1
|
Pinheiro LS, Andrade-Neto VV, Mantuano-Barradas M, Pereira EC, Barbosa RCF, de Oliveira MCC, Menna-Barreto RFS, Cunha-Júnior EF, Torres-Santos EC. Biological effects of trans, trans-farnesol in Leishmania amazonensis. Front Cell Infect Microbiol 2023; 13:1221246. [PMID: 38035328 PMCID: PMC10687452 DOI: 10.3389/fcimb.2023.1221246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Farnesol, derived from farnesyl pyrophosphate in the sterols biosynthetic pathway, is a molecule with three unsaturations and four possible isomers. Candida albicans predominantly secretes the trans, trans-farnesol (t, t-FOH) isomer, known for its role in regulating the virulence of various fungi species and modulating morphological transition processes. Notably, the evolutionary divergence in sterol biosynthesis between fungi, including Candida albicans, and trypanosomatids resulted in the synthesis of sterols with the ergostane skeleton, distinct from cholesterol. This study aims to assess the impact of exogenously added trans, trans-farnesol on the proliferative ability of Leishmania amazonensis and to identify its presence in the lipid secretome of the parasite. Methods The study involved the addition of exogenous trans, trans-farnesol to evaluate its interference with the proliferation of L. amazonensis promastigotes. Proliferation, cell cycle, DNA fragmentation, and mitochondrial functionality were assessed as indicators of the effects of trans, trans-farnesol. Additionally, lipid secretome analysis was conducted, focusing on the detection of trans, trans-farnesol and related products derived from the precursor, farnesyl pyrophosphate. In silico analysis was employed to identify the sequence for the farnesene synthase gene responsible for producing these isoprenoids in the Leishmania genome. Results Exogenously added trans, trans-farnesol was found to interfere with the proliferation of L. amazonensis promastigotes, inhibiting the cell cycle without causing DNA fragmentation or loss of mitochondrial functionality. Despite the absence of trans, trans-farnesol in the culture supernatant, other products derived from farnesyl pyrophosphate, specifically α-farnesene and β-farnesene, were detected starting on the fourth day of culture, continuing to increase until the tenth day. Furthermore, the identification of the farnesene synthase gene in the Leishmania genome through in silico analysis provided insights into the enzymatic basis of isoprenoid production. Discussion The findings collectively offer the first insights into the mechanism of action of farnesol on L. amazonensis. While trans, trans-farnesol was not detected in the lipid secretome, the presence of α-farnesene and β-farnesene suggests alternative pathways or modifications in the isoprenoid metabolism of the parasite. The inhibitory effects on proliferation and cell cycle without inducing DNA fragmentation or mitochondrial dysfunction raise questions about the specific targets and pathways affected by exogenous trans, trans-farnesol. The identification of the farnesene synthase gene provides a molecular basis for understanding the synthesis of related isoprenoids in Leishmania. Further exploration of these mechanisms may contribute to the development of novel therapeutic strategies against Leishmania infections.
Collapse
Affiliation(s)
- Liliane Sena Pinheiro
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, Brazil
| | - Valter Viana Andrade-Neto
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Marcio Mantuano-Barradas
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Elisa Cavalcante Pereira
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | | | | | - Edézio Ferreira Cunha-Júnior
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
3
|
Pedra-Rezende Y, Macedo IS, Midlej V, Mariante RM, Menna-Barreto RFS. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa. Front Microbiol 2022; 13:856686. [PMID: 35422792 PMCID: PMC9002357 DOI: 10.3389/fmicb.2022.856686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Protozoan parasites interact with a wide variety of organisms ranging from bacteria to humans, representing one of the most common causes of parasitic diseases and an important public health problem affecting hundreds of millions of people worldwide. The current treatment for these parasitic diseases remains unsatisfactory and, in some cases, very limited. Treatment limitations together with the increased resistance of the pathogens represent a challenge for the improvement of the patient’s quality of life. The continuous search for alternative preclinical drugs is mandatory, but the mechanisms of action of several of these compounds have not been described. Electron