1
|
Shah AR, Khan MS, Lange M, Hirahara AM, Stoddard G, Ranjan R, Dosdall DJ. During Early VF in Rabbit Hearts, His Bundle Pacing is Less Effective Than Working Myocardial Pacing in Modulating Left Ventricular Activation Rates. Cardiovasc Eng Technol 2022; 13:452-465. [PMID: 34816378 PMCID: PMC9124730 DOI: 10.1007/s13239-021-00593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The potential of pacing and capturing the His-Purkinje system (HPS) to synchronize VF wavefronts is not known even though the HPS is thought to be electrically linked during VF. In this study the effect of selective His Bundle (HB) pacing was compared with nearby working myocardial (WM) pacing on the left ventricular (LV) endocardial activation rates. METHODS Rabbit hearts (n = 9) were explanted and Langendorff perfused. Electrodes directly on the HB were identified and paced subsequently using an electrode array. The WM was paced through a silver wire inserted in the right ventricular septal wall. After VF was induced, the HB was paced at rates faster than the intrinsic HB activation rate (n = 18 episodes) and also at rates faster than the LV activation rate (n = 16). A basket array inserted in the LV was used to record electrograms before and during each pacing episode. Activation rates at five LV electrodes each from the earliest and latest activating sinus rhythm regions were analyzed before and during pacing. RESULTS Both HB and WM pacing reduced LV activation rates during pacing, but WM pacing was more effective (p < 0.005). WM pacing events were more effective (p < 0.05) in reducing LV activation rates than HB pacing in episodes which were faster than LV activation rates. CONCLUSION This study provides evidence that during early VF in rabbit hearts, the HPS cannot be driven to effectively modulate the LV activation rates.
Collapse
Affiliation(s)
- Ankur R Shah
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Muhammad S Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthias Lange
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Annie M Hirahara
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Gregory Stoddard
- Division of Epidemiology, School of Medicine, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Ravi Ranjan
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Derek J Dosdall
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, 84112, USA.
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, 84112, USA.
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, 84112, USA.
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, The University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Anderson RD, Massé S, Asta J, Lai PFH, Chakraborty P, Azam MA, Downar E, Nanthakumar K. Role of Purkinje-Muscle Junction in Early Ventricular Fibrillation in a Porcine Model: Beyond the Trigger Concept. Pacing Clin Electrophysiol 2022; 45:742-751. [PMID: 35067947 DOI: 10.1111/pace.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of the Purkinje network in triggering ventricular fibrillation (VF) has been studied, however, its involvement after onset and in early maintenance of VF is controversial. AIM We studied the role of the Purkinje-muscle junctions (PMJ) on epicardial-endocardial activation gradients during early VF. METHODS In a healthy, porcine, beating-heart Langendorff model [control, n = 5; ablation, n = 5], simultaneous epicardial-endocardial dominant frequent mapping was used (224 unipolar electrograms) to calculate activation rate gradients during the onset and early phase of VF. Selective Purkinje ablation was performed using Lugol's solution, followed by VF re-induction and mapping and finally, histological evaluation. RESULTS Epicardial activation rates were faster than endocardial rates for both onset and early VF. After PMJ ablation, activation rates decreased epicardially and endocardially for both onset and early VF [Epi: 9.7±0.2 to 8.3±0.2 Hz (P<0.0001) and 10.9±0.4 to 8.8±0.3 Hz (P<0.0001), respectively; Endo: 8.2 ± 0.3 Hz to 7.4 ± 0.2 Hz (P<0.0001) and 7.0 ± 0.4 Hz to 6.6 ± 0.3 Hz (P = 0.0002), respectively]. In controls, epicardial-endocardial activation rate gradients during onset and early VF were 1.7±0.3 Hz and 4.5±0.4 Hz (P<0.001), respectively. After endocardial ablation of PMJs, these gradients were reduced to 0.9±0.3 Hz (onset VF, P<0.001) and to 2.2±0.3 Hz (early VF, P<0.001). Endocardial-epicardial Purkinje fibre arborization and selective Purkinje fibre extinction after only endocardial ablation (not with epicardial ablation) was confirmed on histological analysis. CONCLUSIONS Beyond the trigger paradigm, PMJs determine activation rate gradients during onset and during early maintenance of VF. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert D Anderson
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - John Asta
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Patrick F H Lai
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Mohammed Ali Azam
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Eugene Downar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
3
|
Panitchob N, Li L, Huang J, Ranjan R, Ideker RE, Dosdall DJ. Endocardial Activation Drives Activation Patterns During Long-Duration Ventricular Fibrillation and Defibrillation. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005562. [PMID: 29247031 DOI: 10.1161/circep.117.005562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Understanding the mechanisms that drive ventricular fibrillation is essential for developing improved defibrillation techniques to terminate ventricular fibrillation (VF). Distinct organization patterns of chaotic, regular, and synchronized activity were previously demonstrated in VF that persisted over 1 to 2 minutes (long-duration VF [LDVF]). We hypothesized that activity on the endocardium may be driving these activation patterns in LDVF and that unsuccessful defibrillation shocks may alter activation patterns. METHODS AND RESULTS The study was performed using a 64-electrode basket catheter on the left ventricle endocardium and 54 6-electrode plunge needles inserted into the left ventricles of 6 dogs. VF was induced electrically, and after short-duration VF (10 seconds) and LDVF (7 minutes), shocks of increasing strengths were delivered every 10 seconds until VF was terminated. Endocardial activation patterns were classified as chaotic (varying cycle lengths and nonsynchronous activations), regular (highly repeatable cycle lengths), and synchronized (activation that spreads rapidly over the endocardium with diastolic periods between activations). CONCLUSIONS The results showed that the chaotic pattern was predominant in early VF, but the regular pattern emerges as VF progressed. The synchronized pattern only emerged occasionally during late VF. Failed defibrillation shocks changed chaotic and regular activation patterns to synchronized patterns in LDVF but not in short-duration VF. The regular and synchronized patterns of activation were driven by rapid activations on the endocardial surface that blocked and broke up transmurally, leading to an endocardial to epicardial activation rate gradient as LDVF progressed.
