2016; 8:144-55. [PMID: 26727074 DOI: 10.1039/c5mt00251f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets are the primary cellular determinants of haemostasis and pathological thrombus formation leading to myocardial infarction and stroke. Following vascular injury or atherosclerotic plaque rupture, platelets are recruited to sites of damage and undergo activation induced by a variety of soluble and/or insoluble agonists. Platelet activation is a multi-step process culminating in the formation of thrombi, which contribute to the haemostatic process. Zinc (Zn(2+)) is acknowledged as an important signalling molecule in a diverse range of cellular systems, however there is limited understanding of the influence of Zn(2+) on platelet behaviour during thrombus formation. This review evaluates the contributions of exogenous and intracellular Zn(2+) to platelet function and assesses the potential pathophysiological implications of Zn(2+) signalling. We also provide a speculative assessment of the mechanisms by which platelets could respond to changes in extracellular and intracellular Zn(2+) concentration.
Collapse
Affiliation(s)
- K A Taylor
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| | - N Pugh
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| |
Collapse
|
27
|
Wright JR, Amisten S, Goodall AH, Mahaut-Smith MP. Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines. Thromb Haemost 2016; 116:272-84. [PMID: 27277069 PMCID: PMC5080539 DOI: 10.1160/th15-11-0891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/30/2016] [Indexed: 11/05/2022]
Abstract
Ion channels have crucial roles in all cell types and represent important therapeutic targets. Approximately 20 ion channels have been reported in human platelets; however, no systematic study has been undertaken to define the platelet channelome. These membrane proteins need only be expressed at low copy number to influence function and may not be detected using proteomic or transcriptomic microarray approaches. In our recent work, quantitative real-time PCR (qPCR) provided key evidence that Kv1.3 is responsible for the voltage-dependent K+ conductance of platelets and megakaryocytes. The present study has expanded this approach to assess relative expression of 402 ion channels and channel regulatory genes in human platelets and three megakaryoblastic/erythroleukaemic cell lines. mRNA levels in platelets are low compared to other blood cells, therefore an improved method of isolating platelets was developed. This used a cocktail of inhibitors to prevent formation of leukocyte-platelet aggregates, and a combination of positive and negative immunomagnetic cell separation, followed by rapid extraction of mRNA. Expression of 34 channel-related transcripts was quantified in platelets, including 24 with unknown roles in platelet function, but that were detected at levels comparable to ion channels with established roles in haemostasis or thrombosis. Trace expression of a further 50 ion channel genes was also detected. More extensive channelomes were detected in MEG-01, CHRF-288-11 and HEL cells (195, 185 and 197 transcripts, respectively), but lacked several channels observed in the platelet. These "channelome" datasets provide an important resource for further studies of ion channel function in the platelet and megakaryocyte.
