1
|
Ren B, Kang J, Wang Y, Meng X, Huang Y, Bai Y, Feng Z. Transcranial direct current stimulation promotes angiogenesis and improves neurological function via the OXA-TF-AKT/ERK signaling pathway in traumatic brain injury. Aging (Albany NY) 2024; 16:6566-6587. [PMID: 38604164 PMCID: PMC11042948 DOI: 10.18632/aging.205724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Traumatic brain injury (TBI) and its resulting complications pose a major challenge to global public health, resulting in increased rates of disability and mortality. Cerebrovascular dysfunction is nearly universal in TBI cases and is closely associated with secondary injury after TBI. Transcranial direct current stimulation (tDCS) shows great potential in the treatment of TBI; however, the exact mechanism remains elusive. In this study, we performed in vivo and in vitro experiments to explore the effects and mechanisms of tDCS in a controlled cortical impact (CCI) rat model simulating TBI. In vivo experiments show that tDCS can effectively reduce brain tissue damage, cerebral edema and neurological deficits. The potential mechanism may be that tDCS improves the neurological function of rats by increasing orexin A (OXA) secretion, upregulating the TF-AKT/ERK signaling pathway, and promoting angiogenesis at the injury site. Cellular experiments showed that OXA promoted HUVEC migration and angiogenesis, and these effects were counteracted by the ERK1/2 inhibitor LY3214996. The results of Matrigel experiment in vivo showed that TNF-a significantly reduced the ability of HUVEC to form blood vessels, but OXA could rescue the effect of TNF-a on the ability of HUVEC to form blood vessels. However, LY3214996 could inhibit the therapeutic effect of OXA. In summary, our preliminary study demonstrates that tDCS can induce angiogenesis through the OXA-TF-AKT/ERK signaling pathway, thereby improving neurological function in rats with TBI.
Collapse
Affiliation(s)
- Bingkai Ren
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Junwei Kang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Yan Wang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Xiangqiang Meng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Ying Huang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Yang Bai
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Zhen Feng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| |
Collapse
|
2
|
Arderiu G, Bejar MT, Civit-Urgell A, Peña E, Badimon L. Crosstalk of human coronary perivascular adipose-derived stem cells with vascular cells: role of tissue factor. Basic Res Cardiol 2024; 119:291-307. [PMID: 38430261 DOI: 10.1007/s00395-024-01037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
The coronary perivascular adipose tissue (cPVAT) has been associated to the burden of cardiovascular risk factors and to the underlying vessel atherosclerotic plaque severity. Although the "outside to inside" hypothesis of PVAT-derived-adipokine regulation of vessel function is currently accepted, whether the resident mesenchymal stem cells (ASCs) in PVAT have a regulatory role on the underlying vascular arterial smooth muscle cells (VSMCs) is not known. Here, we investigated the interactions between resident PVAT-ASCs and VSMCs. ASCs were obtained from PVAT overlying the left anterior descending (LAD) coronary artery of hearts removed at heart transplant operations. PVAT was obtained both from patients with non-ischemic and ischemic heart disease as the cause of heart transplant. ASCs were isolated from PVAT, phenotypically characterized by flow cytometry, functionally tested for proliferation, and differentiation. Crosstalk between ASCs and VSMCs was investigated by co-culture studies. ASCs were detected in the adventitia of the LAD-PVAT showing differentiation capacity and angiogenic potential. ASCs obtained from PVAT of non-ischemic and ischemic hearts showed different tissue factor (TF) expression levels, different VSMCs recruitment capacity through the axis ERK1/2-ETS1 signaling and different angiogenic potential. Induced upregulation of TF in ASCs isolated from ischemic PVAT rescued their angiogenic capacity in subcutaneously implanted plugs in mice, whereas silencing TF in ASCs decreased the proangiogenic capacity of non-ischemic ASCs. The results indicate for the first time a novel mechanism of regulation of VSMCs by PVAT-ASCs in angiogenesis, mediated by TF expression in ASCs. Regulation of TF in ASCs may become a therapeutic intervention to increase cardiac protection.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain.
- Ciber CV, Instituto Carlos III, Madrid, Spain.
| | - Maria Teresa Bejar
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Anna Civit-Urgell
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
| | - Esther Peña
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Ciber CV, Instituto Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, Carrer Sant Quintí, 77-79, 08041, Barcelona, Spain
- Ciber CV, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Badimon L, Padro T, Arderiu G, Vilahur G, Borrell-Pages M, Suades R. Extracellular vesicles in atherothrombosis: From biomarkers and precision medicine to therapeutic targets. Immunol Rev 2022; 312:6-19. [PMID: 35996799 DOI: 10.1111/imr.13127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of global mortality. Extracellular vesicles (EVs) are small phospholipid vesicles that convey molecular bioactive cargoes and play essential roles in intercellular communication and, hence, a multifaceted role in health and disease. The present review offers a glimpse into the current state and up-to-date concepts on EV field. It also covers their association with several cardiovascular risk factors and ischemic conditions, being subclinical atherosclerosis of utmost relevance for prevention. Interestingly, we show that EVs hold promise as prognostic and diagnostic as well as predictive markers of ASCVD in the precision medicine era. We then report on the role of EVs in atherothrombosis, disentangling the mechanisms involved in the initiation, progression, and complication of atherosclerosis and showing their direct effect in the context of arterial thrombosis. Finally, their potential use for therapeutic intervention is highlighted.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Arderiu
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Gallinat A, Badimon L. DJ-1 interacts with the ectopic ATP-synthase in endothelial cells during acute ischemia and reperfusion. Sci Rep 2022; 12:12753. [PMID: 35882968 PMCID: PMC9325725 DOI: 10.1038/s41598-022-16998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 01/28/2023] Open
Abstract
Endothelial cells (ECs) play a central role in ischemia. ATP-Synthase is now recognized to be ectopically expressed in the cell surface of many cell types, with putative roles described in angiogenesis, proliferation, and intracellular pH regulation. DJ-1 is a multifunctional protein, involved in cell protection against ischemia, ischemia–reperfusion (I/R), and oxidative stress, that regulates mitochondrial ATP-synthase. Here we focused on the characterization of the endothelial dynamics of DJ-1, and its implication in the regulation of the ectopic ATP-synthase (ecATP-S) activity, during acute ischemia and I/R in ECs. We found that DJ-1 is secreted from ECs, by a mechanism enhanced in ischemia and I/R. A cleaved form of DJ-1 (DJ-1∆C) was found only in the secretome of ischemic cells. The ecATP-S activity increased following acute ischemia in ECs, coinciding with DJ-1 and DJ-1∆C secretion. The inhibition of DJ-1 expression inhibited the ecATP-S response to ischemia by ∼ 50%, and its exogenous administration maximized the effect, together with an enhanced Akt phosphorylation and angiotube-formation potential at reperfusion. Immunoprecipitation studies showed direct interaction between DJ-1 and the ecATP-S. Altogether suggesting that DJ-1 is actively cleaved and released from ischemic ECs and plays an important role in the regulation of the ecATP-S activity during acute ischemia and reperfusion.
