1
|
A descriptive report on short QT interval in Kherameh branch of the PERSIAN cohort study. Sci Rep 2022; 12:2898. [PMID: 35190598 PMCID: PMC8861052 DOI: 10.1038/s41598-022-06835-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Short QT-interval is a condition that bear the suspicion of short QT syndrome (SQTS). SQTS is known to increase risk of life-threatening arrythmias and sudden cardiac death (SCD). Due to the insufficient population-based studies and use of various QT cut-off values, it accounts for as an undiagnosed condition. In this study, we sought for prevalence of short QT interval in Kherameh cohort study, one of the southern branches of the Prospective Epidemiological Research Studies in Iran (PERSIAN). Data of 4363 adult subjects were analyzed from phase 1 of the cohort during 2014–2017. The corrected QT (QTc) intervals were calculated and electrocardiograms (ECGs) with QTc of less than 370 ms (msec) were reanalyzed for bradycardia, early repolarization, atrial fibrillation (AF), arrhythmias, and other electrical conduction abnormalities. Seventy-two subjects (1.65%) had a QTc of less than 370 ms (mean QTc of 360.72 ± 11.72). A male predominance and a lower mean heart rate observed in SQTS susceptible group (M/F of 1/0.26 vs. 1/1.145, p-value < 0.0001; 58.389 ± 9.787 vs. 70.899 ± 11.775; p-value < 0.0001) compare to the subjects with normal QTc. At least, 2 subjects with high-probability SQTS and 3 with intermediate-probability SQTS identified. The frequency of AF, syncope, bradycardia, early repolarization, low voltage ECG, and infantile SCD in first- and second-degree relatives were 16.67, 4.17, 33.33, 11.11, 11.11, 11.11%, respectively. The prevalence of short QT interval in our cohort was in line with previous studies. The incidence of cardiac symptoms/events, familial SCDs and ECG derived specific findings were high amongst SQTS-susceptible index persons. However, these variables could not predict the symptomatic subjects, which emphasizes gene studies and family screening.
Collapse
|
2
|
Rivaud MR, Baartscheer A, Verkerk AO, Beekman L, Rajamani S, Belardinelli L, Bezzina CR, Remme CA. Enhanced late sodium current underlies pro-arrhythmic intracellular sodium and calcium dysregulation in murine sodium channelopathy. Int J Cardiol 2018; 263:54-62. [PMID: 29754923 DOI: 10.1016/j.ijcard.2018.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Long QT syndrome mutations in the SCN5A gene are associated with an enhanced late sodium current (INa,L) which may lead to pro-arrhythmic action potential prolongation and intracellular calcium dysregulation. We here investigated the dynamic relation between INa,L, intracellular sodium ([Na+]i) and calcium ([Ca2+]i) homeostasis and pro-arrhythmic events in the setting of a SCN5A mutation. METHODS AND RESULTS Wild-type (WT) and Scn5a1798insD/+ (MUT) mice (age 3-5 months) carrying the murine homolog of the SCN5A-1795insD mutation on two distinct genetic backgrounds (FVB/N and 129P2) were studied. [Na+]i, [Ca2+]i and Ca2+ transient amplitude were significantly increased in 129P2-MUT myocytes as compared to WT, but not in FVB/N-MUT. Accordingly, INa,L wassignificantly more enhanced in 129P2-MUT than in FVB/N-MUT myocytes, consistent with a dose-dependent correlation. Quantitative RT-PCR analysis revealed intrinsic differences in mRNA expression levels of the sodium/potassium pump, the sodium/hydrogen exchanger, and sodium‑calcium exchanger between the two mouse strains. The rate of increase in [Na+]i, [Ca2+]i and Ca2+ transient amplitude following the application of the Na+/K+-ATPase inhibitor ouabain was significantly greater in 129P2-MUT than in 129P2-WT myocytes and was normalized by the INa,L inhibitor ranolazine. Furthermore, ranolazine decreased the incidence of pro-arrhythmic calcium after-transients elicited in 129P2-MUT myocytes. CONCLUSIONS In this study we established a causal link between the magnitude of INa,L, extent of Na+ and Ca2+ dysregulation, and incidence of pro-arrhythmic events in murine Scn5a1798insD/+ myocytes. Furthermore, our findings provide mechanistic insight into the anti-arrhythmic potential of pharmacological inhibition of INa,L in patients with LQT3 syndrome.
