1
|
Padda I, Sebastian SA, Khehra N, Mahtani A, Sethi Y, Panthangi V, Fulton M, Bandyopadhyay D, Johal G. Tachy-brady syndrome: Electrophysiology and evolving principles of management. Dis Mon 2024; 70:101637. [PMID: 37690863 DOI: 10.1016/j.disamonth.2023.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sudden alterations in the heart rate may be associated with diverse symptoms. Sinus node dysfunction (SND), also known as sick sinus syndrome, is a sinoatrial (SA) node disorder. SND is primarily caused by the dysfunction of the pacemaker, as well as impaired impulse transmission resulting in a multitude of abnormalities in the heart rhythms, such as bradycardia-tachycardia, atrial bradyarrhythmias, and atrial tachyarrhythmias. The transition from bradycardia to tachycardia is generally referred to as "tachy-brady syndrome" (TBS). Although TBS is etiologically variable, the manifestations remain consistent throughout. Abnormal heart rhythms have the propensity to limit tissue perfusion resulting in palpitations, fatigue, lightheadedness, presyncope, and syncope. In this review, we examine the physiology of tachy-brady syndrome, the practical approach to its diagnosis and management, and the role of adenosine in treating SND.
Collapse
Affiliation(s)
- Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA.
| | | | - Nimrat Khehra
- Saint James School of Medicine, Arnos Vale, Saint Vincent and the Grenadines
| | - Arun Mahtani
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Yashendra Sethi
- Department of Internal Medicine, Government Doon Medical College, Dehradun, India
| | | | - Matthew Fulton
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | | | - Gurpreet Johal
- Department of Cardiology, University of Washington, Valley Medical Center, Seattle, WA, USA
| |
Collapse
|
2
|
Ismail H, Gabriels JK, Chang D, Donnelly J, Kim BS, Epstein LM, Hentz R, Fishbein J, Huang X, Kowalski M, Dasrat P, Rahyab AS, Goldner B. Site-specific effects of dobutamine on cardiac conduction and refractoriness. J Interv Card Electrophysiol 2024; 67:71-82. [PMID: 37227538 DOI: 10.1007/s10840-023-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Isoproterenol, a non-specific beta agonist, is commonly used during electrophysiology studies (EPS). However, with the significant increase in the price of isoproterenol in 2015 and the increasing number of catheter ablations performed, the cost implications cannot be ignored. Dobutamine is a less expensive synthetic compound developed from isoproterenol with a similar mechanism to enhance cardiac conduction and shorten refractoriness, thus making it a feasible substitute with a lower cost. However, the use of dobutamine for EPS has not been well-reported in the literature. OBJECTIVE To determine the site-specific effects of various doses of dobutamine on cardiac conduction and refractoriness and assess its safety during EPS. METHODS From February 2020 to October 2020, 40 non-consecutive patients scheduled for elective EPS, supraventricular tachycardia, atrial fibrillation, and premature ventricular contraction ablations at a single center were consented and prospectively enrolled to assess the effect of dobutamine on the cardiac conduction system. At the end of each ablation procedure, measures of cardiac conduction and refractoriness were recorded at baseline and with incremental doses of dobutamine at 5, 10, 15, and 20 mcg/kg/min. For the primary analysis, the change per dose of dobutamine from baseline to each dosing level of dobutamine received by the patients, comparing atrioventricular node block cycle length (AVNBCL), ventricular atrial block cycle length (VABCL) and sinus cycle length (SCL), was tested using mixed-effect regression. For the secondary analysis, dobutamine dose level was tested for association with relative changes from baseline of each electrophysiologic parameter (SCL, AVNBCL, VABCL, atrioventricular node effective refractory period (AVNERP), AH, QRS, QT, QTc, atrial effective refractory period (AERP), ventricular effective refractory period (VERP), using mixed-effect regression. Changes in systolic and diastolic blood pressures were also assessed. The Holm-Bonferroni method was used to adjust for multiple testing. RESULTS For the primary analysis there was no statistically significant change of AVNBCL and VABCL relative to SCL from baseline to each dose level of dobutamine. The SCL, AVNBCL, VABCL, AVNERP, AERP, VERP and the AH, and QT intervals all demonstrated a statistically significant decrease from baseline to at least one dose level with incremental dobutamine dosing. Two patients (5%) developed hypotension during the study and one patient (2.5%) received a vasopressor. Two patients (5%) had induced arrhythmias but otherwise no major adverse events were noted. CONCLUSION In this study, there was no statistically significant change of AVNBCL and VABCL relative to SCL from baseline to any dose level of dobutamine. As expected, the AH and QT intervals, and the VABCL, VERP, AERP and AVNERP all significantly decreased from baseline to at least one dose level with an escalation in dobutamine dose. Dobutamine was well-tolerated and safe to use during EPS.