Collapse
Affiliation(s)
- Alex Gallinat
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, c/Sant Antoni María Claret, 167, 08025, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, c/Sant Antoni María Claret, 167, 08025, Barcelona, Spain. .,CIBERCV-Instituto de Salud Carlos III, Madrid, Spain. .,UAB-Chair Cardiovascular Research, Barcelona, Spain.
| |
Collapse
|
5
|
Catar R, Herse-Naether M, Zhu N, Wagner P, Wischnewski O, Kusch A, Kamhieh-Milz J, Eisenreich A, Rauch U, Hegner B, Heidecke H, Kill A, Riemekasten G, Kleinau G, Scheerer P, Dragun D, Philippe A. Autoantibodies Targeting AT 1- and ET A-Receptors Link Endothelial Proliferation and Coagulation via Ets-1 Transcription Factor. Int J Mol Sci 2021; 23:244. [PMID: 35008670 PMCID: PMC8745726 DOI: 10.3390/ijms23010244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022] Open
Abstract
Scleroderma renal crisis (SRC) is an acute life-threatening manifestation of systemic sclerosis (SSc) caused by obliterative vasculopathy and thrombotic microangiopathy. Evidence suggests a pathogenic role of immunoglobulin G (IgG) targeting G-protein coupled receptors (GPCR). We therefore dissected SRC-associated vascular obliteration and investigated the specific effects of patient-derived IgG directed against angiotensin II type 1 (AT1R) and endothelin-1 type A receptors (ETAR) on downstream signaling events and endothelial cell proliferation. SRC-IgG triggered endothelial cell proliferation via activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent activation of the E26 transformation-specific-1 transcription factor (Ets-1). Either AT1R or ETAR receptor inhibitors/shRNA abrogated endothelial proliferation, confirming receptor activation and Ets-1 signaling involvement. Binding of Ets-1 to the tissue factor (TF) promoter exclusively induced TF. In addition, TF inhibition prevented endothelial cell proliferation. Thus, our data revealed a thus far unknown link between SRC-IgG-induced intracellular signaling, endothelial cell proliferation and active coagulation in the context of obliterative vasculopathy and SRC. Patients' autoantibodies and their molecular effectors represent new therapeutic targets to address severe vascular complications in SSc.
Collapse
Affiliation(s)
- Rusan Catar
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Melanie Herse-Naether
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nan Zhu
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Philine Wagner
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Oskar Wischnewski
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
| | - Andreas Eisenreich
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.E.); (U.R.)
| | - Ursula Rauch
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.E.); (U.R.)
| | - Björn Hegner
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Vitanas Klinik für Geriatrie, 13435 Berlin, Germany
| | | | - Angela Kill
- Deutsches Rheuma-Forschungszentrum (DRFZ), A. Leibniz Institute, 10117 Berlin, Germany; (A.K.); (G.R.)
- Department of Rheumatology and Clinical Immunology, CCM, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Gabriela Riemekasten
- Deutsches Rheuma-Forschungszentrum (DRFZ), A. Leibniz Institute, 10117 Berlin, Germany; (A.K.); (G.R.)
- Department of Rheumatology and Clinical Immunology, CCM, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (G.K.); (P.S.)
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (G.K.); (P.S.)
- DZHK (Deutsches Zentrum für Herz-Kreislauf Forschung), Partner Site Berlin, 13353 Berlin, Germany
| | - Duska Dragun
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
| | - Aurelie Philippe
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
| |
Collapse
|
6
|
Arderiu G, Peña E, Badimon L. Ischemic tissue released microvesicles induce monocyte reprogramming and increase tissue repair by a tissue factor-dependent mechanism. Cardiovasc Res 2021; 118:2354-2366. [PMID: 34406379 DOI: 10.1093/cvr/cvab266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS Despite increasing evidence that monocytes may acquire endothelial features, it remains unclear how monocytes participate in angiogenesis after ischemic damage. We investigated whether ischemic cells can release microvesicles (MVs) and promote neovascularisation in a model of peripheral artery disease (PAD). METHODS AND RESULTS To model PAD we used an in vivo experimental model of hind limb ischemia (HLI) in mice. MVs were isolated from the ischemic muscle and from peripheral blood at different times after unilateral femoral artery ligation. MVs were phenotypically characterized to identify cell origin. HLI in mice induced the release of MVs with a much higher content of tissue factor (TF) than non-HLI control mice both in the MVs isolated from the affected limb muscle area and from blood. MVs were mainly released from endothelial cells (ECs) and induced Mo differentiation to endothelial cell-like (ECL) cells. Differentiation to ECL cells encompassed highly strict hierarchycal transcription factor activation, initiated by ETS1 activation. MVs secreted by microvascular ECs overexpressing TF (upTF-EMVs), were injected in the ischemic hind limb in parallel with control EMVs (from random siRNA-treated cells) or EMVs released by silenced TF endothelial cells (siTF-EMVs). In animals treated with upTF-EMVs in the ischemic zone there was a highly significant increase in functional new vessels formation (seen by magnetic resonance angiography), a concomitant increase in the pool of circulating Ly6Clow Mo expressing vascular endothelial cell markers, and a significantly higher number of Mo/Macrophages surrounding and integrating the newly formed collaterals. CONCLUSION Ischemia-activated ECs release EMVs rich in TF that induce monocyte differentiation into ECL cells and the formation of new vessels in the ischemic zone. TF by this mechanism of formation of new blood microvessels can contribute to ischemic tissue repair. TRANSLATIONAL PERSPECTIVE Neovascularization is the cornerstone of limb preservation in peripheral artery disease. Neovessel formation occurring during postnatal development is usually connected with inflammation. Advanced studies in the field of vascular biology have reported that monocytes can acquire endothelial features under angiogenic stimulation. We report that after ischemia affected endothelial cells release microvesicles rich in tissue factor that act as endogenous triggers by interacting with monocytes in an autocrine fashion, coaxing the cells to differentiate into functional endothelial cells. These differentiated cells have the ability to increase blood flow into ischemic tissue. The present study depicts a new concept in the mechanisms governing vessel formation in ischemic tissue.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program ICCC; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau. IIB-Sant Pau Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain
| | - Esther Peña
- Cardiovascular-Program ICCC; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau. IIB-Sant Pau Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau. IIB-Sant Pau Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Multi-omics analysis reveals the interaction between the complement system and the coagulation cascade in the development of endometriosis. Sci Rep 2021; 11:11926. [PMID: 34099740 PMCID: PMC8185094 DOI: 10.1038/s41598-021-90112-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Endometriosis (EMS) is a disease that shows immune dysfunction and chronic inflammation characteristics, suggesting a role of complement system in its pathophysiology. To find out the hub genes and pathways involved in the pathogenesis of EMs, three raw microarray datasets were recruited from the Gene Expression Omnibus database (GEO). Then, a series of bioinformatics technologies including gene ontology (GO), Hallmark pathway enrichment, protein-protein interaction (PPI) network and gene co-expression correlation analysis were performed to identify hub genes. The hub genes were further verified by the Real-time quantitative polymerase chain reaction (RT-PCR) and Western Blot (WB). We identified 129 differentially expressed genes (DEGs) in EMs, of which 78 were up-regulated and 51 were down-regulated. Through GO functional enrichment analysis, we found that the DEGs are mainly enriched in cell adhesion, extracellular matrix remodeling, chemokine regulation, angiogenesis regulation, epithelial cell proliferation, et al. In Hallmark pathway enrichment analysis, coagulation pathway showed great significance and the terms in which included the central complement factors. Moreover, the genes were dominating in PPI network. Combined co-expression analysis with experimental verification, we found that the up-regulated expression of complement (C1S, C1QA, C1R, and C3) was positively related to tissue factor (TF) in EMs. In this study, we discovered the over expression complement and the positive correlation between complement and TF in EMs, which suggested that interaction of complement and coagulation system may play a role within the pathophysiology of EMS.
Collapse
|
8
|
Activation of PAR2 by tissue factor induces the release of the PTEN from MAGI proteins and regulates PTEN and Akt activities. Sci Rep 2020; 10:20908. [PMID: 33262514 PMCID: PMC7708427 DOI: 10.1038/s41598-020-77963-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
Tissue factor (TF) signalling has been associated with alterations in Akt activity influencing cellular survival and proliferation. TF is also shown to induce signalling through activation of the protease activated receptor (PAR)2. Seven cell lines were exposed to recombinant-TF (rec-TF), or activated using a PAR2-agonist peptide and the phosphorylation state of PTEN, and the activities of PTEN and Akt measured. Furthermore, by measuring the association of PTEN with MAGI proteins a mechanism for the induction of signalling by TF was proposed. Short term treatment of cells resulted in de-phosphorylation of PTEN, increased lipid-phosphatase activity and reduced Akt kinase activity in most of the cell lines examined. In contrast, continuous exposure to rec-TF up to 14 days, resulted in lower PTEN antigen levels, enhanced Akt activity and increased rate of cell proliferation. To explore the mechanism of activation of PTEN by TF, the association of "membrane-associated guanylate kinase-with inverted configuration" (MAGI)1–3 proteins with PTEN was assessed using the proximity ligation assay and by co-immunoprecipitation. The interaction of PTEN with all three MAGI proteins was transiently reduced following PAR2 activation and explains the changes in PTEN activity. Our data is first to show that PAR2 activation directly, or through exposure of cells to TF releases PTEN from MAGI proteins and is concurrent with increases in PTEN phosphatase activity. However, prolonged exposure to TF results in the reduction in PTEN antigen with concurrent increase in Akt activity which may explain the aberrant cell survival, proliferation and invasion associated with TF during chronic diseases.
Collapse
|
9
|
Protease-activated receptor 2 contributes to placental development and fetal growth in mice. Thromb Res 2020; 193:173-179. [PMID: 32717642 DOI: 10.1016/j.thromres.2020.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Protease-activated receptor 2 (PAR2) is activated by serine proteases such as coagulation tissue factor/VIIa complex, factor Xa or trypsin and is pro-angiogenic in several disease models. Impaired angiogenesis in placenta causes placental dysfunction and fetal growth restriction. PAR2 is expressed in the placenta trophoblast. However, the role of PAR2 in pregnancy remains unknown. OBJECTIVE The present study aimed to examine the role of PAR2 in placental development and fetal growth using a murine model. METHODS PAR2-/- or PAR2+/+ mice in the ICR background were used. Female PAR2-/- mice were mated with male PAR2-/- mice, and female PAR2+/+ mice were mated with male PAR2+/+ mice to obtain PAR2-/- and PAR2+/+ fetuses, respectively. The day a virginal plug was observed in the morning was determined as 0.5-day post-coitum (dpc). Pregnant mice were sacrificed on 13.5 or 18.5 dpc to collect samples. RESULTS A deficiency of PAR2 significantly reduced the fetal and placental weight and impaired placental labyrinth development in mice on 18.5 dpc. Collagen IV expression in placenta labyrinth was smaller in PAR2 knockout mice compared to that of wild-type mice. A deficiency of PAR2 also reduced the expression levels of genes related to angiogenesis and coagulation in placenta. CONCLUSION Our data suggest that PAR2 is required for fetal growth and angiogenesis in the placenta and is thus important for a normal pregnancy.