Collapse
Affiliation(s)
- Nuttanont Panitchob
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (N.P., R.R., D.J.D.), Division of Cardiothoracic Surgery, Department of Surgery (D.J.D.), and Division of Cardiovascular Medicine, Department of Medicine (L.L., R.R., D.J.D.), University of Utah, Salt Lake City; and Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham (J.H., R.E.I.)
| | - Li Li
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (N.P., R.R., D.J.D.), Division of Cardiothoracic Surgery, Department of Surgery (D.J.D.), and Division of Cardiovascular Medicine, Department of Medicine (L.L., R.R., D.J.D.), University of Utah, Salt Lake City; and Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham (J.H., R.E.I.)
| | - Jian Huang
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (N.P., R.R., D.J.D.), Division of Cardiothoracic Surgery, Department of Surgery (D.J.D.), and Division of Cardiovascular Medicine, Department of Medicine (L.L., R.R., D.J.D.), University of Utah, Salt Lake City; and Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham (J.H., R.E.I.)
| | - Ravi Ranjan
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (N.P., R.R., D.J.D.), Division of Cardiothoracic Surgery, Department of Surgery (D.J.D.), and Division of Cardiovascular Medicine, Department of Medicine (L.L., R.R., D.J.D.), University of Utah, Salt Lake City; and Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham (J.H., R.E.I.)
| | - Raymond E Ideker
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (N.P., R.R., D.J.D.), Division of Cardiothoracic Surgery, Department of Surgery (D.J.D.), and Division of Cardiovascular Medicine, Department of Medicine (L.L., R.R., D.J.D.), University of Utah, Salt Lake City; and Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham (J.H., R.E.I.)
| | - Derek J Dosdall
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (N.P., R.R., D.J.D.), Division of Cardiothoracic Surgery, Department of Surgery (D.J.D.), and Division of Cardiovascular Medicine, Department of Medicine (L.L., R.R., D.J.D.), University of Utah, Salt Lake City; and Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham (J.H., R.E.I.).
| |
Collapse
|
4
|
Lin C, Jin Q, Zhang N, Zhou J, Pang Y, Xin Y, Liu S, Wu Q, Wu L. Endocardial focal activation originating from Purkinje fibers plays a role in the maintenance of long duration ventricular fibrillation. Croat Med J 2014; 55:121-7. [PMID: 24778098 PMCID: PMC4009712 DOI: 10.3325/cmj.2014.55.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim To determine the role of repetitive endocardial focal activations and Purkinje fibers in the maintenance of long duration ventricular fibrillation (LDVF, VF>1 minute) in canine hearts in vivo. Methods The study was conducted in electrophysiological laboratory of Shanghai Ruijin hospital from July 2010 to August 2012. A 64-electrode basket was introduced through a carotid artery into the left ventricle (LV) of 11 beagle dogs for global endocardial electrical mapping. In the Lugol’s solution group (n = 5), the subendocardium was ablated by washing with Lugol’s solution. In the control group, (n = 6) saline was used for ablation. Before and after saline or Lugol ablation, we determined QRS duration and QT/QTc interval in sinus rhythm (SR). We also measured the activation rates in the first 2 seconds of each minute during 7 minutes of VF for each group. If VF terminated spontaneously in less than 7 minutes, the VF segments used in activation rate analysis were reduced accordingly. Results At the beginning of VF there was no difference between the groups in the activation rate. However, after 1 minute of LDVF the Lugol’s solution group had significantly slower activation rate than the control group. In the control group, all episodes of LDVF (6/6) were successfully sustained for 7 minutes, while in the Lugol’s solution group 4/5 episodes of LDVF spontaneously terminated before 7 minutes (4.8 ± 1.4 minutes) (P = 0.015). In the control group, at 5.1 ± 1.3 minutes of LDVF, a successive, highly organized focal LV endocardial activation pattern was observed. During this period, activations partly arose in PF and spread to the working ventricular myocardium. Mapping analysis showed that these events were consistent with repetitive endocardial focal activations. No evidence of similar focal activations was observed in the Lugol’s solution group. Conclusions Repetitive endocardial focal activations in the LV endocardium may be associated with activation of subendocardial PFs. This mechanism may play an important role in the maintenance of LDVF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liqun Wu
- Liqun Wu, Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Shanghai Rui Jin Er Road, Shanghai, P.R. China, 200025,
| |
Collapse
|
5
|
Smith RM, Velamakanni SS, Tolkacheva EG. Interventricular heterogeneity as a substrate for arrhythmogenesis of decoupled mitochondria during ischemia in the whole heart. Am J Physiol Heart Circ Physiol 2012; 303:H224-33. [DOI: 10.1152/ajpheart.00017.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia results in metabolic changes, which collapse the mitochondrial network, that increase the vulnerability of the heart to ventricular fibrillation (VF). It has been demonstrated at the single cell level that uncoupling the mitochondria using carbonyl cyanide p-(tri-fluoromethoxy)phenyl-hydrazone (FCCP) at low concentrations can be cardioprotective. The aim of our study was to investigate the effect of FCCP on arrhythmogenesis during ischemia in the whole rabbit heart. We performed optical mapping of isolated rabbit hearts ( n = 33) during control and 20 min of global ischemia and reperfusion, both with and without pretreatment with the mitochondrial uncoupler FCCP at 100, 50, or 30 nM. No hearts went into VF during ischemia under the control condition, with or without the electromechanical uncoupler blebbistatin. We found that pretreatment with 100 ( n = 4) and 50 ( n = 6) nM FCCP, with or without blebbistatin, leads to VF during ischemia in all hearts, whereas pretreatment with 30 nM of FCCP led to three out of eight hearts going into VF during ischemia. We demonstrated that 30 nM of FCCP significantly increased interventricular (but not intraventricular) action potential duration and conduction velocity heterogeneity in the heart during ischemia, thus providing the substrate for VF. We showed that wavebreaks during VF occurred between the right and left ventricular junction. We also demonstrated that no VF occurred in the heart pretreated with 10 μM glibenclamide, which is known to abolish interventricular heterogeneity. Our results indicate that low concentrations of FCCP, although cardioprotective at the single cell level, are arrhythmogenic at the whole heart level. This is due to the fact that FCCP induces different electrophysiological changes to the right and left ventricle, thus increasing interventricular heterogeneity and providing the substrate for VF.