Collapse
Affiliation(s)
- Mathilde R Rivaud
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Antonius Baartscheer
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Arie O Verkerk
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands; Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Leander Beekman
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | | | | | - Connie R Bezzina
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Carol Ann Remme
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Hothi SS, Ara F, Timperley J. p.Y1449C SCN5A mutation associated with overlap disorder comprising conduction disease, Brugada syndrome, and atrial flutter. J Cardiovasc Electrophysiol 2014; 26:93-7. [PMID: 24903439 DOI: 10.1111/jce.12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 11/27/2022]
Abstract
Mutations in the SCN5A gene, which encodes the cardiac sodium channel, have been associated with cardiac arrhythmia syndromes and conduction disease. Specific SCN5A mutations had initially been considered to cause specific phenotypes. More recently, some SCN5A mutations have been associated with overlap syndromes, characterized by phenotypic heterogeneity within and between mutation carriers. Here we report and associate the presence of the p.Y1449C SCN5A mutation in a single family with a spectrum of cardiac phenotypes including conduction disease, Brugada syndrome and atrial arrhythmias, for the first time to our knowledge.
Collapse
Affiliation(s)
- Sandeep S Hothi
- Physiological Laboratory, University of Cambridge, Cambridge, UK; Murray Edwards College, University of Cambridge, Cambridge, UK; Heart Centre, Northampton General Hospital, Northampton, UK
| | | | | |
Collapse
|
4
|
Whole-exome sequencing identifies Y1495X of SCN5A to be associated with familial conduction disease and sudden death. Sci Rep 2014; 4:5616. [PMID: 25010007 PMCID: PMC5375973 DOI: 10.1038/srep05616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/20/2014] [Indexed: 02/07/2023] Open
Abstract
SCN5A mutations have been reported to underlie a variety of inherited arrhythmias, while the complex overlapping phenotype, especially with congenital heart disease (CHD), is rarely reported. The 48-year-old proband underwent a recent syncope during rest. A CHD (tetralogy of Fallot) and conduction disease was revealed by echocardiogram and ultrasonic cardiogram examination. We combined whole-exome sequencing (WES) and bioinformatics strategies to identify the pathogenic gene for this autosomal-dominant cardiac conduction disease (CCD) in a multi-generation pedigree. We examined four members of this family, including three affected and one unaffected. A novel nonsense mutation (Y1495X) in SCN5A was identified in the affected family members. This mutation is predicted to generate a truncated SCN5A protein, which could result in the loss of sodium current, a defined mechanism of SCN5A related arrhythmias. Our study provides evidence that WES is a highly effective approach for genetic analyses of rare clinical phenotypes. Our study also offers accurate genetic testing information for those yet clinically negative relatives.
Collapse
|
5
|
Ziyadeh-Isleem A, Clatot J, Duchatelet S, Gandjbakhch E, Denjoy I, Hidden-Lucet F, Hatem S, Deschênes I, Coulombe A, Neyroud N, Guicheney P. A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm 2014; 11:1015-1023. [PMID: 24582607 PMCID: PMC4056672 DOI: 10.1016/j.hrthm.2014.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mutations in the SCN5A gene, encoding the α subunit of the cardiac Na(+) channel, Nav1.5, can result in several life-threatening arrhythmias. OBJECTIVE To characterize a distal truncating SCN5A mutation, R1860Gfs*12, identified in a family with different phenotypes including sick sinus syndrome, atrial fibrillation (AF), atrial flutter, and atrioventricular block. METHODS Patch-clamp and biochemical analyses were performed in human embryonic kidney 293 cells transfected with wild-type (WT) and/or mutant channels. RESULTS The mutant channel expressed alone caused a 70% reduction in inward sodium current (INa) density compared to WT currents, which was consistent with its partial proteasomal degradation. It also led to a negative shift of steady-state inactivation and to a persistent current. When mimicking the heterozygous state of the patients by coexpressing WT and R1860Gfs*12 channels, the biophysical properties of INa were still altered and the mutant channel α subunits still interacted with the WT channels. Since the proband developed paroxysmal AF at a young age, we screened 17 polymorphisms associated with AF risk in this family and showed that the proband carries at-risk polymorphisms upstream of PITX2, a gene widely associated with AF development. In addition, when mimicking the difference in resting membrane potentials between cardiac atria and ventricles in human embryonic kidney 293 cells or when using computer model simulations, R1860Gfs*12 induced a more drastic decrease in INa at the atrial potential. CONCLUSION We have identified a distal truncated SCN5A mutant associated with gain- and loss-of-function effects, leading to sick sinus syndrome and atrial arrhythmias. A constitutively higher susceptibility to arrhythmias of atrial tissues and genetic variability could explain the complex phenotype observed in this family.