Collapse
|
10
|
Lambert C, Arderiu G, Bejar MT, Crespo J, Baldellou M, Juan-Babot O, Badimon L. Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities. Stem Cell Res Ther 2019; 10:361. [PMID: 31783922 PMCID: PMC6884762 DOI: 10.1186/s13287-019-1460-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The composition and function of the adipose tissue covering the heart are poorly known. In this study, we have investigated the epicardial adipose tissue (EAT) covering the cardiac ventricular muscle and the EAT covering the left anterior descending artery (LAD) on the human heart, to identify their resident stem cell functional activity. METHODS EAT covering the cardiac ventricular muscle was isolated from the apex (avoiding areas irrigated by major vessels) of the heart (ventricular myocardium adipose tissue (VMAT)) and from the area covering the epicardial arterial sulcus of the LAD (PVAT) in human hearts excised during heart transplant surgery. Adipose stem cells (ASCs) from both adipose tissue depots were immediately isolated and phenotypically characterized by flow cytometry. The different behavior of these ASCs and their released secretome microvesicles (MVs) were investigated by molecular and cellular analysis. RESULTS ASCs from both VMAT (mASCs) and the PVAT (pASCs) were characterized by the expression of CD105, CD44, CD29, CD90, and CD73. The angiogenic-related genes VEGFA, COL18A1, and TF, as well as the miRNA126-3p and miRNA145-5p, were analyzed in both ASC types. Both ASCs were functionally able to form tube-like structures in three-dimensional basement membrane substrates. Interestingly, pASCs showed a higher level of expression of VEGFA and reduced level of COL18A1 than mASCs. Furthermore, MVs released by mASCs significantly induced human microvascular endothelial cell migration. CONCLUSION Our study indicates for the first time that the resident ASCs in human epicardial adipose tissue display a depot-specific angiogenic function. Additionally, we have demonstrated that resident stem cells are able to regulate microvascular endothelial cell function by the release of MVs.
Collapse
Affiliation(s)
- Carmen Lambert
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.
| | - Maria Teresa Bejar
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Maribel Baldellou
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Oriol Juan-Babot
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.
- Ciber CV, 28029, Madrid, Spain.
- Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
11
|
Molecular Mechanisms Underpinning Microparticle-Mediated Cellular Injury in Cardiovascular Complications Associated with Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6475187. [PMID: 30915196 PMCID: PMC6399542 DOI: 10.1155/2019/6475187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Microparticles (MPs) are small vesicles shed from the cytoplasmic membrane of healthy, activated, or apoptotic cells. MPs are very heterogeneous in size (100–1,000 nm), and they harbor proteins and surface antigens specific to cells they originate from. Virtually, all cells can shed MPs, and therefore, they can be found in all body fluids, but also entrapped in tissues. Of interest and because of their easy detection using a variety of techniques, circulating MPs were recognized as biomarkers for cell activation. MPs were also found to mediate critical actions in intercellular communication and transmitting biological messages by acting as paracrine vehicles. High plasma numbers of MPs were reported in many cardiovascular and metabolic disturbances that are closely associated with insulin resistance and low-grade inflammation and have been linked to adverse actions on cardiovascular function. This review highlights the involvement of MPs in cardiovascular complications associated with diabetes and discusses the molecular mechanisms that underpin the pathophysiological role of MPs in the onset and progression of cellular injury in diabetes.
Collapse
|
12
|
Badimon L, Suades R, Arderiu G, Peña E, Chiva-Blanch G, Padró T. Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Front Cardiovasc Med 2017; 4:77. [PMID: 29326946 PMCID: PMC5741657 DOI: 10.3389/fcvm.2017.00077] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis (AT) is a progressive chronic disease involving lipid accumulation, fibrosis, and inflammation in medium and large-sized arteries, and it is the main cause of cardiovascular disease (CVD). AT is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Despite lipid-lowering drugs have shown to decrease the risk of cardiovascular events (CVEs), there is a significant burden of AT-related morbidity and mortality. Identification of subjects at increased risk for CVE as well as discovery of novel therapeutic targets for improved treatment strategies are still unmet clinical needs in CVD. Microvesicles (MVs), small extracellular plasma membrane particles shed by activated and apoptotic cells have been widely linked to the development of CVD. MVs from vascular and resident cells by facilitating exchange of biological information between neighboring cells serve as cellular effectors in the bloodstream and play a key role in all stages of disease progression. This article reviews the current knowledge on the role of MVs in AT and CVD. Attention is focused on novel aspects of MV-mediated regulatory mechanisms from endothelial dysfunction, vascular wall inflammation, oxidative stress, and apoptosis to coagulation and thrombosis in the progression and development of atherothrombosis. MV contribution to vascular remodeling is also discussed, with a particular emphasis on the effect of MVs on the crosstalk between endothelial cells and smooth muscle cells, and their role regulating the active process of AT-driven angiogenesis and neovascularization. This review also highlights the latest findings and main challenges on the potential prognostic, diagnostic, and therapeutic value of cell-derived MVs in CVD. In summary, MVs have emerged as new regulators of biological functions in atherothrombosis and might be instrumental in cardiovascular precision medicine; however, significant efforts are still needed to translate into clinics the latest findings on MV regulation and function.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| |
Collapse
|
13
|
Peña E, Arderiu G, Badimon L. Protein disulphide-isomerase A2 regulated intracellular tissue factor mobilisation in migrating human vascular smooth muscle cells. Thromb Haemost 2017; 113:891-902. [DOI: 10.1160/th14-09-0776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/01/2014] [Indexed: 11/05/2022]
Abstract
SummaryProtein-disulphide isomerase family (PDI) are an ER-stress protein that controls TF-procoagulant activity but its role in HVSMC migration and coronary artery disease remains to be elucidated. We aimed to investigate whether in human coronary smooth muscle cells (HVSMC) the ER-stress protein-disulphide isomerase family A member 2 (PDIA2) regulates tissue factor (TF) polarisation during migration and atherosclerotic remodeling. PDIA2 and TF were analysed by confocal microscopy, silenced by small interfering RNAs (siRNA) and their function analysed by transwell and migration assays in vitro and in vivo. PDIA2and TF co-localise in the front edge of motile HVSMC. Silencing PDIA2, as well as silencing TF, reduces migration. PDIA2 silenced cells show increased TF-rich microparticle shedding. In vivo cell-loaded plug implants in nude mice of PDIA2 silenced HVSMC together with microvascular endothelial cells showed a significant impairment in mature microvessel formation. PDIA2 and TF are found in remodelled atherosclerotic plaques but not in healthy coronaries. In conclusion, we demonstrate that TF is chaperoned by PDIA2 to the HVSMC membrane and to the cell migratory front. Absence of PDIA2 impairs TF intracellular trafficking to its membrane docking favoring its uncontrolled release in microparticles. TF-regulated HVSMC migration and microvessel formation is under the control of the ER-protein PDIA2.