Collapse
Affiliation(s)
- Rebecca M. Smith
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | | | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
6
|
Farid TA, Nair K, Massé S, Azam MA, Maguy A, Lai PFH, Umapathy K, Dorian P, Chauhan V, Varró A, Al-Hesayen A, Waxman M, Nattel S, Nanthakumar K. Role of KATP channels in the maintenance of ventricular fibrillation in cardiomyopathic human hearts. Circ Res 2011; 109:1309-18. [PMID: 21980123 DOI: 10.1161/circresaha.110.232918] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Ventricular fibrillation (VF) leads to global ischemia. The modulation of ischemia-dependent pathways may alter the electrophysiological evolution of VF. OBJECTIVE We addressed the hypotheses that there is regional disease-related expression of K(ATP) channels in human cardiomyopathic hearts and that K(ATP) channel blockade promotes spontaneous VF termination by attenuating spatiotemporal dispersion of refractoriness. METHODS AND RESULTS In a human Langendorff model, electric mapping of 6 control and 9 treatment (10 μmol/L glibenclamide) isolated cardiomyopathic hearts was performed. Spontaneous defibrillation was studied and mean VF cycle length was compared regionally at VF onset and after 180 seconds between control and treatment groups. K(ATP) subunit gene expression was compared between LV endocardium versus epicardium in myopathic hearts. Spontaneous VF termination occurred in 1 of 6 control hearts and 7 of 8 glibenclamide-treated hearts (P=0.026). After 180 seconds of ischemia, a transmural dispersion in VF cycle length was observed between epicardium and endocardium (P=0.001), which was attenuated by glibenclamide. There was greater gene expression of all K(ATP) subunit on the endocardium compared with the epicardium (P<0.02). In an ischemic rat heart model, transmural dispersion of refractoriness (ΔERP(Transmural)=ERP(Epicardium)-ERP(Endocardium)) was verified with pacing protocols. ΔERP(Transmural) in control was 5 ± 2 ms and increased to 36 ± 5 ms with ischemia. This effect was greatly attenuated by glibenclamide (ΔERP(Transmural) for glibenclamide+ischemia=4.9 ± 4 ms, P=0.019 versus control ischemia). CONCLUSIONS K(ATP) channel subunit gene expression is heterogeneously altered in the cardiomyopathic human heart. Blockade of K(ATP) channels promotes spontaneous defibrillation in cardiomyopathic human hearts by attenuating the ischemia-dependent spatiotemporal heterogeneity of refractoriness during early VF.
Collapse
|
7
|
Bradley CP, Clayton RH, Nash MP, Mourad A, Hayward M, Paterson DJ, Taggart P. Human ventricular fibrillation during global ischemia and reperfusion: paradoxical changes in activation rate and wavefront complexity. Circ Arrhythm Electrophysiol 2011; 4:684-91. [PMID: 21841193 DOI: 10.1161/circep.110.961284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ischemic ventricular fibrillation in experimental models has been shown to progress through a series of stages. Progression of ischemic VF in the in vivo human heart has not been determined. METHODS AND RESULTS We studied 10 patients undergoing cardiac surgery. Ventricular fibrillation was induced by burst pacing. After 30 seconds, global myocardial ischemia was induced by aortic cross-clamp and maintained for 2.5 minutes, followed by coronary reflow. Epicardial activity was sampled (1 kHz) with a sock that contained 256 unipolar contact electrodes. Dominant frequencies were calculated with a fast Fourier transform with a moving window. The locations of phase singularities and activation wavefronts were identified at 10-ms intervals. Preischemic (perfused) ventricular fibrillation was maintained by a disorganized mix of large and small wavefronts. During global myocardial ischemia, mean dominant frequencies decreased from 6.4 to 4.7 Hz at a rate of -0.011±0.002 Hz s(-1) (P<0.001) and then increased rapidly to 7.4 Hz within 30 seconds of reflow. In contrast, the average number of epicardial phase singularities increased during ischemia from 7.7 to 9.7 at a rate of 0.013±0.005 phase singularities per second (P<0.01) and remained unchanged during reflow, at 10.3. The number of wavefronts showed a similar time course to the number of phase singularities. CONCLUSIONS In human ventricular fibrillation, we found an increase in complexity of electric activation patterns during global myocardial ischemia, and this was not reversed during reflow despite an increase in activation rate.