Collapse
Affiliation(s)
- Azza Ziyadeh-Isleem
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Jérôme Clatot
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH, USA
| | - Sabine Duchatelet
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Estelle Gandjbakhch
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Cardiologie, Paris, France
| | - Isabelle Denjoy
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- AP-HP, Hôpital Bichat, Département de Cardiologie, Centre de Référence des Maladies Cardiaques Héréditaires, Paris, France
| | - Françoise Hidden-Lucet
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Cardiologie, Paris, France
| | - Stéphane Hatem
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Isabelle Deschênes
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH, USA
| | - Alain Coulombe
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Nathalie Neyroud
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Pascale Guicheney
- INSERM, UMR_S1166, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
6
|
Robyns T, Nuyens D, Van Casteren L, Corveleyn A, De Ravel T, Heidbuchel H, Willems R. Reduced Penetrance and Variable Expression of SCN5A Mutations and the Importance of Co-inherited Genetic Variants: Case Report and Review of the Literature. Indian Pacing Electrophysiol J 2014; 14:133-49. [PMID: 24948852 PMCID: PMC4032780 DOI: 10.1016/s0972-6292(16)30754-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the SCN5A gene are responsible for multiple phenotypical presentations including Brugada syndrome, long QT syndrome, progressive familial heart block, sick sinus syndrome, dilated cardiomyopathy, lone atrial fibrillation and multiple overlap syndromes. These different phenotypic expressions of a mutation in a single gene can be explained by variable expression and reduced penetrance. One of the possible explanations of these phenomena is the co-inheritance of genetic variants. We describe a family where the individuals exhibit a compound heterozygosity in the SCN5A gene including a mutation (R1632H) and a new variant (M858L). Individuals with both the mutation and new variant present with a more severe phenotype including spontaneous atrial tachyarrhythmia at young age. We give an overview of the different phenotypes of "SCN5A disease" and discuss the importance of co-inherited genetic variants in the expression of SCN5A disease.
Collapse
Affiliation(s)
- T Robyns
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - D Nuyens
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - L Van Casteren
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - A Corveleyn
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - T De Ravel
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - H Heidbuchel
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - R Willems
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Marsman RF, Barc J, Beekman L, Alders M, Dooijes D, van den Wijngaard A, Ratbi I, Sefiani A, Bhuiyan ZA, Wilde AAM, Bezzina CR. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol 2013; 63:259-66. [PMID: 24076290 DOI: 10.1016/j.jacc.2013.07.091] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This study aimed to identify the genetic defect in a family with idiopathic ventricular fibrillation (IVF) manifesting in childhood and adolescence. BACKGROUND Although sudden cardiac death in the young is rare, it frequently presents as the first clinical manifestation of an underlying inherited arrhythmia syndrome. Gene discovery for IVF is important as it enables the identification of individuals at risk, because except for arrhythmia, IVF does not manifest with identifiable clinical abnormalities. METHODS Exome sequencing was carried out on 2 family members who were both successfully resuscitated from a cardiac arrest. RESULTS We characterized a family presenting with a history of ventricular fibrillation (VF) and sudden death without electrocardiographic or echocardiographic abnormalities at rest. Two siblings died suddenly at the ages of 9 and 10 years, and another 2 were resuscitated from out-of-hospital cardiac arrest with documented VF at ages 10 and 16 years, respectively. Exome sequencing identified a missense mutation affecting a highly conserved residue (p.F90L) in the CALM1 gene encoding calmodulin. This mutation was also carried by 1 of the siblings who died suddenly, from whom DNA was available. The mutation was present in the mother and in another sibling, both asymptomatic but displaying a marginally prolonged QT interval during exercise. CONCLUSIONS We identified a mutation in CALM1 underlying IVF manifesting in childhood and adolescence. The causality of the mutation is supported by previous studies demonstrating that F90 mediates the direct interaction of CaM with target peptides. Our approach highlights the utility of exome sequencing in uncovering the genetic defect even in families with a small number of affected individuals.