microscopy is a powerful tool for the identification of drug targets in almost all cellular models. Interestingly, ultrastructural analysis showed that several classes of antiparasitic compounds induced similar autophagic phenotypes in trypanosomatids, trichomonadids, and apicomplexan parasites as well as in Giardia intestinalis and Entamoeba spp. with the presence of an increased number of autophagosomes as well as remarkable endoplasmic reticulum profiles surrounding different organelles. Autophagy is a physiological process of eukaryotes that maintains homeostasis by the self-digestion of nonfunctional organelles and/or macromolecules, limiting redundant and damaged cellular components. Here, we focus on protozoan autophagy to subvert drug effects, discussing its importance for successful chemotherapy.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Isabela S Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
4
|
Simvastatin Resistance of Leishmania amazonensis Induces Sterol Remodeling and Cross-Resistance to Sterol Pathway and Serine Protease Inhibitors. Microorganisms 2022; 10:microorganisms10020398. [PMID: 35208853 PMCID: PMC8877030 DOI: 10.3390/microorganisms10020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/27/2023] Open
Abstract
The sterol biosynthesis pathway of Leishmania spp. is used as a pharmacological target; however, available information about the mechanisms of the regulation and remodeling of sterol-related genes is scarce. The present study investigated compensatory mechanisms of the sterol biosynthesis pathway using an inhibitor of HMG-CoA reductase (simvastatin) and by developing drug-resistant parasites to evaluate the impact on sterol remodeling, cross-resistance, and gene expression. Simvastatin-resistant L. amazonensis parasites (LaSimR) underwent reprogramming of sterol metabolism manifested as an increase in cholestane- and stigmastane-based sterols and a decrease in ergostane-based sterols. The levels of the transcripts of sterol 24-C-methyltransferase (SMT), sterol C14-α-demethylase (C14DM), and protease subtilisin (SUB) were increased in LaSimR. LaSimR was cross-resistance to ketoconazole (a C14DM inhibitor) and remained sensitive to terbinafine (an inhibitor of squalene monooxygenase). Sensitivity of the LaSimR mutant to other antileishmanial drugs unrelated to the sterol biosynthesis pathway, such as trivalent antimony and pentamidine, was similar to that of the wild-type strain; however, LaSimR was cross-resistant to miltefosine, general serine protease inhibitor N-p-tosyl-l-phenylalanine chloromethyl ketone (TPCK), subtilisin-specific inhibitor 4-[(diethylamino)methyl]-N-[2-(2-methoxyphenyl)ethyl]-N-(3R)-3-pyrrolidinyl-benzamide dihydrochloride (PF-429242), and tunicamycin. The findings on the regulation of the sterol pathway can support the development of drugs and protease inhibitors targeting this route in parasites.
Collapse
|
5
|
Nunes DCDOS, Costa MS, Bispo-da-Silva LB, Ferro EAV, Zóia MAP, Goulart LR, Rodrigues RS, Rodrigues VDM, Yoneyama KAG. Mitochondrial dysfunction on Leishmania (Leishmania) amazonensis induced by ketoconazole: insights into drug mode of action. Mem Inst Oswaldo Cruz 2022; 117:e210157. [PMID: 35508030 PMCID: PMC9060495 DOI: 10.1590/0074-02760210157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Leishmania parasites cause leishmaniasis that range from self-limiting cutaneous lesions to more serious forms of the disease. The search for potential drug targets focusing on biochemical and metabolic pathways revealed the sterol biosynthesis inhibitors (SBIs) as a promising approach. In this class of inhibitors is found ketoconazole, a classical inhibitor of 14α-methysterol 14-demethylase. OBJECTIVE The present study aimed to better understand the biological response of Leishmania (Leishmania) amazonensis promastigotes at the cellular level after ketoconazole treatment. METHODS Herein, techniques, such as fluorimetry, flow cytometry, fluorescence microscopy, electron and scanning microscopy were used to investigate the cellular structures and to identify organelles affected by ketoconazole treatment. FINDINGS The study demonstrated, for the first time, the effect of ketoconazole on mitochondrion functioning and its probable relationship to cell cycle and death on L. (L.) amazonensis promastigotes (IFLA/BR/67/PH8 strain). MAIN CONCLUSIONS Ketoconazole-induced mitochondrial damages led to hyperpolarisation of this single organelle and autophagic vacuoles formation, as a parasite survival strategy. These damages did not reflect directly on the parasite cell cycle, but drove the parasites to death, making them susceptible to ketoconazole treatment in in vitro models.