Collapse
Affiliation(s)
| | | | | | - Martyn P Mahaut-Smith
- Prof. Martyn Mahaut-Smith, PhD, Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LEI 7RH, UK, Tel.: +44 116 229 7135, E-mail:
| |
Collapse
|
28
|
Mahaut-Smith MP, Taylor KA, Evans RJ. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:305-29. [PMID: 27161234 DOI: 10.1007/978-3-319-26974-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Kirk A Taylor
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK
| |
Collapse
|
29
|
Berna-Erro A, Jardín I, Smani T, Rosado JA. Regulation of Platelet Function by Orai, STIM and TRP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:157-81. [PMID: 27161229 DOI: 10.1007/978-3-319-26974-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agonist-induced changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) are central events in platelet physiology. A major mechanism supporting agonist-induced Ca(2+) signals is store-operated Ca(2+) entry (SOCE), where the Ca(2+) sensor STIM1 and the channels of the Orai family, as well as TRPC members are the key elements. STIM1-dependent SOCE plays a major role in collagen-stimulated Ca(2+) signaling, phosphatidylserine exposure and thrombin generation. Furthermore, studies involving Orai1 gain-of-function mutants and platelets from Orai1-deficient mice have revealed the importance of this channel in thrombosis and hemostasis to those found in STIM1-deficient mice indicating that SOCE might play a prominent role in thrombus formation. Moreover, increase in TRPC6 expression might lead to thrombosis in humans. The role of STIM1, Orai1 and TRPCs, and thus SOCE, in thrombus formation, suggests that therapies directed against SOCE and targeting these molecules during cardiovascular and cerebrovascular events could significantly improve traditional anti-thrombotic treatments.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Isaac Jardín
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, 10003, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
30
|
Kamal T, Green TN, Morel-Kopp MC, Ward CM, McGregor AL, McGlashan SR, Bohlander SK, Browett PJ, Teague L, During MJ, Skerry TM, Josefsson EC, Kalev-Zylinska ML. Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation. Cell Signal 2015; 27:1860-72. [PMID: 25982509 DOI: 10.1016/j.cellsig.2015.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/07/2023]
Abstract
Human megakaryocytes release glutamate and express glutamate-gated Ca(2+)-permeable N-methyl-D-aspartate receptors (NMDARs) that support megakaryocytic maturation. While deregulated glutamate pathways impact oncogenicity in some cancers, the role of glutamate and NMDARs in megakaryocytic malignancies remains unknown. The aim of this study was to determine if NMDARs participate in Ca(2+) responses in leukemic megakaryoblasts and if so, whether modulating NMDAR activity could influence cell growth. Three human cell lines, Meg-01, Set-2 and K-562 were used as models of leukemic megakaryoblasts. NMDAR components were examined in leukemic cells and human bone marrow, including in megakaryocytic disease. Well-established NMDAR modulators (agonists and antagonists) were employed to determine NMDAR effects on Ca(2+) flux, cell viability, proliferation and differentiation. Leukemic megakaryoblasts contained combinations of NMDAR subunits that differed from normal bone marrow and the brain. NMDAR agonists facilitated Ca(2+) entry into Meg-01 cells, amplified Ca(2+) responses to adenosine diphosphate (ADP) and promoted growth of Meg-01, Set-2 and K-562 cells. Low concentrations of NMDAR inhibitors (riluzole, memantine, MK-801 and AP5; 5-100μM) were weakly cytotoxic but mainly reduced cell numbers by suppressing proliferation. The use-dependent NMDAR inhibitor, memantine (100μM), reduced numbers and proliferation of Meg-01 cells to less than 20% of controls (IC50 20μM and 36μM, respectively). In the presence of NMDAR inhibitors cells acquired morphologic and immunophenotypic features of megakaryocytic differentiation. In conclusion, NMDARs provide a novel pathway for Ca(2+) entry into leukemic megakaryoblasts that supports cell proliferation but not differentiation. NMDAR inhibitors counteract these effects, suggesting a novel opportunity to modulate growth of leukemic megakaryoblasts.
Collapse
Affiliation(s)
- Tania Kamal
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Taryn N Green
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia; Northern Blood Research Centre, Kolling Institute of Medical Research, The University of Sydney, Australia
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia; Northern Blood Research Centre, Kolling Institute of Medical Research, The University of Sydney, Australia
| | - Ailsa L McGregor
- School of Pharmacy and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Susan R McGlashan
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Peter J Browett
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Department of Haematology, Auckland City Hospital, Auckland, New Zealand
| | - Lochie Teague
- Department of Paediatric Haematology and Oncology, Starship Children's Health, Auckland, New Zealand
| | - Matthew J During
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, United States; the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Timothy M Skerry
- Centre for Integrated Research into Musculoskeletal Ageing, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, VIC 3052 Australia; University of Melbourne, Department of Medical Biology, 1G Royal Parade, VIC 3052 Australia
| | - Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; LabPlus Haematology, Auckland District Health Board, Auckland, New Zealand.