Collapse
|
14
|
Li P, Wei J, Li X, Cheng Y, Chen W, Cui Y, Simoncini T, Gu Z, Yang J, Fu X. 17β-Estradiol Enhances Vascular Endothelial Ets-1/miR-126-3p Expression: The Possible Mechanism for Attenuation of Atherosclerosis. J Clin Endocrinol Metab 2017; 102:594-603. [PMID: 27870587 DOI: 10.1210/jc.2016-2974] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/17/2016] [Indexed: 01/30/2023]
Abstract
CONTEXT Endothelial microRNA 126 (miR-126) attenuates the development of atherosclerosis (AS). However, there is no evidence showing the role of miR-126 in estrogen's antiatherogenic effects. OBJECTIVE We hypothesized that 17β-estradiol (E2) modulates miR-126 expression and thus may improve endothelial function and retard AS development. DESIGN/SETTING/PARTICIPANTS This was a prospective cohort study of 12 healthy regularly menstruating female volunteers. ApoE-/- mice were used as the atherosclerosis model and human umbilical vascular endothelial cells (HUVECs) were cultured as the cell model. MAIN OUTCOME MEASURES Serum hormones and miR-126-3p levels were measured up to 3 times for 1 cycle. Real-time polymerase chain reaction, histology for atherosclerotic lesions, immunofluorescence, luciferase assay, transfection experiments, cell proliferation, migration and tube formation assay, and western blot were performed. RESULTS Serum concentrations of miR-126-3p in cycling women were higher at the ovulatory and luteal phases than in the follicular phase, and they were positively correlated with E2 values. Administration of miR-126-3p mimics to ApoE-/- mice-attenuated atherogenesis, and antagomir-126-3p partially reversed the protective effect of E2 on atherogenesis. In HUVECs, E2 increased miR-126-3p expression via upregulation of Ets-1 (a transcription factor for miR-126). c-Src/Akt signaling was important for E2-mediated expression of Ets-1/miR-126. E2 decreased expression of miR-126-3p target Spred1 (a protein that inhibits mitogenic signaling). Overexpression of Spred1 partially blocked enhancement of endothelial cell proliferation, migration, and tube formation by E2. Additionally, E2 regulates miR-126-3p-mediated expression of vascular cell adhesion molecule-1 to inhibit monocyte adhesion into HUVECs. CONCLUSIONS E2 protection against atherogenesis is possibly mediated by Ets-1/miR-126.
Collapse
Affiliation(s)
- Ping Li
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Jinzhi Wei
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Yang Cheng
- Department of Gynecology and Obstetrics, Municipal First People's Hospital of Guangzhou, Guangzhou 510180, People's Republic of China
| | - Weiyu Chen
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Yuhong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56100, Italy
| | - Zhengtian Gu
- Department of Gynecology and Obstetrics, Municipal First People's Hospital of Guangzhou, Guangzhou 510180, People's Republic of China
| | - Jun Yang
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
15
|
Noshiro S, Mikami T, Kataoka-Sasaki Y, Sasaki M, Ohnishi H, Ohtaki S, Wanibuchi M, Mikuni N, Kocsis JD, Honmou O. Co-expression of tissue factor and IL-6 in immature endothelial cells of cerebral cavernous malformations. J Clin Neurosci 2017; 37:83-90. [PMID: 28087183 DOI: 10.1016/j.jocn.2016.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022]
Abstract
Cerebral cavernous malformations (CCMs) are congenital abnormal clusters of capillaries that are prone to leaking and thought to result from a disorder of endothelial cells. The underlying pathology of CCM is not fully understood. We analyzed the expression of tissue factor (TF) and interleukin-6 (IL-6) in CCMs to determine the association of TF and IL-6 with clinical and pathological findings. Thirteen cases of operative specimens of sporadic CCMs were included in this study. The expression of messenger RNA of TF and IL-6 was assayed and the association with clinical factors was investigated. Then, the distribution of TF and IL-6 was examined with immunofluorescence. The mRNA expression of TF of CCMs was significantly higher than that of the control (p=0.017), and was correlated with the number of hemorrhage appearances (p=0.190, ρ=0.62). The mRNA expression level of IL-6 was significantly correlated with the mRNA expression level of TF (p=0.034, ρ=0.58). Examination of immunostained sections indicated that TF+ cells were also positive for IL-6, and distributed around normal endothelial cells. Moreover, the TF+/IL-6+ cells expressed CD31 and VEGFR2. The expressions of IL-6 and TF were correlated, and both were present in the same immature endothelial cells. TF is elevated in CCM and might mediate progressive events. These factors may play a prognostic role in CCM.
Collapse
Affiliation(s)
- Shouhei Noshiro
- Department of Neurosurgery, Sapporo Medical University, School of Medicine, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Japan
| | - Takeshi Mikami
- Department of Neurosurgery, Sapporo Medical University, School of Medicine, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Japan.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Japan; Department of Neurology, Yale University, School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Hirofumi Ohnishi
- Department of Public Health, Sapporo Medical University, School of Medicine, Japan
| | - Shunya Ohtaki
- Department of Neurosurgery, Sapporo Medical University, School of Medicine, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Sapporo Medical University, School of Medicine, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University, School of Medicine, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University, School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University, School of Medicine, Japan; Department of Neurology, Yale University, School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
16
|
Peña E, de la Torre R, Arderiu G, Slevin M, Badimon L. mCRP triggers angiogenesis by inducing F3 transcription and TF signalling in microvascular endothelial cells. Thromb Haemost 2016; 117:357-370. [PMID: 27808345 DOI: 10.1160/th16-07-0524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/16/2016] [Indexed: 01/18/2023]
Abstract
Inflammation contributes to vascular disease progression. However, the role of circulating inflammatory molecules on microvascular endothelial cell (mECs) is not fully elucidated. The aim of this study was to investigate the effects of the short pentraxin CRP on microvascular endothelial cell angiogenic function. Subcutaneously implanted collagen plugs seeded with human mECs exposed to monomeric CRP (mCRP) in mice showed formation of an extended network of microvessels both in the plug and the overlying skin tissue, while mECs exposure to pentameric native CRP (nCRP) induced a much milder effect. To understand the mechanisms behind this angiogenic effects, mECs were exposed to both CRP forms and cell migration, wound repair and tube-like formation were investigated. nCRP effects were moderate and of slow-onset whereas mCRP induced rapid, and highly significant effects. We investigated how circulating nCRP is transformed into mCRP by confocal microscopy and western blot. nCRP is transformed into mCRP on the mECs membranes in a time dependent fashion. This transformation is specific and in part receptor dependent, and the formed mCRP triggers F3 gene transcription and TF-protein expression in mECs to induce angiogenesis. F3-silenced mECs are unable to form angiotubes. In agreement, mCRP induced upregulation of the TF signalling pathway in mECs with downstream phosphorylation of AKT and activation of the transcription factor ETS1 leading to increased CCL2 release. The circulating pentraxin nCRP with little pro-angiogenic effect when dissociated into mCRP on the surface of mECs is able to trigger potent proangiogenic effects by inducing F3-gene upregulation and TF signalling.