Collapse
|
6
|
Sakyi PO, Amewu RK, Devine RNOA, Bienibuor AK, Miller WA, Kwofie SK. Unravelling the myth surrounding sterol biosynthesis as plausible target for drug design against leishmaniasis. J Parasit Dis 2021; 45:1152-1171. [PMID: 34790000 PMCID: PMC8556451 DOI: 10.1007/s12639-021-01390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality rate of leishmaniasis is increasing at an alarming rate and is currently second to malaria amongst the other neglected tropical diseases. Unfortunately, many governments and key stakeholders are not investing enough in the development of new therapeutic interventions. The available treatment options targeting different pathways of the parasite have seen inefficiencies, drug resistance, and toxic side effects coupled with longer treatment durations. Numerous studies to understand the biochemistry of leishmaniasis and its pathogenesis have identified druggable targets including ornithine decarboxylase, trypanothione reductase, and pteridine reductase, which are relevant for the survival and growth of the parasites. Another plausible target is the sterol biosynthetic pathway; however, this has not been fully investigated. Sterol biosynthesis is essential for the survival of the Leishmania species because its inhibition could lead to the death of the parasites. This review seeks to evaluate how critical the enzymes involved in sterol biosynthetic pathway are to the survival of the leishmania parasite. The review also highlights both synthetic and natural product compounds with their IC50 values against selected enzymes. Finally, recent advancements in drug design strategies targeting the sterol biosynthesis pathway of Leishmania are discussed.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Alfred K. Bienibuor
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Dias-Lopes G, Zabala-Peñafiel A, de Albuquerque-Melo BC, Souza-Silva F, Menaguali do Canto L, Cysne-Finkelstein L, Alves CR. Axenic amastigotes of Leishmania species as a suitable model for in vitro studies. Acta Trop 2021; 220:105956. [PMID: 33979642 DOI: 10.1016/j.actatropica.2021.105956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022]
Abstract
Leishmania spp. are etiological agents of infection diseases, which in some cases can be fatal. The main forms of their biological cycle, promastigotes and amastigotes, can be maintained in vitro. While promastigotes are easier to maintain, amastigotes are more complex and can be obtained through different ways, including infection assays of tissues or in vitro cells, and differentiation from promastigotes to axenic amastigotes. Several protocols have been proposed for in vitro differentiation for at least 12 Leishmania spp. of both subgenera, Leishmania and Viannia. In this review we propose a critical summary of axenic amastigotes induction, as well as the impact of these strategies on metabolic pathways and regulatory networks analyzed by omics approaches. The parameters used by different research groups show considerable variations in temperature, pH and induction stages, as highlighted here for Leishmania (Viannia) braziliensis. Therefore, a consensus on strategies for inducing amastigogenesis is necessary to improve accuracy and even define stage-specific biomarkers. In fact, the axenic amastigote model has contributed to elucidate several aspects of the parasite cycle, however, since it does not reproduce the intracellular environment, its use requires several precautions. In addition, we present a discussion about using axenic amastigotes for drug screening, suggesting the need of a more sensitive methodology to verify cell viability in these tests. Collectively, this review explores the advantages and limitations found in studies with axenic amastigotes, done for more than 30 years, and discuss the gaps that impair their use as a suitable model for in vitro studies.
Collapse
|
8
|
Bezemer JM, van der Ende J, Limpens J, de Vries HJC, Schallig HDFH. Safety and efficacy of allylamines in the treatment of cutaneous and mucocutaneous leishmaniasis: A systematic review. PLoS One 2021; 16:e0249628. [PMID: 33826660 PMCID: PMC8026199 DOI: 10.1371/journal.pone.0249628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cutaneous and mucocutaneous leishmaniasis affect a million people yearly, leading to skin lesions and potentially disfiguring mucosal disease. Current treatments can have severe side effects. Allylamine drugs, like terbinafine, are safe, including during pregnancy. This review assesses efficacy and safety of allylamines for the treatment of cutaneous and mucocutaneous leishmaniasis. It followed the PRISMA statement for reporting and was preregistered in PROSPERO(CRD4201809068). MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, the Global Health Library, Web of Science, Google Scholar, and clinical trial registers were searched from their creation to May 24th, 2020. All original human, animal, and in vitro studies concerning allylamines and cutaneous or mucocutaneous leishmaniasis were eligible for inclusion. Comparators—if any—included both placebo or alternative cutaneous or mucocutaneous leishmaniasis treatments. Complete cure, growth inhibition, or adverse events served as outcomes. The search identified 312 publications, of which 22 were included in this systematic review. There were one uncontrolled and two randomised controlled trials. The only well-designed randomised controlled trial that compared the treatment efficacy of oral terbinafine versus intramuscular meglumine antimoniate in 80 Leismania tropica infected patients showed a non-significant lower cure rate for terbinafine vs meglumine antimoniate (38% vs 53%). A meta-analysis could not be performed due to the small number of studies, their heterogeneity, and low quality. This systematic review shows that there is no evidence of efficacy of allylamine monotherapy against cutaneous and mucocutaneous leishmaniasis. Further trials of allylamines should be carefully considered as the outcomes of an adequately designed trial were disappointing and in vitro studies indicate minimal effective concentrations that are not achieved in the skin during standard doses. However, the in vitro synergistic effects of allylamines combined with triazole drugs warrant further exploration.