Collapse
Affiliation(s)
- Haisam Ismail
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - James K Gabriels
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - David Chang
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - Joseph Donnelly
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - Beom Soo Kim
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - Laurence M Epstein
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - Roland Hentz
- Biostatistics Unit, Office of Academic Affairs, Northwell Health, New York, NY, USA
| | - Joanna Fishbein
- Biostatistics Unit, Office of Academic Affairs, Northwell Health, New York, NY, USA
| | - Xueqi Huang
- Biostatistics Unit, Office of Academic Affairs, Northwell Health, New York, NY, USA
| | - Marcin Kowalski
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - Parmanand Dasrat
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - Ali Seyar Rahyab
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA
| | - Bruce Goldner
- Department of Cardiac Electrophysiology, Northwell Health, New York, NY, USA.
| |
Collapse
|
3
|
Wang X, Zhang X, Li J, Fu J, Zhao M, Zhang W, Weng W, Li Q. Network pharmacology and LC-MS approachs to explore the active compounds and mechanisms of Yuanjiang decoction for treating bradyarrhythmia. Comput Biol Med 2023; 152:106435. [PMID: 36535207 DOI: 10.1016/j.compbiomed.2022.106435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/20/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Yuanjiang decoction (YJD), a traditional Chinese medicinal prescription, has been found to have a significant heart rate-increasing effect and is effective in the treatment of symptomatic bradyarrhythmia in previous studies. However, its specific components and potential mechanisms remain unclear. METHODS In this study, we detected and identified the main compounds of YJD using liquid chromatography-mass spectrometry (LC-MS). Through the approach of network pharmacology, we predicted the core targets of the active components, bradyarrhythmia targets, and obtained potential anti-bradyarrhythmia targets of YJD. We further performed protein to protein interaction (PPI), gene ontology (GO) enrichment analyses and kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analyses for core targets, and constructed network of key active ingredients-core targets of YJD. Finally, molecular docking and molecular dynamics simulation were performed for key active ingredients and core targets. RESULTS The YJD contains a total of 35 main chemical components. The key active ingredients-core targets network contains 36 nodes and 90 edges, including 20 key active ingredients and 16 core targets. The core targets in the PPI network were TP53, TNF, HRAS, PPARG, IL1B, KCNH2, SCN5A, IDH1, LMNA, ACHE, F2, DRD2, CALM1, KCNQ1, TNNI3, IDH2 and TNNT2. KEGG pathway analysis showed that YJD treatment of bradyarrhythmia mainly involves neuroactive ligand-receptor interaction, adrenergic signaling in cardiomyocytes, cAMP signaling pathway, calcium signaling pathway, cholinergic synaptic and serotonergic synapse signaling pathway. The biological processes mainly include regulation of hormone levels, regulation of cardiac contraction, chemical synaptic transmission, circadian rhythm, positive regulation of heart rate, smooth muscle contraction, response to metal ion, oxidation-reduction process, neurotransmitter transport and import across plasma membrane. Molecular docking and molecular dynamics simulation results showed that hesperidin and tetrahydropalmatine had higher affinity with DRD2 and KCNQ1, respectively. CONCLUSION This study reveals the pharmacodynamic material basis of YJD and its potential multicomponent-multitarget-multipathway pharmacological effects, predicted its potential anti-bradyarrhythmia mechanism may be related to the regulation of myocardial autonomic nervous function and related ion channels. Our work demonstrates that YJD has great potential for treating bradyarrhythmias as a complementary medicine, and the results can provide a theoretical basis for the development and clinical application of YJD.