Collapse
Affiliation(s)
- Chris P Bradley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Caldwell JC, Burton FL, Cobbe SM, Smith GL. Slowing of Electrical Activity in Ventricular Fibrillation is Not Associated with Increased Defibrillation Energies in the Isolated Rabbit Heart. Front Physiol 2011; 2:11. [PMID: 21519386 PMCID: PMC3078558 DOI: 10.3389/fphys.2011.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/09/2011] [Indexed: 11/13/2022] Open
Abstract
Prolonged out-of-hospital ventricular fibrillation (VF) arrests are associated with reduced ECG dominant frequency (DF) and diminished defibrillation success. Partial reversal of ischemia increases ECG DF and improves defibrillation outcome. We have investigated the metabolic components of ischemia responsible for the decline in ECG DF and defibrillation success. Isolated Langendorff-perfused rabbit hearts were loaded with the voltage-sensitive dye RH237. Using a photodiode array, epicardial membrane potentials were recorded at 252 sites (15 mm × 15 mm) on the anterior surface of the left and right ventricles. Simultaneously, a global ECG was recorded. VF was induced by burst pacing, and after 60s, perfusion was either reduced to 6 ml/min or the perfusate composition changed to impose hypoxia (95% N(2)/5% CO(2)), pH 6.7 (80% O(2)/20% CO(2)), or hyperkalemia (8 mM). Using fast Fourier transform, power spectra were created from the optical signals and the global ECG. The optical power spectra were summated to give a global power spectrum (pseudoECG). At 600 s the minimum defibrillation voltage (MDV) was determined by step-up protocol. During VF, the ECG and pseudoECG DF were reduced by low-flow ischemia (9.0 ± 1.0 Hz, p < 0.01, n = 5) and raised [K(+)](o) (12.2 ± 1.3 Hz, p < 0.05, n = 7) compared to control (19.2 ± 1.5 Hz, n = 20), but were unaffected by acidic pH(o) (16.7 ± 1.1 Hz, n = 11) and hypoxia (14.0 ± 1.2 Hz, n = 10). In contrast, the MDV was raised by acidic pH (156.1 ± 26.4 V, p < 0.001) and hypoxia (154.1 ± 22.1 V, p < 0.01) compared to control (65.6 ± 2.3 V), but comparable changes were not observed in low-flow ischemia (61.0 ± 0.5 V) or raised [K(+)](o) (56 ± 3 V). In summary, different metabolites are responsible for the reduction in DF and the increase in defibrillation energy during ischemic VF.
Collapse
Affiliation(s)
- Jane C Caldwell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow Glasgow, UK
| | | | | | | |
Collapse
|
9
|
Wu TJ, Lin SF, Hsieh YC, Lin TC, Lin JC, Ting CT. Pretreatment of BAPTA-AM suppresses the genesis of repetitive endocardial focal discharges and pacing-induced ventricular arrhythmia during global ischemia. J Cardiovasc Electrophysiol 2011; 22:1154-62. [PMID: 21489030 DOI: 10.1111/j.1540-8167.2011.02067.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In isolated rabbit hearts, repetitive endocardial focal discharges (REFDs) were consistently observed during ventricular fibrillation (VF) with prolonged (>5 minutes) global ischemia (GI). We hypothesized that BAPTA-AM, a calcium chelator, can suppress these REFDs. METHODS AND RESULTS Using a two-camera optical mapping system, we simultaneously mapped endocardial (left ventricle, LV) and epicardial (both ventricles) activations during ventricular arrhythmia with GI. In 5 hearts (protocol I), we infused Tyrode's solution (no BAPTA-AM) for ≥30 minutes before the onset of no-flow GI. In 7 additional hearts (protocol II), BAPTA-AM (20 μmol/L) was infused for ≥30 minutes before the initiation of GI. In protocol I, sustained VF (>30 seconds) was successfully induced in all 5 hearts with prolonged GI. REFDs were present in >85 % of recording time. In protocol II, however, ventricular arrhythmia was not inducible and REFDs were not observed after 5-minute GI in 5 hearts. Effects of BAPTA-AM on intracellular calcium (Ca(i) ) at the LV endocardium were also evaluated in 5 hearts (protocol III) using dual Ca(i) /membrane potential mapping. GI, both without and with BAPTA-AM pretreatment, caused a decrease of Ca(i) amplitude during S(1) pacing. However, this effect was more pronounced in the hearts with BAPTA-AM pretreatment (P < 0.001). GI, without BAPTA-AM pretreatment, caused broadening of Ca(i) transient. In contrast, GI, with BAPTA-AM pretreatment, caused narrowing of Ca(i) transient. CONCLUSIONS BAPTA-AM pretreatment attenuates Ca(i) transient, suppressing the genesis of REFDs and pacing-induced ventricular arrhythmia during GI. These findings support the notion that Ca(i) dynamics is important in the maintenance of REFDs.
Collapse
Affiliation(s)
- Tsu-Juey Wu
- Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
10
|
Robichaux RP, Dosdall DJ, Osorio J, Garner NW, Li L, Huang J, Ideker RE. Periods of highly synchronous, non-reentrant endocardial activation cycles occur during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol 2011; 21:1266-73. [PMID: 20487123 DOI: 10.1111/j.1540-8167.2010.01803.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Periods of Highly Organized Activation During VF. BACKGROUND Little is known about long-duration ventricular fibrillation (LDVF), lasting 1-10 minutes when resuscitation is still possible. METHODS AND RESULTS To determine global left ventricle (LV) endocardial activation during LDVF, 6 canines (9.5 ± 0.8 kg) received a 64-electrode basket catheter in the LV, a right ventricular (RV) catheter, and a 12-lead electrocardiogram (ECG). Activation sequences of 15 successive cycles after initiation and after 1, 2, 3, 5, 7, and 10 minutes of LDVF were determined. Early during VF, LV endocardial activation was complex and present throughout most (78.0 ± 9.7%) of each cycle consistent with reentry. After 3-7 minutes of LDVF in 5 animals, endocardial activation became highly synchronized and present for only a small percentage of each cycle (18.2 ± 7.7%), indicating that LV endocardial reentry was no longer present. During this synchronization, activations arose focally in Purkinje fibers and spread as large wavefronts to excite the Purkinje system followed by the subendocardial working myocardium. During this synchronization, the ECG continued to appear irregular, consistent with VF, and LV cycle length (183 ± 29 ms) was significantly different than RV cycle length (144 ± 14 ms) and significantly different than the LV cycle length when synchronization was not present (130 ± 11 ms). CONCLUSION After 3-7 minutes of LDVF, a highly organized, synchronous, focal LV endocardial activation pattern frequently occurs that is not consistent with reentry but is consistent with triggered activity or abnormal automaticity in Purkinje fibers. The ECG continues to appear irregular during this period, partially because of differences in LV and RV cycle lengths.