Collapse
Affiliation(s)
- Jacob M. Bezemer
- Experimental Parasitology Unit, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Fundación Misión Cristiana de Salud, Shell, Pastaza, Ecuador
- * E-mail:
| | - Jacob van der Ende
- Fundación Quina Care Ecuador, Puerto el Carmen de Putumayo, Sucumbíos, Ecuador
| | - Jacqueline Limpens
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Henry J. C. de Vries
- Department of Dermatology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk D. F. H. Schallig
- Experimental Parasitology Unit, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Nanoemulsified Butenafine for Enhanced Performance against Experimental Cutaneous Leishmaniasis. J Immunol Res 2021; 2021:8828750. [PMID: 33880383 PMCID: PMC8046526 DOI: 10.1155/2021/8828750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The production of ergosterol lipid involves the activity of different enzymes and is a crucial event for the Leishmania membrane homeostasis. Such enzymes can be blocked by azoles and allylamines drugs, such as the antifungal butenafine chloride. This drug was active on parasites that cause cutaneous and visceral leishmaniasis. Based on the leishmanicidal activity of butenafine chloride and considering the absence of reports about the therapeutic potential of this drug in cutaneous leishmaniasis, the present work is aimed at analyzing the efficacy of butenafine formulated in two different topical delivery systems, the self-nanoemulsifying drug delivery systems (BUT-SNEDDS) and in a SNEDDS-based nanogel (BUT-SNEDDS gel) as well as in the free form in experimental cutaneous leishmaniasis. Physical studies showed that both formulations were below 300 nm with low polydispersity (<0.5) and good colloidal stability (around -25 mV). Increased steady-state flux was reported for nanoenabled butenafine formulations with reduced lag time in Franz cell diffusion assays across Strat-M membranes. No toxic or inflammatory reactions were detected in animals treated with BUT-SNEDDS, BUT-SNEDDS gel, or butenafine. Animals topically treated with butenafine (free or nanoformulated) showed small dermal lesions and low tissue parasitism. Furthermore, BUT-SNEDD gel and butenafine presented similar efficacy than the standard drug Glucantime given by the intralesional route. Increased levels of IFN-γ were observed in animals treated with BUT-SNEDDS gel or butenafine. Based on these data, the antifungal drug butenafine chloride can be considered an interesting repurposed drug for the treatment of cutaneous leishmaniasis.
Collapse
|
10
|
Mukherjee S, Moitra S, Xu W, Hernandez V, Zhang K. Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLoS Pathog 2020; 16:e1008810. [PMID: 32817704 PMCID: PMC7462297 DOI: 10.1371/journal.ppat.1008810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Sterol 14-α-demethylase (C14DM) is a key enzyme in the biosynthesis of sterols and the primary target of azoles. In Leishmania major, genetic or chemical inactivation of C14DM leads to accumulation of 14-methylated sterol intermediates and profound plasma membrane abnormalities including increased fluidity and failure to maintain ordered membrane microdomains. These defects likely contribute to the hypersensitivity to heat and severely reduced virulence displayed by the C14DM-null mutants (c14dm‾). In addition to plasma membrane, sterols are present in intracellular organelles. In this study, we investigated the impact of C14DM ablation on mitochondria. Our results demonstrate that c14dm‾ mutants have significantly higher mitochondrial membrane potential than wild type parasites. Such high potential leads to the buildup of reactive oxygen species in the mitochondria, especially under nutrient-limiting conditions. Consistent with these mitochondrial alterations, c14dm‾ mutants show impairment in respiration and are heavily dependent on glucose uptake and glycolysis to generate energy. Consequently, these mutants are extremely sensitive to glucose deprivation and such vulnerability can be rescued through the supplementation of glucose or glycerol. In addition, the accumulation of oxidants may also contribute to the heat sensitivity exhibited by c14dm‾. Finally, genetic or chemical ablation of C14DM causes increased susceptibility to pentamidine, an antimicrobial agent with activity against trypanosomatids. In summary, our investigation reveals that alteration of sterol synthesis can negatively affect multiple cellular processes in Leishmania parasites and make them vulnerable to clinically relevant stress conditions.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Veronica Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Pal K, Sontakke GS, Volla CMR. Rh(II)‐Catalyzed Denitrogenative Reaction of 1,2,3‐Triazolyl Esters with Indoles or Arenes: Efficient Synthesis of Homotryptamines or Allylamines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kuntal Pal
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| | - Geetanjali S. Sontakke
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| |
Collapse
|
12
|
Lopes DDS, Dos Santos UR, Dos Anjos DO, da Silva Júnior LJC, de Paula VF, Vannier-Santos MA, Silva-Jardim I, Castro-Gomes T, Pirovani CP, Lima-Santos J. Ethanolic Extract of the Fungus Trichoderma asperelloides Induces Ultrastructural Effects and Death on Leishmania amazonensis. Front Cell Infect Microbiol 2020; 10:306. [PMID: 32760675 PMCID: PMC7373754 DOI: 10.3389/fcimb.2020.00306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