Collapse
Affiliation(s)
- Xujie Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuexue Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxi Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jinyi Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengjie Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wantong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China.
| | - Weiliang Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China.
| | - Qiuyan Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
4
|
Plappert F, Wallman M, Abdollahpur M, Platonov PG, Östenson S, Sandberg F. An atrioventricular node model incorporating autonomic tone. Front Physiol 2022; 13:976468. [PMID: 36187793 PMCID: PMC9520409 DOI: 10.3389/fphys.2022.976468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
The response to atrial fibrillation (AF) treatment is differing widely among patients, and a better understanding of the factors that contribute to these differences is needed. One important factor may be differences in the autonomic nervous system (ANS) activity. The atrioventricular (AV) node plays an important role during AF in modulating heart rate. To study the effect of the ANS-induced activity on the AV nodal function in AF, mathematical modelling is a valuable tool. In this study, we present an extended AV node model that incorporates changes in autonomic tone. The extension was guided by a distribution-based sensitivity analysis and incorporates the ANS-induced changes in the refractoriness and conduction delay. Simulated RR series from the extended model driven by atrial impulse series obtained from clinical tilt test data were qualitatively evaluated against clinical RR series in terms of heart rate, RR series variability and RR series irregularity. The changes to the RR series characteristics during head-down tilt were replicated by a 10% decrease in conduction delay, while the changes during head-up tilt were replicated by a 5% decrease in the refractory period and a 10% decrease in the conduction delay. We demonstrate that the model extension is needed to replicate ANS-induced changes during tilt, indicating that the changes in RR series characteristics could not be explained by changes in atrial activity alone.
Collapse
Affiliation(s)
- Felix Plappert
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- *Correspondence: Felix Plappert,
| | - Mikael Wallman
- Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, Sweden
| | | | - Pyotr G. Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Sten Östenson
- Department of Internal Medicine and Department of Clinical Physiology, Central Hospital Kristianstad, Kristianstad, Sweden
| | - Frida Sandberg
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol 2021; 61:757-778. [PMID: 33017571 PMCID: PMC7790915 DOI: 10.1146/annurev-pharmtox-031120-115815] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Vadim V Fedorov
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Peter J Mohler
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| |
Collapse
|
7
|
Ventriculoatrial conduction in patients without high-grade AV block: when is it present? J Interv Card Electrophysiol 2019; 59:393-400. [DOI: 10.1007/s10840-019-00658-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
|
8
|
Lim S, Park J, Um JY. Ginsenoside Rb1 Induces Beta 3 Adrenergic Receptor-Dependent Lipolysis and Thermogenesis in 3T3-L1 Adipocytes and db/db Mice. Front Pharmacol 2019; 10:1154. [PMID: 31680950 PMCID: PMC6803469 DOI: 10.3389/fphar.2019.01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is constantly rising into a major health threat worldwide. Activation of brown-like transdifferentiation of white adipocytes (browning) has been proposed as a promising molecular target for obesity treatment. In this study, we investigated the effect of ginsenoside Rb1 (Rb1), a saponin derived from Panax ginseng Meyer, on browning. We used 3T3-L1 murine adipocytes and leptin receptor mutated db/db mice. The lipid accumulation, AMP-activated protein kinase alpha (AMPKα)-related pathways, lipolytic and thermogenic factors were measured after Rb treatment in 3T3-L1 adipocytes. Body weight change and lipolysis-thermogenesis factors were investigated in Rb1-treated db/db mice. Beta 3 adrenergic receptor activation (β3AR) changes were measured in Rb1-treated 3T3-L1 cells with or without β3AR inhibitor L748337 co-treatment. As a result, Rb1 treatment decreased lipid droplet size in 3T3-L1 adipocytes. Rb1 also induced phosphorylations of AMPKα pathway and sirtuins. Moreover, lipases and thermogenic factors such as uncoupling protein 1 were increased by Rb1 treatment. Through these results, we could expect that the non-shivering thermogenesis program can be induced by Rb1. In db/db mice, 6-week injection of Rb1 resulted in decreased inguinal white adipose tissue (iWAT) weight associated with shrunken lipid droplets and increased lipolysis and thermogenesis. The thermogenic effect of Rb1 was possibly due to β3AR, as L748337 pre-treatment abolished the effect of Rb1. In conclusion, we suggest Rb1 as a potential lipolytic and thermogenic therapeutic agent which can be used for obesity treatment.