Collapse
Affiliation(s)
- Robert P Robichaux
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Liou YM, Hsieh SR, Wu TJ, Chen JY. Green tea extract given before regional myocardial ischemia-reperfusion in rats improves myocardial contractility by attenuating calcium overload. Pflugers Arch 2010; 460:1003-14. [PMID: 20922441 DOI: 10.1007/s00424-010-0881-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 01/03/2023]
Abstract
There is evidence for a negative correlation between green tea consumption and cardiovascular diseases. The aim of the present study was to examine whether green tea extract (GTE) given before regional myocardial ischemia could improve depression of myocardial contractility by preventing cytosolic Ca(2+) overload. Regional ischemia-reperfusion (IR) was induced in rats by ligating the left anterior descending branch for 20 min, then releasing the ligature. Ligation induced ventricular arrhythmias in rats without GTE pretreatment, but decreased arrhythmogenesis was seen in rats pretreated 30 min earlier with GTE (400 mg/kg). During reperfusion, arrhythmias only occurred during the initial 5 min, and GTE pretreatment had no effect. After overnight recovery, serum cTnI levels were greatly increased in control post-IR rats but only slightly elevated in GTE-pretreated post-IR rats. Myocardial contractility measured by echocardiography was still depressed after 3 days in control post-IR rats, but not in GTE-pretreated post-IR rats. No myocardial ischemic injury was seen in post-IR rats with or without GTE pretreatment. Using freshly isolated single heart myocytes, GTE was found to attenuate the post-IR injury-associated cytosolic Ca(2+) overload and modulate changes in the levels and distribution of myofibril, adherens junction, and gap junction proteins. In summary, GTE pretreatment protects cardiomyocytes from IR injury by preventing cytosolic Ca(2+) overload, myofibril disruption, and alterations in adherens and gap junction protein expression and distribution.
Collapse
Affiliation(s)
- Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.
| | | | | | | |
Collapse
|
12
|
Venable PW, Taylor TG, Shibayama J, Warren M, Zaitsev AV. Complex structure of electrophysiological gradients emerging during long-duration ventricular fibrillation in the canine heart. Am J Physiol Heart Circ Physiol 2010; 299:H1405-18. [PMID: 20802138 DOI: 10.1152/ajpheart.00419.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-duration ventricular fibrillation (LDVF) in the globally ischemic heart is a common setting of cardiac arrest. Electrical heterogeneities during LDVF may affect outcomes of defibrillation and resuscitation. Previous studies in large mammalian hearts have investigated the role of Purkinje fibers and electrophysiological gradients between the endocardium (Endo) and epicardium (Epi). Much less is known about gradients between the right ventricle (RV) and left ventricle (LV) and within each chamber during LDVF. We studied the transmural distribution of the VF activation rate (VFR) in the RV and LV and at the junction of RV, LV, and septum (Sep) during LDVF using plunge needle electrodes in opened-chest dogs. We also used optical mapping to analyze the Epi distribution of VFR, action potential duration (APD), and diastolic interval (DI) during LDVF in the RV and LV of isolated hearts. Transmural VFR gradients developed in both the RV and LV, with a faster VFR in Endo. Concurrently, large VFR gradients developed in Epi, with the fastest VFR in the RV-Sep junction, intermediate in the RV, and slowest in the LV. Optical mapping revealed a progressively increasing VFR dispersion within both the LV and RV, with a mosaic presence of fully inexcitable areas after 4-8 min of LDVF. The transmural, interchamber, and intrachamber VFR heterogeneities were of similar magnitude. In both chambers, the inverse of VFR was highly correlated with DI, but not APD, at all time points of LDVF. We conclude that the complex VFR gradients during LDVF in the canine heart cannot be explained solely by the distribution of Purkinje fibers and are related to regional differences in the electrical depression secondary to LDVF.