The Trichoderma genus comprises several species of fungi whose diversity of secondary metabolites represents a source of potential molecules with medical application. Because of increased pathogen resistance and demand for lower production costs, the search for new pharmacologically active molecules effective against pathogens has become more intense. This is particularly evident in the case of American cutaneous leishmaniasis due to the high toxicity of current treatments, parenteral administration, and increasing rate of refractory cases. We have previously shown that a fungus from genus Trichoderma can be used for treating cerebral malaria in mouse models and inhibit biofilm formation. Here, we evaluated the effect of the ethanolic extract of Trichoderma asperelloides (Ext-Ta) and its fractions on promastigotes and amastigotes of Leishmania amazonensis, a major causative agent of cutaneous leishmaniasis in the New World. Ext-Ta displayed leishmanicidal action on L. amazonensis parasites, and its pharmacological activity was associated with the low-molecular-weight fraction (LMWF) of Ext-Ta. Ultrastructural analysis demonstrated morphological alterations in the mitochondria and the flagellar pocket of promastigotes, with increased lipid body and acidocalcisome formation, microtubule disorganization of the cytoplasm, and intense vacuolization of the cytoplasm when amastigotes were present. We suggest the antiparasitic activity of Trichoderma fungi as a promising tool for developing chemotherapeutic leishmanicidal agents.
Collapse
Affiliation(s)
- Danielle de Sousa Lopes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz-UESC, Ilhéus, Brazil
| | | | | | | | | | - Marcos André Vannier-Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Izaltina Silva-Jardim
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz-UESC, Ilhéus, Brazil
| | - Thiago Castro-Gomes
- Laboratório de Biologia Celular e Parasitos Intracelulares, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | | | - Jane Lima-Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz-UESC, Ilhéus, Brazil
| |
Collapse
|
13
|
Yamamoto ES, de Jesus JA, Bezerra-Souza A, Brito JR, Lago JHG, Laurenti MD, Passero LFD. Tolnaftate inhibits ergosterol production and impacts cell viability of Leishmania sp. Bioorg Chem 2020; 102:104056. [PMID: 32653607 DOI: 10.1016/j.bioorg.2020.104056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Leishmaniasis is an infectious disease caused by protozoan parasites of the genus Leishmania. The treatment of all forms of leishmaniasis relies on first-line drug, pentavalent antimonial, and in cases of drug failure, the second-line drug amphotericin B has been used. Besides the high toxicity of drugs, parasites can be resistant to antimonial in some areas of the World, making it necessary to perform further studies for the characterization of new antileishmanial agents. Thus, the aim of the present work was to evaluate the leishmanicidal activity of tolnaftate, a selective reversible and non-competitive inhibitor of the fungal enzyme squalene epoxidase, which is involved in the biosynthesis of ergosterol, essential to maintain membrane physiology in fungi as well as trypanosomatids. Tolnaftate eliminated promastigote forms of L. (L.) amazonensis, L. (V.) braziliensis and L. (L.) infantum (EC50 ~ 10 μg/mL and SI ~ 20 for all leishmanial species), and intracellular amastigote forms of all studied species (EC50 ~ 23 μg/mL in infections caused by dermatotropic species; and 11.7 μg/mL in infection caused by viscerotropic species) with high selectivity toward parasites [SI ~ 8 in infections caused by dermatotropic species and 17.4 for viscerotropic specie]. Promastigote forms of L. (L.) amazonensis treated with the EC50 of tolnaftate displayed morphological and physiological changes in the mitochondria and cell membrane. Additionally, promastigote forms treated with tolnaftate EC50 reduced the level of ergosterol by 5.6 times in comparison to the control parasites. Altogether, these results suggest that tolnaftate has leishmanicidal activity towards Leishmania sp., is selective, affects the cell membrane and mitochondria of parasites and, moreover, inhibits ergosterol production in L. (L.) amazonensis.
Collapse
Affiliation(s)
- Eduardo Seiji Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455, Cerqueira César, São Paulo 01246-903, SP, Brazil
| | - Jéssica Adriana de Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455, Cerqueira César, São Paulo 01246-903, SP, Brazil
| | - Adriana Bezerra-Souza
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455, Cerqueira César, São Paulo 01246-903, SP, Brazil
| | - Juliana R Brito
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-180 São Paulo, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-180 São Paulo, Brazil
| | - Márcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455, Cerqueira César, São Paulo 01246-903, SP, Brazil
| | - Luiz Felipe Domingues Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil; São Paulo State University (UNESP), Institute for Advanced Studies of Ocean, São Vicente, Av. João Francisco Bensdorp, 1178, 11350-011 São Vicente, SP, Brazil.