Collapse
Affiliation(s)
- Roos F Marsman
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Julien Barc
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands; ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Leander Beekman
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ilham Ratbi
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V Souissi, Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V Souissi, Rabat, Morocco
| | - Zahurul A Bhuiyan
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands; Laboratoire de Génétique Moléculaire, Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands; Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Jagu B, Charpentier F, Toumaniantz G. Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death. Front Physiol 2013; 4:254. [PMID: 24065925 PMCID: PMC3778269 DOI: 10.3389/fphys.2013.00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/29/2013] [Indexed: 01/22/2023] Open
Abstract
Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure, and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behavior has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction, or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis, and the degradation of ion channel a-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking. The aim of this review is to inventory, through the description of few representative examples, the role of these different biogenic mechanisms in arrhythmogenesis, HF and SCD in order to help the researcher to identify all the processes that could lead to arrhythmias. Identification of novel targets for drug intervention should result from further understanding of these fundamental mechanisms.
Collapse
Affiliation(s)
- Benoît Jagu
- INSERM, UMR1087, l'institut du thorax, IRS-UN Nantes, France ; CNRS, UMR6291 Nantes, France ; Faculté de Médecine, Université de Nantes Nantes, France
| | | | | |
Collapse
|
9
|
Ng D, Johnston JJ, Teer JK, Singh LN, Peller LC, Wynter JS, Lewis KL, Cooper DN, Stenson PD, Mullikin JC, Biesecker LG. Interpreting secondary cardiac disease variants in an exome cohort. CIRCULATION. CARDIOVASCULAR GENETICS 2013; 6:337-46. [PMID: 23861362 PMCID: PMC3887521 DOI: 10.1161/circgenetics.113.000039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Massively parallel sequencing to identify rare variants is widely practiced in medical research and in the clinic. Genome and exome sequencing can identify the genetic cause of a disease (primary results), but it can also identify pathogenic variants underlying diseases that are not being sought (secondary or incidental results). A major controversy has developed surrounding the return of secondary results to research participants. We have piloted a method to analyze exomes to identify participants at risk for cardiac arrhythmias, cardiomyopathies, or sudden death. METHODS AND RESULTS Exome sequencing was performed on 870 participants not selected for arrhythmia, cardiomyopathy, or a family history of sudden death. Exome data from 22 cardiac arrhythmia- and 41 cardiomyopathy-associated genes were analyzed using an algorithm that filtered results on genotype quality, frequency, and database information. We identified 1367 variants in the cardiomyopathy genes and 360 variants in the arrhythmia genes. Six participants had pathogenic variants associated with dilated cardiomyopathy (n=1), hypertrophic cardiomyopathy (n=2), left ventricular noncompaction (n=1), or long-QT syndrome (n=2). Two of these participants had evidence of cardiomyopathy and 1 had left ventricular noncompaction on echocardiogram. Three participants with likely pathogenic variants had prolonged QTc. Family history included unexplained sudden death among relatives. CONCLUSIONS Approximately 0.5% of participants in this study had pathogenic variants in known cardiomyopathy or arrhythmia genes. This high frequency may be due to self-selection, false positives, or underestimation of the prevalence of these conditions. We conclude that clinically important cardiomyopathy and dysrhythmia secondary variants can be identified in unselected exomes.
Collapse
Affiliation(s)
- David Ng
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer J. Johnston
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jamie K. Teer
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Larry N. Singh
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lindsey C. Peller
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jamila S. Wynter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Katie L. Lewis
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - David N. Cooper
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Peter D. Stenson
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - James C. Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Leslie G. Biesecker
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Giudicessi JR, Ackerman MJ. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. Transl Res 2013; 161:1-14. [PMID: 22995932 PMCID: PMC3624763 DOI: 10.1016/j.trsl.2012.08.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/23/2012] [Indexed: 12/19/2022]
Abstract
Mutations in genes encoding ion channel pore-forming α-subunits and accessory β-subunits as well as intracellular calcium-handling proteins that collectively maintain the electromechanical function of the human heart serve as the underlying pathogenic substrate for a spectrum of sudden cardiac death (SCD)-predisposing heritable cardiac arrhythmia syndromes, including long QT syndrome (LQTS), short QT syndrome (SQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ventricular tachycardia (CPVT). Similar to many Mendelian disorders, the cardiac "channelopathies" exhibit incomplete penetrance, variable expressivity, and phenotypic overlap, whereby genotype-positive individuals within the same genetic lineage assume vastly different clinical courses as objectively assessed by phenotypic features such electrocardiographic abnormalities and number/type of cardiac events. In this Review, we summarize the current understanding of the global architecture of complex electrocardiographic traits such as the QT interval, focusing on the role of common genetic variants in the modulation of ECG parameters in health and the environmental and genetic determinants of incomplete penetrance and variable expressivity in the heritable cardiac arrhythmia syndromes most likely to be encountered in clinical practice.