Collapse
Affiliation(s)
- Paul W Venable
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112-5000, USA
| | | | | | | | | |
Collapse
|
13
|
Massé S, Farid T, Dorian P, Umapathy K, Nair K, Asta J, Ross H, Rao V, Sevaptsidis E, Nanthakumar K. Effect of global ischemia and reperfusion during ventricular fibrillation in myopathic human hearts. Am J Physiol Heart Circ Physiol 2009; 297:H1984-91. [PMID: 19820201 DOI: 10.1152/ajpheart.00101.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of lack of global coronary perfusion on myocardial activation rate, wavebreak, and its temporal progression during human ventricular fibrillation (VF) is not known. We tested the hypothesis that global myocardial ischemia decreases activation rate and spatiotemporal organization during VF in myopathic human hearts, while increasing wavebreak, and that a short duration of reperfusion can restore these spatiotemporal changes to baseline levels. The electrograms were acquired during VF in a human Langendorff model using global mapping consisting of two 112-electrode arrays placed on the epicardium and endocardium simultaneously. We found that global myocardial ischemia results in slowing of the global activation rate (combined endo and epi), from 4.89+/-0.04 Hz. to 3.60+/-0.04 Hz. during the 200 s of global ischemia (no coronary flow) (P<0.01) in eight myopathic hearts. Two minutes of reperfusion contributed to reversal of the slowing with activation rate value increasing close to VF onset (4.72+/-0.04 Hz). In addition, during the period of ischemia, an activation rate gradient between the endocardium (3.76+/-0.06 Hz) and epicardium (3.45+/-0.06 Hz) was observed (P<0.01). There was a concomitant difference in wavebreak index (that provides a normalized parameterization of phase singularities) between the epicardium (11.29+/-2.7) and endocardium (3.25+/-2.7) during the 200 s of ischemia (P=0.02). The activation rate, gradient, and wavebreak changes were reversed by short duration (2 min) of reperfusion. Global myocardial ischemia of 3 min leads to complex spatiotemporal changes during VF in myopathic human hearts; these changes can be reversed by a short duration of reperfusion.
Collapse
Affiliation(s)
- Stéphane Massé
- Division of Cardiology, Toronto General Hospital, GW 3-522, 150 Gerrard St. West, Toronto, ON, Canada M5G 2C4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hsieh YC, Lin SF, Lin TC, Ting CT, Wu TJ. Therapeutic hypothermia (30 degrees C) enhances arrhythmogenic substrates, including spatially discordant alternans, and facilitates pacing-induced ventricular fibrillation in isolated rabbit hearts. Circ J 2009; 73:2214-22. [PMID: 19789414 DOI: 10.1253/circj.cj-09-0432] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Therapeutic hypothermia (TH, 30 degrees C) protects the brain from hypoxic injury. However, TH may potentiate the occurrence of lethal ventricular fibrillation (VF), although the mechanism remains unclear. The present study explored the hypothesis that TH enhances wavebreaks during VF and S(1) pacing, facilitates pacing-induced spatially discordant alternans (SDA), and increases the vulnerability of pacing-induced VF. METHODS AND RESULTS Using an optical mapping system, epicardial activations of VF were studied in 7 Langendorff-perfused isolated rabbit hearts at baseline (37 degrees C), TH (30 degrees C), and rewarming (37 degrees C). Action potential duration (APD)/conduction velocity (CV) restitution and APD alternans (n=6 hearts) were determined by S(1) pacing at these 3 stages. During TH, there was a higher percentage of VF duration containing epicardial repetitive activities (spatiotemporal periodicity) (P<0.001). However, TH increased phase singularity number (wavebreaks) during VF (P<0.05) and S(1) pacing (P<0.05). TH resulted in earlier onset of APD alternans (P<0.001), which was predominantly SDA (P<0.05), and increased pacing-induced VF episodes (P<0.05). TH also decreased CV, shortened wavelength, and enhanced APD dispersion and the spatial heterogeneity of CV restitution. CONCLUSIONS TH (30 degrees C) increased the vulnerability of pacing-induced VF by (1)facilitating wavebreaks during VF and S(1) pacing, and (2)enhancing proarrhythmic electrophysiological parameters, including promoting earlier onset of APD alternans (predominantly SDA) during S(1) pacing.
Collapse
Affiliation(s)
- Yu-Cheng Hsieh
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung and Department of Internal Medicine, Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Wu TJ, Lin SF, Hsieh YC, Chiu YT, Ting CT. Repetitive endocardial focal discharges during ventricular fibrillation with prolonged global ischemia in isolated rabbit hearts. Circ J 2009; 73:1803-11. [PMID: 19652397 DOI: 10.1253/circj.cj-09-0260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ventricular fibrillation (VF) during prolonged (>5 min) global ischemia (GI) could be due to repetitive endocardial focal discharges (REFDs). This hypothesis was tested in isolated rabbit hearts. METHODS AND RESULTS With optical mapping, simultaneous endocardial (left ventricle, LV) and epicardial (both ventricles) activations during VF with prolonged GI were studied (protocol I, 8 hearts). Lugol solution was applied to the LV endocardium in additional 5 hearts after 5-min GI (protocol II). During prolonged GI, sustained VF (>30 s) was successfully induced in 7 protocol I hearts. The dominant frequency of summed optical signals at the LV endocardium was higher than at the epicardium (P<0.05). Mapping data showed that after 5-min GI, REFDs were present in >90% for recording time. There were 18 windows of optical recording showing spontaneous VF termination. In 10, once REFDs ceased, the VF episode terminated immediately. Electrical defibrillation was also performed on 3 hearts. Eight shocks showed early VF recurrence after successful defibrillation. REFDs were consistently involved in the initiation period of recurrence. In protocol II, Lugol subendocardial ablation diminished REFD genesis during re-induced VF. These VF episodes were all non-sustained. CONCLUSIONS REFDs at the LV endocardium were important for both VF maintenance and post-shock recurrence during prolonged GI in this model.