| |
Collapse
|
14
|
In vitro leishmanicidal effects of the anti-fungal drug natamycin are mediated through disruption of calcium homeostasis and mitochondrial dysfunction. Apoptosis 2018; 23:420-435. [DOI: 10.1007/s10495-018-1468-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
16
|
Guedes CES, Dias BRS, Petersen ALDOA, Cruz KP, Almeida NDJ, Andrade DR, Menezes JPBD, Borges VDM, Veras PST. In vitro evaluation of the anti-leishmanial activity and toxicity of PK11195. Mem Inst Oswaldo Cruz 2018; 113:e170345. [PMID: 29412342 PMCID: PMC5851033 DOI: 10.1590/0074-02760170345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/30/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent.
Collapse
Affiliation(s)
- Carlos Eduardo Sampaio Guedes
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Moniz, Laboratório de Patologia e Biointervenção, Salvador, BA, Brasil
| | - Beatriz Rocha Simões Dias
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Moniz, Laboratório de Patologia e Biointervenção, Salvador, BA, Brasil
| | | | - Kercia Pinheiro Cruz
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Moniz, Laboratório de Patologia e Biointervenção, Salvador, BA, Brasil
| | - Niara de Jesus Almeida
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Moniz, Laboratório de Patologia e Biointervenção, Salvador, BA, Brasil
| | - Daniela Rodrigues Andrade
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Moniz, Laboratório Integrado de Microbiologia e Imunoregulação, Salvador, BA, Brasil
| | | | - Valéria de Matos Borges
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Moniz, Laboratório Integrado de Microbiologia e Imunoregulação, Salvador, BA, Brasil
| | - Patricia Sampaio Tavares Veras
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Moniz, Laboratório de Patologia e Biointervenção, Salvador, BA, Brasil
| |
Collapse
|
17
|
Brasil PF, de Freitas JA, Barreto ALS, Adade CM, Reis de Sá LF, Constantino-Teles P, Toledo FT, de Sousa BA, Gonçalves AC, Romanos MTV, Comasseto JV, dos Santos AA, Tessis AC, Souto-Padrón T, Soares RMA, Ferreira-Pereira A. Antiproliferative and ultrastructural effects of phenethylamine derivatives on promastigotes and amastigotes of Leishmania ( Leishmania ) infantum chagasi. Parasitol Int 2017; 66:47-55. [DOI: 10.1016/j.parint.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
|
18
|
Zakai HA, Zimmo SK. Effects of itraconazole and terbinafine onLeishmania majorlesions in BALB/c mice. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2000.11813603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Antileishmanial Activity of Ezetimibe: Inhibition of Sterol Biosynthesis, In Vitro Synergy with Azoles, and Efficacy in Experimental Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2016; 60:6844-6852. [PMID: 27600041 DOI: 10.1128/aac.01545-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis affects mainly low-income populations in tropical regions. Radical innovation in drug discovery is time-consuming and expensive, imposing severe restrictions on the ability to launch new chemical entities for the treatment of neglected diseases. Drug repositioning is an attractive strategy for addressing a specific demand more easily. In this project, we have evaluated the antileishmanial activities of 30 drugs currently in clinical use for various morbidities. Ezetimibe, clinically used to reduce intestinal cholesterol absorption in dyslipidemic patients, killed Leishmania amazonensis promastigotes with a 50% inhibitory concentration (IC50) of 30 μM. Morphological analysis revealed that ezetimibe caused the parasites to become rounded, with multiple nuclei and flagella. Analysis by gas chromatography (GC)-mass spectrometry (MS) showed that promastigotes treated with ezetimibe had smaller amounts of C-14-demethylated sterols, and accumulated more cholesterol and lanosterol, than untreated promastigotes. We then evaluated the combination of ezetimibe with well-known antileishmanial azoles. The fractional inhibitory concentration index (FICI) indicated synergy when ezetimibe was combined with ketoconazole or miconazole. The activity of ezetimibe against intracellular amastigotes was confirmed, with an IC50 of 20 μM, and ezetimibe reduced the IC90s of ketoconazole and miconazole from 11.3 and 11.5 μM to 4.14 and 8.25 μM, respectively. Subsequently, we confirmed the activity of ezetimibe in vivo, showing that it decreased lesion development and parasite loads in murine cutaneous leishmaniasis. We concluded that ezetimibe has promising antileishmanial activity and should be considered in combination with azoles in further preclinical and clinical studies.