Collapse
Affiliation(s)
- Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
9
|
Elbatran AI. Response to right ventricular pacing maneuvers for the differential diagnosis of supraventricular tachycardia. Pacing Clin Electrophysiol 2019; 42:1418. [DOI: 10.1111/pace.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed I. Elbatran
- Cardiology Clinical Academic GroupSt. George's University Hospitals NHS Foundation TrustSt. George's University of London London UK
- Department of CardiologyAin Shams University Cairo Egypt
| |
Collapse
|
10
|
Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, Lee R, Marine JE, McLeod CJ, Oken KR, Patton KK, Pellegrini CN, Selzman KA, Thompson A, Varosy PD. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay. Heart Rhythm 2019; 16:e128-e226. [DOI: 10.1016/j.hrthm.2018.10.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 12/13/2022]
|
11
|
Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, Lee R, Marine JE, McLeod CJ, Oken KR, Patton KK, Pellegrini CN, Selzman KA, Thompson A, Varosy PD. 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2019; 140:e382-e482. [DOI: 10.1161/cir.0000000000000628] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Kenneth A. Ellenbogen
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information
- ACC/AHA Representative
| | - Michael R. Gold
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information
- HRS Representative
| | | | | | - José A. Joglar
- ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | | | | | | | | | | | | | - Cara N. Pellegrini
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information
- HRS Representative
- Dr. Pellegrini contributed to this article in her personal capacity. The views expressed are her own and do not necessarily represent the views of the US Department of Veterans Affairs or the US government
| | | | | | | |
Collapse
|
12
|
Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, Lee R, Marine JE, McLeod CJ, Oken KR, Patton KK, Pellegrini CN, Selzman KA, Thompson A, Varosy PD. 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay. J Am Coll Cardiol 2019; 74:e51-e156. [DOI: 10.1016/j.jacc.2018.10.044] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Ali A, Redfors B, Lundgren J, Alkhoury J, Oras J, Gan LM, Omerovic E. Effects of pretreatment with cardiostimulants and beta-blockers on isoprenaline-induced takotsubo-like cardiac dysfunction in rats. Int J Cardiol 2019; 281:99-104. [DOI: 10.1016/j.ijcard.2018.12.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 12/13/2018] [Indexed: 01/22/2023]
|
14
|
Stellbrink C, Diem B, Schauerte P, Brehmer K, Schuett H, Hanrath P. Differential effects of atropine and isoproterenol on inducibility of atrioventricular nodal reentrant tachycardia. J Interv Card Electrophysiol 2001; 5:463-9. [PMID: 11752915 DOI: 10.1023/a:1013258331023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Radiofrequency ablation of the "slow pathway" in atrioventricular nodal reentrant tachycardia (AVNRT) relies on tachycardia non-inducibility after ablation as success criterion. However, AVNRT is frequently non-inducible at baseline. Thus, autonomic enhancement using either atropine or isoproterenol is frequently used for arrhythmia induction before ablation. METHODS 80 patients (57 women, 23 men, age 50+/-14 years) undergoing slow pathway ablation for recurrent AVNRT were randomized to receive either 0.01 mg/kg atropine or 0.5-1.0 microg/kg/min isoproterenol before ablation after baseline assessment of AV conduction. The effects of either drug on ante- and retrograde conduction was assessed by measuring sinus cycle