Collapse
Affiliation(s)
- Tsu-Juey Wu
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
16
|
Kong W, Ideker RE, Fast VG. Transmural optical measurements of Vm dynamics during long-duration ventricular fibrillation in canine hearts. Heart Rhythm 2009; 6:796-802. [PMID: 19467507 DOI: 10.1016/j.hrthm.2009.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/18/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Knowledge of transmural V(m) changes is important for understanding the mechanism of long-duration ventricular fibrillation (LDVF). OBJECTIVE The purpose of this study was to measure transmural V(m) changes during LDVF. METHODS V(m) was recorded optically at up to 8 transmural points separated by 1.5 mm in the left ventricle of Langendorff-perfused canine hearts (n = 6) using a bundle of optical fibers (optrode) during 10 minutes of LDVF followed by 3 minutes of VF with reperfusion. Measurements were grouped into 4 layers: epicardium, subepicardium, midwall, and subendocardium. RESULTS Activation rates (ARs) and action potential durations (APDs) decreased, whereas diastolic intervals (DIs) increased during LDVF in all transmural layers (P < .05). After approximately 3 minutes of LDVF, ARs were faster and DIs shorter in the midwall and subendocardium than in the epicardium and subepicardium (P < .05). Activations persisted at the subendocardium but disappeared from other layers after approximately 8 minutes of VF in the majority of hearts. There were no transmural differences in APD during LDVF or during pacing before and after LDVF (P > .05). Restitution plots showed no functional relationship between APD and DI in any layer at any stage of LDVF. Partial reperfusion during VF for 3 minutes restored transmural synchronicity of activation and eliminated gradients in activation parameters. CONCLUSION V(m) dynamics evolve differently at different transmural layers. The subendocardium maintains persistent and the fastest activation during 10 minutes of LDVF, suggesting it contains the source of VF wavefronts. There are no transmural APD gradients and no restitution relationship between APD and DI at any transmural layer, indicating these are not the primary factors in the mechanism of LDVF.
Collapse
Affiliation(s)
- Wei Kong
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
17
|
Hsieh YC, Horng TL, Lin SF, Lin TC, Ting CT, Wu TJ. d,l-Sotalol at therapeutic concentrations facilitates the occurrence of long-lasting non-stationary reentry during ventricular fibrillation in isolated rabbit hearts. Circ J 2009; 73:39-47. [PMID: 19008631 PMCID: PMC3060151 DOI: 10.1253/circj.cj-08-0540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2024]
Abstract
BACKGROUND The effects of d,l-sotalol at therapeutic concentrations ( METHODS AND RESULTS By using an optical mapping system, epicardial activation patterns of VF were studied in 6 Langendorff-perfused rabbit hearts at baseline, during 10 mg/L d,l-sotalol infusion, and after washout. In an additional 4 hearts, action potential duration (APD), conduction velocity, and wavelength (WL) restitutions were determined. During d,l-sotalol infusion, VF was terminated in 3 of the 6 hearts. Only 1 heart developed transient ventricular tachycardia (VT). d,l-Sotalol reduced the number of phase singularities (ie, wavebreak) during VF (P<0.05), and it also increased the occurrence frequency (P<0.05) and lifespan (P<0.05) of epicardial reentry during VF. These reentries were non-stationary in nature and did not anchor on anatomical structures. Restitution data showed that d,l-sotalol flattened APD restitution. Furthermore, APD dispersion and spatial heterogeneity of restitutions were not enhanced by d,l-sotalol. CONCLUSIONS d,l-Sotalol at therapeutic concentrations decreased wavebreak and facilitated the occurrence of long-lasting, non-stationary reentry during VF. However, VT rarely occurred. The related mechanisms include: (1) flattening of APD restitution without enhancement of spatial heterogeneity of electrophysiological properties, causing wavefront organization, and (2) WL prolongation, preventing steady anchoring of reentry.
Collapse
Affiliation(s)
- Yu-Cheng Hsieh
- Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Tzyy-Leng Horng
- Department of Applied Mathematics, Feng-Chia University, Taichung, Taiwan
| | - Shien-Fong Lin
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tung-Chao Lin
- Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chih-Tai Ting
- Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Tsu-Juey Wu
- Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
18
|
de Diego C, Pai RK, Chen F, Xie LH, De Leeuw J, Weiss JN, Valderrábano M. Electrophysiological consequences of acute regional ischemia/reperfusion in neonatal rat ventricular myocyte monolayers. Circulation 2008; 118:2330-7. [PMID: 19015404 DOI: 10.1161/circulationaha.108.789149] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Electrophysiological changes promoting arrhythmias during acute regional ischemia/reperfusion are challenging to study in intact cardiac tissue because of complex 3-dimensional myocardial and vascular geometry. We characterized electrophysiological alterations and arrhythmias during regional ischemia/reperfusion in a simpler 2-dimensional geometry of cultured neonatal rat ventricular myocyte monolayers. METHODS AND RESULTS Optical mapping of intracellular Ca (Ca(i)) and voltage was performed with the use of Rhod 2-AM and Rh-237, respectively. Regional ischemia was mimicked by covering the central portion of monolayer with a glass coverslip, and reperfusion was mimicked by removing the coverslip. Monolayers were stained with fluorescent antibodies to detect total and dephosphorylated connexin-43 at various time points. During coverslip ischemia, action potential duration shortened, Ca(i) transient duration was prolonged, and local conduction velocity (CV) slowed progressively, with loss of excitability after 10.6 +/- 3.6 minutes. CV slowing was accompanied by connexin-43 dephosphorylation. During ischemia, spontaneous reentry occurred in 5 of 11 monolayers, initiated by extrasystoles arising from the border zone or unidirectional conduction block of paced beats. On reperfusion, excitability recovered within 1.0 +/- 0.8 minutes, but CV remained depressed for 9.0 +/- 3.0 minutes, promoting reentry in the reperfused zone. As connexin-43 phosphorylation recovered in the reperfused zone, CV normalized, and arrhythmias resolved. CONCLUSIONS Acute regional ischemia/reperfusion in neonatal rat ventricular myocyte monolayers recapitulates electrophysiological alterations and arrhythmias similar to those observed during acute coronary occlusion/reperfusion in intact hearts. During early reperfusion, slow recovery from connexin-43 dephosphorylation leads to persistent CV slowing, creating a highly arrhythmogenic substrate.