Collapse
|
20
|
Bezerra-Souza A, Yamamoto ES, Laurenti MD, Ribeiro SP, Passero LFD. The antifungal compound butenafine eliminates promastigote and amastigote forms of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis. Parasitol Int 2016; 65:702-707. [PMID: 27546158 DOI: 10.1016/j.parint.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
The production of ergosterol lipid, important for the Leishmania membrane homeostasis, involves different enzymes. This pathway can be blocked to azoles and allylamines drugs, such as Butenafine. The aim of the present work was to evaluate the anti-leishmanicidal activity of this drug in 2 major species of Leishmania responsible for causing the American tegumentar leishmaniasis (L. (L.) amazonensis and L. (V.) braziliensis). Butenafine eliminated promastigote forms of L. amazonensis and L. braziliensis with efficacy similar to miltefosine, a standard anti-leishmania drug. In addition, butenafine induced alterations in promastigote forms of L. amazonensis that resemble programmed cell death. Butenafine as well as miltefosine presented mild toxicity in peritoneal macrophages, however, butenafine was more effective to eliminate intracellular amastigotes of both L. amazonensis and L. braziliensis, and this effect was not associated with elevated levels of nitric oxide or hydrogen peroxide. Taken together, data presented herein suggests that butenafine can be considered as a prototype drug able to eliminate L. amazonensis and L. braziliensis, etiological agents of anergic diffuse and mucocutaneous leishmaniasis, respectively.
Collapse
Affiliation(s)
- Adriana Bezerra-Souza
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Susan P Ribeiro
- Case Western Reserve University, Pathology Department, Cleveland, USA; Division of Clinical Immunology and Allergy, LIM60, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Luiz Felipe D Passero
- São Vicente Unit, Paulista Coastal Campus, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil.
| |
Collapse
|
21
|
Andrade-Neto VV, Pereira TM, Canto-Cavalheiro MD, Torres-Santos EC. Imipramine alters the sterol profile in Leishmania amazonensis and increases its sensitivity to miconazole. Parasit Vectors 2016; 9:183. [PMID: 27036654 PMCID: PMC4815111 DOI: 10.1186/s13071-016-1467-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/21/2016] [Indexed: 12/03/2022] Open
Abstract
Background Imipramine, a tricyclic antidepressant widely used clinically, has other pharmacological effects, such as antileishmanial activity. Tricyclic antidepressants interact with lipid bilayers, and some studies have shown that imipramine inhibits methyltransferases. Leishmania spp. produces compounds with an ergostane skeleton instead of a cholesterol skeleton, and the inhibition of enzymes of the sterol biosynthesis pathway is an interesting therapeutic target. Among these enzymes, C-24 methyltransferase has been suggested to play an essential role, as its inhibition kills the parasites. In this context, we investigated whether imipramine alters the biosynthesis of sterols in L. amazonensis and evaluated the efficacy of imipramine alone and in combination with miconazole, a classical inhibitor of another step in this pathway. Methods To analyze the interference of imipramine with sterol metabolism, promastigotes of L. amazonensis were cultured with medium alone, 15 or 30 μM imipramine or 4 μM miconazole, and their lipids were extracted with methanol/chloroform/water (1:0.5:0.4 v/v) and analyzed by GC/MS. To assess the antileishmanial activity of the treatments, promastigotes of L. amazonensis were incubated with various concentrations of imipramine up to 100 μM and up to 24 μM miconazole. Promastigotes were also treated with the combination of imipramine and miconazole at concentrations up to 12.5 μM of imipramine and 24 μM of miconazole. Parasite growth was evaluated by the MTT assay. The fractional inhibitory concentration index (FICI) was calculated to determine whether there were synergistic effects. Peritoneal macrophages with and without L. amazonensis infection were treated with miconazole (0 – 16 μM) or imipramine (0 to 50 μM) for 72 hours. For assays of the combined treatment in amastigotes, the concentration of imipramine was fixed at 12.5 μM and various concentrations of miconazole were used up to 16 μM. The infection rate was determined by counting the infected macrophages under a light microscope. Findings Promastigotes treated with imipramine accumulated cholesta-5,7,22-trien-3β-ol and cholesta-7-24-dien- 3β-ol, sterols that normally increase after treatment with classical inhibitors of C-24 methyltransferase. The IC50 of miconazole in promastigotes decreased when it was used in combination with imipramine, resulting in an additive effect, with a FICI value of 0.83. Imipramine also showed activity against intracellular amastigotes and enhanced the activity of miconazole, without apparent toxicity to the host cells. Conclusions Imipramine was confirmed to have antileishmanial activity in both forms of the parasite, affecting the sterol biosynthesis of the organisms. Using imipramine in combination with azoles may be advantageous for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Valter Viana Andrade-Neto
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Thaís Martins Pereira
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marilene do Canto-Cavalheiro
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Figarella K, Marsiccobetre S, Arocha I, Colina W, Hasegawa M, Rodriguez M, Rodriguez-Acosta A, Duszenko M, Benaim G, Uzcategui NL. Ergosterone-coupled Triazol molecules trigger mitochondrial dysfunction, oxidative stress, and acidocalcisomal Ca 2+ release in Leishmania mexicana promastigotes. MICROBIAL CELL 2015; 3:14-28. [PMID: 28357313 PMCID: PMC5354587 DOI: 10.15698/mic2016.01.471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The protozoan parasite Leishmania causes a variety of sicknesses
with different clinical manifestations known as leishmaniasis. The chemotherapy
currently in use is not adequate because of their side effects, resistance
occurrence, and recurrences. Investigations looking for new targets or new
active molecules focus mainly on the disruption of parasite specific pathways.