Collapse
|
11
|
Defining the Pathways Underlying the Prolonged PR Interval in Atrioventricular Conduction Disease. PLoS Genet 2012; 8:e1003154. [PMID: 23236297 PMCID: PMC3516548 DOI: 10.1371/journal.pgen.1003154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Lodder EM, Scicluna BP, Milano A, Sun AY, Tang H, Remme CA, Moerland PD, Tanck MWT, Pitt GS, Marchuk DA, Bezzina CR. Dissection of a quantitative trait locus for PR interval duration identifies Tnni3k as a novel modulator of cardiac conduction. PLoS Genet 2012; 8:e1003113. [PMID: 23236294 PMCID: PMC3516546 DOI: 10.1371/journal.pgen.1003113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/08/2012] [Indexed: 11/23/2022] Open
Abstract
Atrio-ventricular conduction disease is a common feature in Mendelian rhythm disorders associated with sudden cardiac death and is characterized by prolongation of the PR interval on the surface electrocardiogram (ECG). Prolongation of the PR interval is also a strong predictor of atrial fibrillation, the most prevalent sustained cardiac arrhythmia. Despite the significant genetic component in PR duration variability, the genes regulating PR interval duration remain largely elusive. We here aimed to dissect the quantitative trait locus (QTL) for PR interval duration that we previously mapped in murine F2 progeny of a sensitized 129P2 and FVBN/J cross. To determine the underlying gene responsible for this QTL, genome-wide transcriptional profiling was carried out on myocardial tissue from 109 F2 mice. Expression QTLs (eQTLs) were mapped and the PR interval QTL was inspected for the co-incidence of eQTLs. We further determined the correlation of each of these transcripts to the PR interval. Tnni3k was the only eQTL, mapping to the PR-QTL, with an established abundant cardiac-specific expression pattern and a significant correlation to PR interval duration. Genotype inspection in various inbred mouse strains revealed the presence of at least three independent haplotypes at the Tnni3k locus. Measurement of PR interval duration and Tnni3k mRNA expression levels in six inbred lines identified a positive correlation between the level of Tnni3k mRNA and PR interval duration. Furthermore, in DBA/2J mice overexpressing hTNNI3K, and in DBA.AKR.hrtfm2 congenic mice, which harbor the AKR/J “high-Tnni3k expression” haplotype in the DBA/2J genetic background, PR interval duration was prolonged as compared to DBA/2J wild-type mice (“low-Tnni3k expression” haplotype). Our data provide the first evidence for a role of Tnni3k in controlling the electrocardiographic PR interval indicating a function of Tnni3k in atrio-ventricular conduction. Atrio-ventricular (AV) conduction disease (delay), characterized by prolongation of the PR interval on the surface electrocardiogram (ECG), is a common feature in Mendelian rhythm disorders and is associated with sudden cardiac death. Prolongation of the PR interval is also a strong predictor of atrial fibrillation (AF), the most common sustained cardiac arrhythmia. Although there is a substantial heritable component to the variability of the PR interval, the causative genes remain largely elusive. The identification of these genetic factors in the human population has been difficult owing to wide genetic heterogeneity and an uncontainable environment. We here exploited the homogeneous genetic background and controlled environment of inbred laboratory mouse strains to detect a genetic modifier of the PR interval. We identify Tnni3k as prime candidate for the modulation of the PR interval duration and suggest a new role for this gene, in the modulation of atrio-ventricular conduction.
Collapse
Affiliation(s)
- Elisabeth M. Lodder
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P. Scicluna
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annalisa Milano
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert Y. Sun
- The Ion Channel Research Unit, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Hao Tang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Carol Ann Remme
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Perry D. Moerland
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael W. T. Tanck
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Geoffrey S. Pitt
- The Ion Channel Research Unit, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Connie R. Bezzina
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Hoekstra M, Mummery CL, Wilde AAM, Bezzina CR, Verkerk AO. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front Physiol 2012; 3:346. [PMID: 23015789 PMCID: PMC3449331 DOI: 10.3389/fphys.2012.00346] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/09/2012] [Indexed: 12/20/2022] Open
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic) arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte (CM) environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models have been generated, but these also have significant shortcomings, primarily related to species differences. The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC) has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human CMs can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here, we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially) characterized. Human iPSC (hiPSC) models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these disorders.