Collapse
Affiliation(s)
| | | | | | | | - Lina Badimon
- Prof. Lina Badimon, Cardiovascular Research Center, Hospital de la Santa Creu i Sant Pau, C/ Sant Antoni Mª Claret 167, 08025 Barcelona, Spain, Tel.: +34 93 556 58 80, Fax: +34 93 556 55 59, E-mail:
| |
Collapse
|
17
|
Oligoubiquitination of tissue factor on Lys255 promotes Ser253-dephosphorylation and terminates TF release. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2846-2857. [PMID: 27599717 DOI: 10.1016/j.bbamcr.2016.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 11/24/2022]
Abstract
Restriction of tissue factor (TF) activity at the cell surface and TF release are critical for prevention of excessive coagulation. This study examined the regulation of TF dephosphorylation and its release through ubiquitination. A plasmid containing the sequence to express the tandem protein TF-tGFP was mutated to include an arginine-substitution at Lys255 within TF. MDA-MB-231 cell line, and HCAEC endothelial cells were transfected and subsequently activated with PAR2-agonist peptide. The wild-type and mutant TF-tGFP were immunoprecipitated from the cell lysates and the ubiquitination and phosphorylation state of TF examined. Analysis of the proteins showed that arginine-substitution of Lys255 within TF prevented its ubiquitination while the wild-type TF-tGFP was oligoubiquitinated. The TF-associated oligoubiquitin chain was estimated to contain up to 4 ubiquitin units, with the linkage formed between Lys63 of one ubiquitin unit, and the C-terminus of the next unit. The Lys255→Arg substitution of TF-tGFP prolonged the phosphorylation of Ser253 within TF, compared to the wild-type TF-tGFP, lengthened the presence of TF-tGFP at the cell surface and extended the duration of TF-tGFP release from cells following PAR2 activation. A biotinylated 19-mer peptide corresponding to the C-terminus of TF (TFc) was used as substrate to show that the ubiquitination of TF was mediated by the Ube2D family of E2-enzymes and involved Mdm2. Moreover, double-phosphorylation of TFc was prerequisite for ubiquitination, with subsequent dephosphorylation of Ser253 by phosphatase PP2A. In conclusion, oligoubiquitination of Lys255 within TF permits PP2A to bind and dephosphorylate Ser253 and occurs to terminate TF release and contain its activity.
Collapse
|
18
|
Biological relevance of tissue factor and IL-6 in arteriovenous malformations. Neurosurg Rev 2016; 40:359-367. [PMID: 27542852 DOI: 10.1007/s10143-016-0780-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Arteriovenous malformations (AVMs) are congenital abnormal vessels that shunt blood directly from the arterial to the venous system without a capillary bed. The underlying pathology of AVMs is not fully understood. The objective of the study was to determine the association between the expression patterns of tissue factor (TF) and interleukin-6 (IL-6) in AVMs with clinical and pathological findings. Eighteen cases of sporadic AVM with operative specimens were included in this study. The expression of messenger RNA (mRNA) of TF and IL-6 was assayed, and association with clinical factors was investigated. The distribution of TF and IL-6 was examined with immunofluorescence. The mRNA expression of TF was significantly higher in AVM specimens than in control tissues (P = 0.002) and significantly higher in the symptomatic group than in the asymptomatic group (P = 0.037). The mRNA expression of IL-6 was likewise significantly higher in AVM specimens than in control tissues (P = 0.038). Examination of immunostained sections indicated that TF+ cells were also positive for IL-6 and were distributed around normal endothelial cells and pericytes. Moreover, TF+/IL-6+ cells also expressed CD31, vascular endothelial growth factor receptor 2 (VEGFR2), and platelet-derived growth factor receptor beta (PDGFR-beta). These results suggest that TF is elevated in AVMs and that it mediates symptomatic events. IL-6 is associated with the angiogenic activity of TF, and both are present in the same abnormal endothelial cells and pericytes. These factors may have interactive effects and may serve in a prognostic role for AVMs.
Collapse
|
19
|
Arderiu G, Espinosa S, Peña E, Aledo R, Badimon L. PAR2-SMAD3 in microvascular endothelial cells is indispensable for vascular stability via tissue factor signaling. J Mol Cell Biol 2015; 8:255-70. [PMID: 26658897 DOI: 10.1093/jmcb/mjv065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
Tissue factor (TF) signaling regulates gene expression and protein synthesis leading to the modulation of cell function. Recently, we have demonstrated in microvascular endothelial cells (mECs) that TF signaling induces activation of ETS1 transcription factor. Because combinatorial control is a characteristic property of ETS family members, involving the interaction between ETS1 and other transcription factors, here we investigate whether additional transcription factors are involved in TF-induced angiogenesis. We show by in vitro and in vivo experiments that in addition to ETS1, SMAD3 contributes to tube-like stabilization induced by TF in mECs. Whereas the ability of TF-overexpressing cells to induce gene expression through ETS1 is dependent on AKT signaling, SMAD3 induces ETS1 by an alternative AKT-independent pathway. Moreover, while TF-AKT-ETS1 pathway to induce CCL2 is PAR2-independent, PAR2 is required for TF-SMAD3-induced CCL2 expression. PAR2-dependent activation of SMAD3 is mediated by PKC phosphorylation. In addition, disruption of SMAD3 expression in mECs reduces ERK1/2 phosphorylation and decreases target gene promoter activity. In conclusion, in mECs TF-induced angiogenesis seems to be the result of two signaling pathways: TF-induced microvessel formation is regulated through β1 integrin-AKT-ETS1; and TF-induced microvessel stabilization is regulated via PAR2-SMAD3 that is indispensable for the maintenance of vascular integrity.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Sonia Espinosa
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Rosa Aledo
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| |
Collapse
|
20
|
Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014; 79-80:3-18. [PMID: 24997339 DOI: 10.1016/j.addr.2014.06.005] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
The basement membrane is an important extracellular matrix that is found in all epithelial and endothelial tissues. It maintains tissue integrity, serves as a barrier to cells and to molecules, separates different tissue types, transduces mechanical signals, and has many biological functions that help to maintain tissue specificity. A well-defined soluble basement membrane extract, termed BME/Matrigel, prepared from an epithelial tumor is similar in content to authentic basement membrane, and forms a hydrogel at 24-37°C. It is used in vitro as a substrate for 3D cell culture, in suspension for spheroid culture, and for various assays, such as angiogenesis, invasion, and dormancy. In vivo, BME/Matrigel is used for angiogenesis assays and to promote xenograft and patient-derived biopsy take and growth. Studies have shown that both the stiffness of the BME/Matrigel and its components (i.e. chemical signals) are responsible for its activity with so many different cell types. BME/Matrigel has widespread use in assays and in models that improve our understanding of tumor biology and help define therapeutic approaches.