Collapse
Affiliation(s)
- Carlos de Diego
- UCLA Cardiovascular Research Laboratory, Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Dosdall DJ, Tabereaux PB, Kim JJ, Walcott GP, Rogers JM, Killingsworth CR, Huang J, Robertson PG, Smith WM, Ideker RE. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs. Am J Physiol Heart Circ Physiol 2008; 295:H883-9. [PMID: 18586887 DOI: 10.1152/ajpheart.00466.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.
Collapse
Affiliation(s)
- Derek J Dosdall
- Volker Hall B140, 1670 Univ. Blvd., Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nair K, Umapathy K, Downar E, Nanthakumar K. Aborted sudden death from sustained ventricular fibrillation. Heart Rhythm 2008; 5:1198-200. [PMID: 18621588 DOI: 10.1016/j.hrthm.2008.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/07/2008] [Indexed: 11/25/2022]
Abstract
Ventricular fibrillation usually is sustained and unrelenting in human subjects and rarely is self-terminating after 30 seconds' duration. Temporal evolution of the arrhythmia in our patient suggested that organization of electrical activity varies over time. Interaction of organization with high catecholamine levels and hyperkalemia may play a role in self-termination of ventricular fibrillation. Understanding the true mechanisms of spontaneous defibrillation may provide newer therapeutic options for treatment of this otherwise fatal arrhythmia.
Collapse
Affiliation(s)
- Krishnakumar Nair
- Division of Cardiology, University Health Network, The Toby Hull Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
21
|
Kay M, Swift L, Martell B, Arutunyan A, Sarvazyan N. Locations of ectopic beats coincide with spatial gradients of NADH in a regional model of low-flow reperfusion. Am J Physiol Heart Circ Physiol 2008; 294:H2400-5. [PMID: 18310518 DOI: 10.1152/ajpheart.01158.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the origins of ectopic beats during low-flow reperfusion after acute regional ischemia in excised rat hearts. The left anterior descending coronary artery was cannulated. Perfusate was delivered to the cannula using an high-performance liquid chromatography pump. This provided not only precise control of flow rate but also avoided mechanical artifacts associated with vessel occlusion and deocclusion. Optical mapping of epicardial transmembrane potential served to identify activation wavefronts. Imaging of NADH fluorescence was used to quantify local ischemia. Our experiments suggest that low-flow reperfusion of ischemic myocardium leads to a highly heterogeneous ischemic substrate and that the degree of ischemia between adjacent patches of tissue changes in time. In contrast to transient ectopic activity observed during full-flow reperfusion, persistent ectopic arrhythmias were observed during low-flow reperfusion. The origins of ectopic beats were traceable to areas of high spatial gradients of changes in NADH fluorescence caused by low-flow reperfusion.
Collapse
Affiliation(s)
- Matthew Kay
- Department of Pharmacology and Physiology, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
22
|
WU TSUJUEY, LIN SHIENFONG, HSIEH YUCHENG, CHEN PENGSHENG, TING CHIHTAI. Early Recurrence of Ventricular Fibrillation After Successful Defibrillation During Prolonged Global Ischemia in Isolated Rabbit Hearts. J Cardiovasc Electrophysiol 2008; 19:203-10. [DOI: 10.1111/j.1540-8167.2007.00979.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Ideker RE, Dosdall DJ, Robertson PG, Rogers JM. Ventricular fibrillation: Discordant alternans and discordant results. Heart Rhythm 2007; 4:1069-71. [PMID: 17675082 DOI: 10.1016/j.hrthm.2007.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Indexed: 10/23/2022]
|
24
|
Huizar JF, Warren MD, Shvedko AG, Kalifa J, Moreno J, Mironov S, Jalife J, Zaitsev AV. Three distinct phases of VF during global ischemia in the isolated blood-perfused pig heart. Am J Physiol Heart Circ Physiol 2007; 293:H1617-28. [PMID: 17545483 DOI: 10.1152/ajpheart.00130.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in ventricular fibrillation (VF) organization occurring after the onset of global ischemia are relevant to defibrillation and survival but remain poorly understood. We hypothesized that ischemia-specific dynamic instability of the action potential (AP) causes a loss of spatiotemporal periodicity of propagation and broadening of the electrocardiogram (ECG) frequency spectrum during VF in the ischemic myocardium. We recorded voltage-sensitive fluorescence of di-4-ANEPPS (anterior left ventricle, 35 x 35 mm, 64 x 64 pixels) and the volume-conducted ECG in six blood-perfused hearts during 10 min of VF and global ischemia. We used coefficient of variation (CV) to estimate variability of AP amplitude, AP duration, and diastolic interval (CV-APA, CV-APD, and CV-DI, respectively). We computed excitation median frequency (Median_F), spectral width of the AP and ECG (SpW-AP and SpW-ECG, respectively), wavebreak incidence (WBI), and recurrence of propagation direction (RPD). We found three distinct phases of local VF dynamics: "relatively periodic" (<or=1 min, high Median_F, moderate AP variability, high WBI, low RPD), "highly periodic" (1-2 min, reduced Median_F, low AP variability, low WBI, high RPD), and "aperiodic" (3-10 min, low Median_F, high AP variability, high WBI, low RPD). In one experiment, spontaneous conversion from the aperiodic to the highly periodic phase occurred after 5 min of ischemia. The SpW-ECG was correlated with SpW-AP, CV-APD, and CV-APA. We conclude that 1) at least three distinct phases of VF dynamics are present in our model, and 2) the newly described aperiodic phase is related to ischemia-specific dynamic instability of the AP shape, which underlies broadening of the ECG spectrum during VF evolution.
Collapse
Affiliation(s)
- Jose F Huizar
- Institute for Cardiovascular Research, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|