Chai CY, Wu WC, Wang S, Su CK, Lin YF, Yen CT, Kuo JS, Wayner MJ. Coexistence of autonomic and somatic mechanisms in the pressor areas of medulla in cats.
Brain Res Bull 1992;
29:15-26. [PMID:
1504849 DOI:
10.1016/0361-9230(92)90004-h]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of electrical stimulation and microinjection of sodium glutamate (0.5 M) in the sympathetic pressor areas of the dorsal medulla (DM), ventrolateral medulla (VLM), and parvocellular nucleus (PVC) on the knee jerk, crossed extension, and evoked potential of the L5 ventral root produced by intermittent electrical stimulation were studied in 98 adult cats anesthetized with chloralose and urethane. During electrical and glutamate stimulation of these pressor areas, in addition to the rise of systemic arterial blood pressure marked inhibition of the spinal reflex was produced, indicating presence of neuronal perikarya responsible for these actions. Mild to moderate augmentation of spinal reflexes was also observed during brain stimulation but only in a few cases. The magnitude of the somatic effects among the pressor areas of the VLM, DM, and PVC subsequent to glutamate activation was about the same. Induced spinal reflex inhibition, independent from the baroreceptor and vagal influence, remained essentially unaltered after acute midcollicular decerebration. The inhibition was also observed in cats decerebellated 8-10 days in advance. The inhibition was not affected after bilateral electrolytic- or kainic-acid-induced lesions in the paramedian reticular nucleus (PRN). On the contrary, PRN-induced spinal reflex inhibition was attenuated after bilateral lesions in the DM or VLM. Data suggest that there coexists neuronal subpopulations in the VLM, DM, and PVC that can affect both the sympathetic pressor systems and spinal reflexes.
Collapse