| |
Collapse
|
31
|
Molica F, Morel S, Meens MJ, Denis JF, Bradfield PF, Penuela S, Zufferey A, Monyer H, Imhof BA, Chanson M, Laird DW, Fontana P, Kwak BR. Functional role of a polymorphism in the Pannexin1 gene in collagen-induced platelet aggregation. Thromb Haemost 2015; 114:325-36. [PMID: 25947940 DOI: 10.1160/th14-11-0981] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/16/2015] [Indexed: 12/28/2022]
Abstract
Pannexin1 (Panx1) forms ATP channels that play a critical role in the immune response by reinforcing purinergic signal amplification in the immune synapse. Platelets express Panx1 and given the importance of ATP release in platelets, we investigated Panx1 function in platelet aggregation and the potential impact of genetic polymorphisms on Panx1 channels. We show here that Panx1 forms ATP release channels in human platelets and that inhibiting Panx1 channel function with probenecid, mefloquine or specific (10)Panx1 peptides reduces collagen-induced platelet aggregation but not the response induced by arachidonic acid or ADP. These results were confirmed using Panx1-/- platelets. Natural variations have been described in the human Panx1 gene, which are predicted to induce non-conservative amino acid substitutions in its coding sequence. Healthy subjects homozygous for Panx1-400C, display enhanced platelet reactivity in response to collagen compared with those bearing the Panx1-400A allele. Conversely, the frequency of Panx1-400C homozygotes was increased among cardiovascular patients with hyper-reactive platelets compared with patients with hypo-reactive platelets. Exogenous expression of polymorphic Panx1 channels in a Panx-deficient cell line revealed increased basal and stimulated ATP release from cells transfected with Panx1-400C channels compared with Panx1-400A expressing transfectants. In conclusion, we demonstrate a specific role for Panx1 channels in the signalling pathway leading to collagen-induced platelet aggregation. Our study further identifies for the first time an association between a Panx1-400A>C genetic polymorphism and collagen-induced platelet reactivity. The Panx1-400C variant encodes for a gain-of-function channel that may adversely affect atherothrombosis by specifically enhancing collagen-induced ATP release and platelet aggregation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - B R Kwak
- Brenda R. Kwak, PhD, Department of Pathology and Immunology, Department of Medical Specializations - Cardiology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva/Switzerland, Tel.: +41 22 379 57 37, Fax: +41 22 379 57 46, E-mail:
| |
Collapse
|
32
|
Phosphatidylinositol-3,4,5-trisphosphate stimulates Ca(2+) elevation and Akt phosphorylation to constitute a major mechanism of thromboxane A2 formation in human platelets. Cell Signal 2015; 27:1488-98. [PMID: 25797048 DOI: 10.1016/j.cellsig.2015.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022]
Abstract
Phosphatidylinositol trisphosphate (PIP3) has been implicated in many platelet functions however many of the mechanisms need clarification. We have used cell permeable analogues of PIP3,1-O-(1,2-di-palmitoyl-sn-glyero-3-O-phosphoryl)-D-myo-inositol-3,4,5-trisphosphate (DiC16-PIP3) or 1-O-(1,2-di-octanoyl-sn-glyero-3-O-phosphoryl)-D-myo-inositol-3,4,5-trisphosphate (DiC8-PIP3) to study their effects on activation on washed human platelets. Addition of either DiC8- or DiC16-PIP3 to human platelets induced aggregation in the presence of extracellular Ca(2+). This was reduced by the presence of indomethacin, the phospholipase C inhibitor U73122 and apyrase. DiC8-PIP3 induced the phosphorylation of Akt-Ser(473) which was reduced by the Akt inhibitor IV, wortmannin and EGTA (suggesting a dependence on Ca(2+) entry). In Fura2 loaded platelets DiC8-PIP3 was effective at increasing intracellular Ca(2+) in a distinct and transient manner that was reduced in the presence of indomethacin, U73122 and 2-aminoethyl diphenylborinate (2APB). Ca(2+) elevation was reduced by the non-SOCE inhibitor LOE908 and also by the SOCE inhibitor BTP2. DiC8-PIP3 induced the release of Ca(2+) from stores which was not affected by the proton dissipating agent bafilomycin A1 and was more potent than the two-pore channel agonist DiC8-PI[3,5]P2 suggesting release from an endoplasmic reticulum type store. DiC8-PIP3 weakly induced the tyrosine phosphorylation of Syk but not of PLCγ2. Finally like thrombin DiC8-PIP3 induced the formation of thromboxane B2 that was inhibited by the Akt inhibitor IV. These studies suggest that PIP3 via Ca(2+) elevation and Akt phosphorylation forms a central role in thromboxane A2 formation and the amplification of platelet activation.