Collapse
|
21
|
Abstract
Atherosclerosis is a silent chronic vascular pathology that is the cause of the majority of cardiovascular ischaemic events. The evolution of vascular disease involves a combination of endothelial dysfunction, extensive lipid deposition in the intima, exacerbated innate and adaptive immune responses, proliferation of vascular smooth muscle cells and remodelling of the extracellular matrix, resulting in the formation of an atherosclerotic plaque. High-risk plaques have a large acellular lipid-rich necrotic core with an overlying thin fibrous cap infiltrated by inflammatory cells and diffuse calcification. The formation of new fragile and leaky vessels that invade the expanding intima contributes to enlarge the necrotic core increasing the vulnerability of the plaque. In addition, biomechanical, haemodynamic and physical factors contribute to plaque destabilization. Upon erosion or rupture, these high-risk lipid-rich vulnerable plaques expose vascular structures or necrotic core components to the circulation, which causes the activation of tissue factor and the subsequent formation of a fibrin monolayer (coagulation cascade) and, concomitantly, the recruitment of circulating platelets and inflammatory cells. The interaction between exposed atherosclerotic plaque components, platelet receptors and coagulation factors eventually leads to platelet activation, aggregation and the subsequent formation of a superimposed thrombus (i.e. atherothrombosis) which may compromise the arterial lumen leading to the presentation of acute ischaemic syndromes. In this review, we will describe the progression of the atherosclerotic lesion along with the main morphological characteristics that predispose to plaque rupture, and discuss the multifaceted mechanisms that drive platelet activation and subsequent thrombus formation. Finally, we will consider the current scientific challenges and future research directions.
Collapse
Affiliation(s)
- L Badimon
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; Cardiovascular Research Chair, UAB, Barcelona, Spain
| | | |
Collapse
|
22
|
Arderiu G, Peña E, Badimon L. Angiogenic microvascular endothelial cells release microparticles rich in tissue factor that promotes postischemic collateral vessel formation. Arterioscler Thromb Vasc Biol 2014; 35:348-57. [PMID: 25425620 DOI: 10.1161/atvbaha.114.303927] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Therapeutic angiogenesis is a promising strategy for treating ischemia. Our previous work showed that endogenous endothelial tissue factor (TF) expression induces intracrine signaling and switches-on angiogenesis in microvascular endothelial cells (mECs). We have hypothesized that activated mECs could exert a further paracrine regulation through the release of TF-rich microvascular endothelial microparticles (mEMPs) and induce neovascularization of ischemic tissues. APPROACH AND RESULTS Here, we describe for the first time that activated mECs are able to induce reparative neovascularization in ischemic zones by releasing TF-rich microparticles. We show in vitro and in vivo that mEMPs released by both wild-type and TF-upregulated-mECs induce angiogenesis and collateral vessel formation, whereas TF-poor mEMPs derived from TF-silenced mECs are not able to trigger angiogenesis. Isolated TF-bearing mEMPs delivered to nonperfused adductor muscles in a murine hindlimb ischemia model enhance collateral flow and capillary formation evidenced by MRI. TF-bearing mEMPs increase angiogenesis operating via paracrine regulation of neighboring endothelial cells, signaling through the β1-integrin pathway Rac1-ERK1/2-ETS1 and triggering CCL2 (chemokine [C-C motif] ligand 2) production to form new and competent mature neovessels. CONCLUSIONS These findings demonstrate that TF-rich mEMPs released by microvascular endothelial cells can overcome the consequences of arterial occlusion and tissue ischemia by promoting postischemic neovascularization and tissue reperfusion.
Collapse
Affiliation(s)
- Gemma Arderiu
- From the Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau and Hospital de Sant Pau, Barcelona, Spain (G.A., E.P., L.B.); and Cardiovascular Research Chair Universitat Autònoma de Barcelona, Barcelona, Spain (L.B.)
| | - Esther Peña
- From the Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau and Hospital de Sant Pau, Barcelona, Spain (G.A., E.P., L.B.); and Cardiovascular Research Chair Universitat Autònoma de Barcelona, Barcelona, Spain (L.B.)
| | - Lina Badimon
- From the Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau and Hospital de Sant Pau, Barcelona, Spain (G.A., E.P., L.B.); and Cardiovascular Research Chair Universitat Autònoma de Barcelona, Barcelona, Spain (L.B.).
| |
Collapse
|
23
|
Arderiu G, Espinosa S, Peña E, Aledo R, Badimon L. Monocyte-secreted Wnt5a interacts with FZD5 in microvascular endothelial cells and induces angiogenesis through tissue factor signaling. J Mol Cell Biol 2014; 6:380-93. [PMID: 25240054 DOI: 10.1093/jmcb/mju036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Angiogenesis during reactive and pathologic processes is characteristically associated with inflammation. Inflammatory cells participate in angiogenesis by secreting different molecules that affect endothelial cell functions. We had previously shown that induced tissue factor (TF) expression in activated microvascular endothelial cells (mEC) is able to induce angiogenesis via autocrine regulation. However, the signals that induce TF expression in mEC are not fully known. Here, we demonstrate that monocyte paracrine cross-talk with mECs triggers mEC-TF expression. We have identified that monocyte-secreted Wnt5a induces TF expression in mEC and functionally induces cell monolayer repair and angiotube formation in vitro as well as microvessel formation in vivo. Monocyte-secreted Wnt5a activates FZD5 in mECs, which signals to induce the release of intracellular Ca(2+) and increase NFκB transcription activity and TF gene expression. In sum, Wnt5a secreted by monocytes signals through the noncanonical Wnt-FZD5 pathway in mECs to induce TF expression that induces angiogenesis by autocrine regulation.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC), Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau) and Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
| | - Sonia Espinosa
- Cardiovascular Research Center (CSIC-ICCC), Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau) and Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC), Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau) and Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
| | - Rosa Aledo
- Cardiovascular Research Center (CSIC-ICCC), Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau) and Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau) and Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
| |
Collapse
|
24
|
Gao MY, Chen L, Yang L, Yu X, Kou JP, Yu BY. Berberine inhibits LPS-induced TF procoagulant activity and expression through NF-κB/p65, Akt and MAPK pathway in THP-1 cells. Pharmacol Rep 2014; 66:480-4. [PMID: 24905527 DOI: 10.1016/j.pharep.2013.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 12/05/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Considering the key role of TF in coagulation of sepsis or acute lung injury (ALI), we investigated whether berberine (BBR) could inhibit TF expression and procoagulant activity and explored its possible mechanism. METHODS The effects of berberine on the expression, procoagulant activity of TF and related signal pathways induced by lipopolysaccharide (LPS) were observed in THP-1 cells. RESULTS Our results showed that berberine could inhibit LPS-induced TF activity and expression, and down-regulate NF-κB, Akt and MAPK/JNK/p38/ERK pathways. CONCLUSION Berberine inhibits TF expression and related pathway, which provides some new insights on its mechanism for sepsis treatment.