length, PR and AH interval, antegrade and retrograde Wenckebach cycle length (WBCL), antegrade effective refractory period (ERP) of slow and fast pathway and maximal stimulus-to-H interval during slow and fast pathway conduction. RESULTS Inducibility of AVNRT at baseline was not different between patients randomized to atropine (73%) and isoproterenol (58%) but was reduced after atropine (45%) compared to isoproterenol (93%, P<0.001). Of the 28 patients non-inducible at baseline isoproterenol rendered AVNRT inducible in 21, atropine in 4 patients. Dual AV nodal pathway physiology was present in 88% before and 50% after atropine compared to 83% before and 73% after isoproterenol. Whereas both drugs exerted similar effects on ante- and retrograde fast pathway conduction maximal SH interval during slow pathway conduction was significantly shorter after isoproterenol (300+/-48 ms vs. 374+/-113 ms, P=0.012). CONCLUSION Isoproterenol yields higher AVNRT inducibility than atropine in patients non-inducible at baseline. This may be caused by a more pronounced effect on antegrade slow pathway conduction.
Collapse
Affiliation(s)
- C Stellbrink
- Department of Cardiology and Internal Medicine, University of Technology, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Frey B, Kreiner G, Liebisch B, Sauermann S, Gössinger HD. Irregularity of the ventricular rhythm during atrial fibrillation: effect of slow atrioventricular nodal pathway ablation. Clin Cardiol 1999; 22:665-72. [PMID: 10526693 PMCID: PMC6656205 DOI: 10.1002/clc.4960221015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/1998] [Accepted: 02/19/1999] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The contribution of dual atrioventricular (AV) nodal pathway physiology to the irregularity of the ventricular rhythm during atrial fibrillation has not been clarified. HYPOTHESIS This study was performed to assess the effects of slow AV nodal pathway ablation on the irregularity of the ventricular rhythm during atrial fibrillation. METHODS Irregularity of the ventricular rhythm was quantified using analysis of heart rate variability. In 20 patients with AV nodal reentrant tachycardia, absolute heart rate variability during atrial fibrillation was quantified before and after slow AV nodal pathway ablation by the standard deviation of all NN intervals (SDNN). Relative heart rate variability was determined by computing the coefficient of variation, SDNN normalized for the standard deviation of the mean ventricular cycle length (MVCL-AF). RESULTS The slope of the regression between MVCL-AF and SDNN was significantly more gradual after slow pathway ablation (slope 0.39 vs. 0.23, p < 0.001). Coefficient of variation increased in 12 patients with heart rates > 120 beats/min at baseline (18.6 +/- 3.9 vs. 22.1 +/- 2.7% MVCL-AF, p < 0.05), but decreased in 8 patients with heart rates < 120 beats/min at baseline (25.6 +/- 3.1 vs. 22.2 +/- 2.2% MVCL-AF, p = 0.05). Furthermore, coefficient of variation correlated with MVCL-AF only at baseline (slope 0.034, r = 0.66), but no relation was found after slow pathway ablation (slope 0, r = 0). CONCLUSIONS Slow AV nodal pathway ablation alters the relation between absolute heart rate variability and mean ventricular rate during atrial fibrillation and eliminates cycle length dependency of relative heart rate variability. These data indicate that dual AV nodal pathway physiology contributes to the irregularity of the ventricular rhythm during atrial fibrillation.
Collapse
Affiliation(s)
- B Frey
- Department of Cardiology, University of Vienna, Austria
| | | | | | | | | |
Collapse
|