Collapse
|
33
|
Hosseinzadeh Z, Warsi J, Elvira B, Almilaji A, Shumilina E, Lang F. Up-regulation of Kv1.3 Channels by Janus Kinase 2. J Membr Biol 2015; 248:309-17. [DOI: 10.1007/s00232-015-9772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023]
|
34
|
Almilaji A, Honisch S, Liu G, Elvira B, Ajay SS, Hosseinzadeh Z, Ahmed M, Munoz C, Sopjani M, Lang F. Regulation of the voltage gated K channel Kv1.3 by recombinant human klotho protein. Kidney Blood Press Res 2014; 39:609-22. [PMID: 25571875 DOI: 10.1159/000368472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Klotho, a protein mainly produced in the kidney and released into circulating blood, contributes to the negative regulation of 1,25(OH)2D3 formation and is thus a powerful regulator of mineral metabolism. As β-glucuronidase, alpha Klotho protein further regulates the stability of several carriers and channels in the plasma membrane and thus regulates channel and transporter activity. Accordingly, alpha Klotho protein participates in the regulation of diverse functions seemingly unrelated to mineral metabolism including lymphocyte function. The present study explored the impact of alpha Klotho protein on the voltage gated K+ channel Kv1.3. METHODS cRNA encoding Kv1.3 (KCNA3) was injected into Xenopus oocytes and depolarization induced outward current in Kv1.3 expressing Xenopus oocytes determined utilizing dual electrode voltage clamp. Experiments were performed without or with prior treatment with recombinant human Klotho protein (50 ng/ml, 24 hours) in the absence or presence of a β-glucuronidase inhibitor D-saccharic acid-1,4-lactone (DSAL, 10 µM). Moreover, the voltage gated K+ current was determined in Jcam lymphoma cells by whole cell patch clamp following 24 hours incubation without or with recombinant human Klotho protein (50 ng/ml, 24 hours). Kv1.3 protein abundance in Jcam cells was determined utilising fluorescent antibodies in flow cytometry. RESULTS In Kv1.3 expressing Xenopus oocytes the Kv1.3 currents and the protein abundance of Kv1.3 were both significantly enhanced after treatment with recombinant human Klotho protein (50 ng/ml, 24 hours), an effect reversed by presence of DSAL. Moreover, treatment with recombinant human Klotho protein increased Kv currents and Kv1.3 protein abundance in Jcam cells. CONCLUSION Alpha Klotho protein enhances Kv1.3 channel abundance and Kv1.3 currents in the plasma membrane, an effect depending on its β-glucuronidase activity.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Purinergic control of inflammation and thrombosis: Role of P2X1 receptors. Comput Struct Biotechnol J 2014; 13:106-10. [PMID: 25709760 PMCID: PMC4334884 DOI: 10.1016/j.csbj.2014.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/ − mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/ − mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation.