Collapse
Affiliation(s)
- Meng-yu Gao
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Xiu Yu
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Jun-ping Kou
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.
| | - Bo-yang Yu
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
25
|
Kask L, Jorsback A, Winkvist M, Alfredsson J, Ek B, Bergquist J, Siegbahn A. Identification of novel downstream molecules of tissue factor activation by comparative proteomic analysis. J Proteome Res 2013; 13:477-88. [PMID: 24274763 DOI: 10.1021/pr4006298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissue factor (TF) is both an initiator of blood coagulation and a signaling receptor. Using a proteomic approach, we investigated the role of TF in cell signaling when stimulated by its ligand, activated factor VII (FVIIa). From a 2-D difference gel electrophoresis (DIGE) study we found forty one spots that were differentially regulated over time in FVIIa stimulated cells or in comparison to nonstimulated cells. Mass spectrometry identifies 23 out of these as 13 different proteins. One of them, elongation factor 2 (EF-2), was investigated in greater detail by Western blot, a protein synthesis assay and cell cycle analysis. When tissue factor was stimulated by FVIIa, the phosphorylation of EF-2 increased which inactivates this protein. Analyzing the effect using site inactivated FVIIa (FVIIai), as well as the protease activated receptor 2 (PAR-2) agonist SLIGKV, indicated that the inactivation was not PAR-2 dependent. A panel of tissue factor mutants was analyzed further to try to pinpoint what part of the cytoplasmic domain that is needed for this effect. Performing a protein synthesis assay in two different cell lines we could confirm that protein synthesis decreased upon stimulation by FVIIa. Cell cycle analysis showed that FVIIa also promotes a higher degree of cell proliferation.
Collapse
Affiliation(s)
- Lena Kask
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University , 751 85 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Kocatürk B, Versteeg HH. Tissue factor-integrin interactions in cancer and thrombosis: every Jack has his Jill. J Thromb Haemost 2013; 11 Suppl 1:285-93. [PMID: 23809132 DOI: 10.1111/jth.12222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tissue factor (TF) is a 47 kDa membrane protein that initiates coagulation by binding to FVII(a) and FX(a) and is a risk factor for thrombosis in many disease states. In addition to its coagulant activity, TF also influences cancer progression by triggering signaling effects via a group of G-protein coupled receptors named protease-activated receptors (PARs). TF localizes to cytoskeletal structures in migrating cells, influences cytoskeleton reorganization and promotes migration. Recently, integrins, important mediators of cell motility, have emerged as important binding partners for TF and influence both TF coagulant and PAR-2-dependent signaling functions. Direct binding of TF to integrins also impacts processes such as cell migration and signaling independent of PAR-2. A recently discovered alternatively spliced, soluble TF isoform also ligates integrins to augment angiogenesis, thus fuelling cancer progression. To date, the literature describes a complex interplay between different integrin subunits and distinct TF isoforms, but our understanding of TF-integrin bidirectional regulation remains clouded. In this review, we aim to summarize the existing knowledge on integrin-TF interaction and speculate on its relevance to physiology and pathology.
Collapse
Affiliation(s)
- B Kocatürk
- The Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
27
|
Peña E, Arderiu G, Badimon L. Subcellular localization of tissue factor and human coronary artery smooth muscle cell migration. J Thromb Haemost 2012; 10:2373-82. [PMID: 22938499 DOI: 10.1111/j.1538-7836.2012.04910.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tissue factor (TF) is the most relevant physiological trigger of thrombosis. Additionally TF is a transmembrane receptor with cell signaling functions. OBJECTIVES The aim of this study was to investigate TF subcellular localization, function and signaling in human coronary artery smooth muscle cell migration. METHODS Coronary arteries and primary cultures of vascular smooth muscle cells (HVSMC) were obtained from human explanted hearts. Wound repair and Boyden chamber assays were used to measure migration in vitro. TF-pro-coagulant activity (TF-PCA) was measured in extracted cellular membranes. Analysis of TF distribution was performed by confocal microscopy. A nucleofector device was used for TF and protease activated receptor 2 (PAR2) silencing. mRNA levels were analyzed by RT-PCR. RESULTS In migrating HVSMC TF translocates to the leading edge of the cells showing an intense patch-like staining in the lamellipodia. In the migrating front TF colocalizes with filamin (FLN) in the polarized lipid rafts. TF-PCA was increased in migrating cells. Silencing of the TF gene inhibits RSK-induced FLN-Ser-2152 phosphorylation, down-regulates CDC42, RhoA, and Rac1 protein expression and significantly inhibits cell migration. Silencing PAR2 also inhibits cell migration; however, silencing both TF and PAR2 induces a significantly higher effect on migration. Smooth muscle cells expressing TF have been identified in non-lipid-rich human coronary artery atherosclerotic plaques. CONCLUSIONS TF translocates to the cell front in association with cytoskeleton proteins and regulates HVSMC migration by mechanisms dependent and independent of factor (F)VIIa/PAR2. These results extend the functional role of TF to smooth muscle cell trafficking in vessel wall remodeling.
Collapse
Affiliation(s)
- E Peña
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona CIBEROBN-Pathophysiology of Obesity and Nutrition, Barcelona Cardiovascular Research Chair, UAB, Barcelona, Spain
| | | | | |
Collapse
|