Collapse
Affiliation(s)
- Maaike Hoekstra
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
14
|
Derangeon M, Montnach J, Baró I, Charpentier F. Mouse Models of SCN5A-Related Cardiac Arrhythmias. Front Physiol 2012; 3:210. [PMID: 22737129 PMCID: PMC3381239 DOI: 10.3389/fphys.2012.00210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/29/2012] [Indexed: 12/19/2022] Open
Abstract
Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, a trial standstill, and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This review presents the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. This includes two models knocked out for Nav1.5 β1 and β3 auxiliary subunits that are also discussed. Despite their own limitations that we point out, the mouse models still appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodeling of other genes. This points out the potential role of these genes in the overall human phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.
Collapse
|
15
|
Concomitant Brugada-like and short QT electrocardiogram linked to SCN5A mutation. Eur J Hum Genet 2012; 20:1189-92. [PMID: 22490985 DOI: 10.1038/ejhg.2012.63] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutations in the α-subunit of cardiac sodium channel gene SCN5A can lead to the overlapping phenotypes of both the Brugada and type 3 long QT syndromes. However, the combination of Brugada and a short QT phenotype resulting from mutation in SCN5A has not previously been described. A man with concomitant Brugada-like and short QT electrocardiogram (ECG) was identified and the SCN5A gene was sequenced. Whole-cell patch clamp analysis of human embryo kidney (HEK) 293 cells expressing a SCN5A channel with the patient's sequence was used to investigate the biophysical properties of the channel. The patient with the family history of sudden death showed Brugada-like and short QT interval ECG. Sequence analysis of the coding region of the SCN5A gene, identified a G to A heterozygous missense mutation at nucleotide site 2066 that resulted in a amino-acid substitution of arginine to histidine at amino-acid site 689 (R689H). Patch clamp analysis showed that the R689H failed to generate current when heterologously expressed in HEK293 cells, indicating it was a loss-of-function mutation. Our finding firstly shows that a heterozygous missense mutation R689H in SCN5A gene results in the loss of protein function and the coexistents of the Brugada-like and short QT interval ECG phenotypes.
Collapse
|
16
|
Kolder ICRM, Tanck MWT, Bezzina CR. Common genetic variation modulating cardiac ECG parameters and susceptibility to sudden cardiac death. J Mol Cell Cardiol 2012; 52:620-9. [PMID: 22248531 DOI: 10.1016/j.yjmcc.2011.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/23/2011] [Accepted: 12/31/2011] [Indexed: 01/19/2023]
Abstract
Sudden cardiac death (SCD) is a prevalent cause of death in Western societies. Genome-wide association studies (GWAS) conducted over the last few years have uncovered common genetic variants modulating risk of SCD. Furthermore, GWAS studies uncovered several loci impacting on heart rate and ECG indices of conduction and repolarization, as measures of cardiac electrophysiological function and likely intermediate phenotypes of SCD risk. We here review these recent developments and their implications for the identification of novel molecular pathways underlying normal electrophysiological function and susceptibility to SCD.
Collapse
Affiliation(s)
- Iris C R M Kolder
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | | | |
Collapse
|
17
|
Founder mutations in the Netherlands: SCN5a 1795insD, the first described arrhythmia overlap syndrome and one of the largest and best characterised families worldwide. Neth Heart J 2011; 17:422-8. [PMID: 19949711 DOI: 10.1007/bf03086296] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this part of a series on founder mutations in the Netherlands, we review a Dutch family carrying the SCN5a 1795insD mutation. We describe the advances in our understanding of the premature sudden cardiac deaths that have accompanied this family in the past centuries. The mutation carriers show a unique overlap of long-QT syndrome (type 3), Brugada syndrome and progressive cardiac conduction defects attributed to a single mutation in the cardiac sodium channel gene SCN5a. It is at present one of the largest and best-described families worldwide and we have learned immensely from the mouse strains with the murine homologue of the SCN5a 1795insD mutation (SCN5a 1798insD). From the studies currently performed we are about to obtain new insights into the phenotypic variability in this monogenic arrhythmia syndrome, and this might also be relevant for other arrhythmia syndromes and the general population. (Neth Heart J 2009;17:422-8.).