Collapse
|
36
|
Galione A. A primer of NAADP-mediated Ca(2+) signalling: From sea urchin eggs to mammalian cells. Cell Calcium 2014; 58:27-47. [PMID: 25449298 DOI: 10.1016/j.ceca.2014.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Since the discovery of the Ca(2+) mobilizing effects of the pyridine nucleotide metabolite, nicotinic acid adenine dinucleotide phosphate (NAADP), this molecule has been demonstrated to function as a Ca(2+) mobilizing intracellular messenger in a wide range of cell types. In this review, I will briefly summarize the distinct principles behind NAADP-mediated Ca(2+) signalling before going on to outline the role of this messenger in the physiology of specific cell types. Central to the discussion here is the finding that NAADP principally mobilizes Ca(2+) from acidic organelles such as lysosomes and it is this property that allows NAADP to play a unique role in intracellular Ca(2+) signalling. Lysosomes and related organelles are small Ca(2+) stores but importantly may also initiate a two-way dialogue with other Ca(2+) storage organelles to amplify Ca(2+) release, and may be strategically localized to influence localized Ca(2+) signalling microdomains. The study of NAADP signalling has created a new and fruitful focus on the lysosome and endolysosomal system as major players in calcium signalling and pathophysiology.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
37
|
Ambily A, Kaiser WJ, Pierro C, Chamberlain EV, Li Z, Jones CI, Kassouf N, Gibbins JM, Authi KS. The role of plasma membrane STIM1 and Ca(2+)entry in platelet aggregation. STIM1 binds to novel proteins in human platelets. Cell Signal 2013; 26:502-11. [PMID: 24308967 PMCID: PMC4062937 DOI: 10.1016/j.cellsig.2013.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 12/05/2022]
Abstract
Ca2 + elevation is essential to platelet activation. STIM1 senses Ca2 + in the endoplasmic reticulum and activates Orai channels allowing store-operated Ca2 + entry (SOCE). STIM1 has also been reported to be present in the plasma membrane (PM) with its N-terminal region exposed to the outside medium but its role is not fully understood. We have examined the effects of the antibody GOK/STIM1, which recognises the N-terminal region of STIM1, on SOCE, agonist-stimulated Ca2 + entry, surface exposure, in vitro thrombus formation and aggregation in human platelets. We also determined novel binding partners of STIM1 using proteomics. The dialysed GOK/STIM1 antibody failed to reduced thapsigargin- and agonist-mediated Ca2 + entry in Fura2-labelled cells. Using flow cytometry we detect a portion of STIM1 to be surface-exposed. The dialysed GOK/STIM1 antibody reduced thrombus formation by whole blood on collagen-coated capillaries under flow and platelet aggregation induced by collagen. In immunoprecipitation experiments followed by proteomic analysis, STIM1 was found to extract a number of proteins including myosin, DOCK10, thrombospondin-1 and actin. These studies suggest that PM STIM1 may facilitate platelet activation by collagen through novel interactions at the plasma membrane while the essential Ca2 +-sensing role of STIM1 is served by the protein in the ER. STIM1 promotes collagen induced platelet aggregation and thrombus formation. In human platelets SOCE activates but is not essential for platelet aggregation. Plasma membrane STIM1 may facilitate platelet activation independent of SOCE.
Collapse
Affiliation(s)
- A Ambily
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - W J Kaiser
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - C Pierro
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - E V Chamberlain
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - Z Li
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - C I Jones
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - N Kassouf
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - J M Gibbins
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - K S Authi
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
38
|
Mahaut-Smith MP. A Role for Platelet TRPC Channels in the Ca2+ Response That Induces Procoagulant Activity. Sci Signal 2013; 6:pe23. [DOI: 10.1126/scisignal.2004399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Di Michele M, Goubau C, Waelkens E, Thys C, De Vos R, Overbergh L, Schyns T, Buyse G, Casaer P, Van Geet C, Freson K. Functional studies and proteomics in platelets and fibroblasts reveal a lysosomal defect with increased cathepsin-dependent apoptosis in ATP1A3 defective alternating hemiplegia of childhood. J Proteomics 2013; 86:53-69. [DOI: 10.1016/j.jprot.2013.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 01/07/2023]
|