Collapse
|
18
|
Stead LF, Wood IC, Westhead DR. KvSNP: accurately predicting the effect of genetic variants in voltage-gated potassium channels. ACTA ACUST UNITED AC 2011; 27:2181-6. [PMID: 21685056 DOI: 10.1093/bioinformatics/btr365] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MOTIVATION Non-synonymous single nucleotide polymorphisms (nsSNPs) in voltage-gated potassium (Kv) channels cause diseases with potentially fatal consequences in seemingly healthy individuals. Identifying disease-causing genetic variation will aid presymptomatic diagnosis and treatment of such disorders. NsSNP-effect predictors are hypothesized to perform best when developed for specific gene families. We, thus, created KvSNP: a method that assigns a disease-causing probability to Kv-channel nsSNPs. RESULTS KvSNP outperforms popular non gene-family-specific methods (SNPs&GO, SIFT and Polyphen) in predicting the disease potential of Kv-channel variants, according to all tested metrics (accuracy, Matthews correlation coefficient and area under receiver operator characteristic curve). Most significantly, it increases the separation of the median predicted disease probabilities between benign and disease-causing SNPs by 26% on the next-best competitor. KvSNP has ranked 172 uncharacterized Kv-channel nsSNPs by disease-causing probability. AVAILABILITY AND IMPLEMENTATION KvSNP, a WEKA implementation is available at www.bioinformatics.leeds.ac.uk/KvDB/KvSNP.html. CONTACT d.r.westhead@leeds.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- L F Stead
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
19
|
Abstract
Sudden cardiac death (SCD) is a leading cause of total and cardiovascular mortality, and ventricular fibrillation is the underlying arrhythmia in the majority of cases. In the young, where the incidence of SCD is low, a great proportion of SCDs occur in the context of inherited disorders such as cardiomyopathy or primary electrical disease, where a monogenic hereditary component is a strong determinant of risk. Marked advancement has been made over the past 15 years in the understanding of the genetic basis of the primary electrical disorders, and this has had an enormous impact on the management of these patients. At older ages, the great majority of SCDs occur in the context of acute myocardial ischemia and infarction. Although epidemiologic studies have shown that heritable factors also determine risk in these cases, inheritance is likely complex and multifactorial, and progress in understanding the genetic and molecular mechanisms that determine susceptibility to these arrhythmias, affecting a greater proportion of the population, has been very limited. We review the most recent insights gained into the genetic basis of both the monogenic and the more complex ventricular arrhythmias.
Collapse
Affiliation(s)
- Raha Pazoki
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A. M. Wilde
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
| | - Connie R. Bezzina
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
- Department of Experimental Cardiology, Academic Medical Center, Room L2-108-1 Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Scicluna BP, Tanck MWT, Remme CA, Beekman L, Coronel R, Wilde AAM, Bezzina CR. Quantitative trait loci for electrocardiographic parameters and arrhythmia in the mouse. J Mol Cell Cardiol 2010; 50:380-9. [PMID: 20854825 DOI: 10.1016/j.yjmcc.2010.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 11/26/2022]
Abstract
Cardiac arrhythmias associated with sudden death are influenced by multiple biological pathways and are modulated by numerous genetic and environmental factors. Elevated heart rate and prolonged ECG indices of conduction and repolarization have been associated with risk of sudden death. Insight into the genetic underpinnings of these parameters thus provides an important means to the dissection of the genetic components modulating risk of sudden cardiac death. In this study we mapped quantitative trait loci (QTL) modulating heart rate, ECG indices of conduction and repolarization, and susceptibility to arrhythmia, in a conduction disease-sensitized F(2) mouse population. Heart rate, P-duration, PR-, QRS- and QT-interval were measured at baseline (n=502) and after flecainide administration (n=370) in mutant F(2) progeny (F(2)-MUT) resulting from the FVB/NJ-Scn5a1798(insD/+) X 129P2-Scn5a1798(insD/+) mouse cross. Episodes of sinus arrhythmia and ventricular tachyarrhythmia occurring post-flecainide were treated as binary traits. F(2)-MUT mice were genotyped using a genome-wide 768 single nucleotide polymorphism (SNP) panel. Interval mapping uncovered multiple QTL for ECG parameters and arrhythmia. A sex-interacting scan identified QTL displaying sex-dependency, and a two-dimensional QTL scan unmasked locus-locus (epistasis) interactions influencing ECG traits. A number of QTL coincided at specific chromosomal locations, suggesting pleiotropic effects at these loci. Through transcript profiling in myocardium from the parental mouse strains we identified genes co-localizing at the identified QTL that constitute highly relevant candidates for the observed effects. The detection of QTL influencing ECG indices and arrhythmia is an essential step towards identifying genetic networks for sudden, arrhythmic, cardiac death.
Collapse
Affiliation(s)
- Brendon P Scicluna
- Heart Failure Research Center, Department of Experimental Cardiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Postema PG, Mosterd A, Hofman N, Alders M, Wilde AAM. Sodium channelopathies: do we really understand what's going on? J Cardiovasc Electrophysiol 2010; 22:590-3. [PMID: 20812931 DOI: 10.1111/j.1540-8167.2010.01892.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Long-QT syndrome, Brugada syndrome, and conduction disease may be caused by mutations in the cardiac sodium channel gene SCN5A, and from the ECG one can already presume either a gain- or a loss-of-function defect. We describe a family harboring 2 SCN5A mutations: the ΔKPQ mutation, the "classical" gain-of-function mutation associated with Long-QT syndrome, and the I1660V mutation, a loss-of-function mutation associated with Brugada syndrome. However, we were surprised by the result of genetic testing in this family. One son who carried the ΔKPQ mutation but not the I1660V mutation did not show the expected Long-QT phenotype but, unexpectedly, showed a conduction disease/Brugada phenotype.
Collapse
Affiliation(s)
- Pieter G Postema
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Cardiac Ito, KCNE2, and Brugada syndrome: Promiscuous subunit interactions, or what happens in HEK cells stays in HEK cells? Heart Rhythm 2010; 7:206-7. [DOI: 10.1016/j.hrthm.2009.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Indexed: 11/24/2022]
|
24
|
Remme CA, Scicluna BP, Verkerk AO, Amin AS, van Brunschot S, Beekman L, Deneer VHM, Chevalier C, Oyama F, Miyazaki H, Nukina N, Wilders R, Escande D, Houlgatte R, Wilde AAM, Tan HL, Veldkamp MW, de Bakker JMT, Bezzina CR. Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy. Circ Res 2009; 104:1283-92. [PMID: 19407241 DOI: 10.1161/circresaha.109.194423] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conduction slowing of the electric impulse that drives the heartbeat may evoke lethal cardiac arrhythmias. Mutations in SCN5A, which encodes the pore-forming cardiac sodium channel alpha subunit, are associated with familial arrhythmia syndromes based on conduction slowing. However, disease severity among mutation carriers is highly variable. We hypothesized that genetic modifiers underlie the variability in conduction slowing and disease severity. With the aim of identifying such modifiers, we studied the Scn5a(1798insD/+) mutation in 2 distinct mouse strains, FVB/N and 129P2. In 129P2 mice, the mutation resulted in more severe conduction slowing particularly in the right ventricle (RV) compared to FVB/N. Pan-genomic mRNA expression profiling in the 2 mouse strains uncovered a drastic reduction in mRNA encoding the sodium channel auxiliary subunit beta4 (Scn4b) in 129P2 mice compared to FVB/N. This corresponded to low to undetectable beta4 protein levels in 129P2 ventricular tissue, whereas abundant beta4 protein was detected in FVB/N. Sodium current measurements in isolated myocytes from the 2 mouse strains indicated that sodium channel activation in myocytes from 129P2 mice occurred at more positive potentials compared to FVB/N. Using computer simulations, this difference in activation kinetics was predicted to explain the observed differences in conduction disease severity between the 2 strains. In conclusion, genetically determined differences in sodium current characteristics on the myocyte level modulate disease severity in cardiac sodium channelopathies. In particular, the sodium channel subunit beta4 (SCN4B) may constitute a potential genetic modifier of conduction and cardiac sodium channel disease.
Collapse
Affiliation(s)
- Carol Ann Remme
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Room K2-110, PO Box 22700, 1100 DE Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Vincent GM. Genotyping Has a Minor Role in Selecting Therapy for Congenital Long-QT Syndromes at Present. Circ Arrhythm Electrophysiol 2008; 1:227-33; discussion 233. [DOI: 10.1161/circep.108.796441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G. Michael Vincent
- From the LDS Hospital, Intermountain Healthcare, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
27
|
Wilde AAM, Coronel R. The complexity of genotype-phenotype relations associated with loss-of-function sodium channel mutations and the role of in silico studies. Am J Physiol Heart Circ Physiol 2008; 295:H8-9. [PMID: 18502906 DOI: 10.1152/ajpheart.00494.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|