In this sense, ergosterol biosynthesis is one of the most attractive because it
does not occur in mammals. Here, we report the synthesis of ergosterone coupled
molecules and the characterization of their biological activity on
Leishmania mexicana promastigotes. Molecule synthesis
involved three steps: ergosterone formation using Jones oxidation, synthesis of
Girard reagents, and coupling reaction. All compounds were obtained in good
yield and high purity. Results show that ergosterone-triazol molecules (Erg-GTr
and Erg-GTr2) exhibit an antiproliferative effect in low micromolar
range with a selectivity index ~10 when compared to human dermic fibroblasts.
Addition of Erg-GTr or Erg-GTr2 to parasites led to a rapid
[Ca2+]cyt increase and acidocalcisomes alkalinization,
indicating that Ca2+ was released from this organelle. Evaluation of
cell death markers revealed some apoptosis-like indicators, as
phosphatidylserine exposure, DNA damage, and cytosolic vacuolization and
autophagy exacerbation. Furthermore, mitochondrion hyperpolarization and
superoxide production increase were detected already 6 hours after drug
addition, denoting that oxidative stress is implicated in triggering the
observed phenotype. Taken together our results indicate that ergosterone-triazol
coupled molecules induce a regulated cell death process in the parasite and may
represent starting point molecules in the search of new chemotherapeutic agents
to combat leishmaniasis.
Collapse
Affiliation(s)
- K Figarella
- Laboratory of Genomics and Proteomics, Biotechnology Center, IDEA Foundation. Caracas, Venezuela
| | - S Marsiccobetre
- Laboratory of Genomics and Proteomics, Biotechnology Center, IDEA Foundation. Caracas, Venezuela
| | - I Arocha
- Laboratory of Genomics and Proteomics, Biotechnology Center, IDEA Foundation. Caracas, Venezuela
| | - W Colina
- Laboratory of Natural Products, School of Chemistry, Central University of Venezuela, Venezuela
| | - M Hasegawa
- Laboratory of Natural Products, School of Chemistry, Central University of Venezuela, Venezuela
| | - M Rodriguez
- Laboratory of Natural Products, School of Chemistry, Central University of Venezuela, Venezuela
| | - A Rodriguez-Acosta
- Laboratory of Immunochemistry and Ultrastructure, Institute for Anatomy, Central University of Venezuela, Venezuela
| | - M Duszenko
- Laboratory of Molecular Parasitology, Interfaculty Institute for Biochemistry, Tuebingen University, Germany
| | - G Benaim
- Laboratorio de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA) and Instituto de Biología Experimental, Facultad de Ciencias. Universidad Central de Venezuela, Caracas, Venezuela
| | - N L Uzcategui
- Laboratory of Immunochemistry and Ultrastructure, Institute for Anatomy, Central University of Venezuela, Venezuela
| |
Collapse
|
23
|
Abstract
Leishmaniasis is a neglected tropical disease spread by an arthropod vector. It remains a significant health problem with an incidence of 0.2–0.4 million visceral leishmaniasis and 0.7–1.2 million cutaneous leishmaniasis cases each year. There are limitations associated with the current therapeutic regimens for leishmaniasis and the fact that after recovery from infection the host becomes immune to subsequent infection therefore, these factors force the feasibility of a vaccine for leishmaniasis. Publication of the genome sequence of Leishmania has paved a new way to understand the pathogenesis and host immunological status therefore providing a deep insight in the field of vaccine research. This review is an effort to study the antigenic targets in Leishmania to develop an anti-leishmanial vaccine.
Collapse
|
24
|
Xu W, Hsu FF, Baykal E, Huang J, Zhang K. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania. PLoS Pathog 2014; 10:e1004427. [PMID: 25340392 PMCID: PMC4207814 DOI: 10.1371/journal.ppat.1004427] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Eda Baykal
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:614014. [PMID: 24800243 PMCID: PMC3988864 DOI: 10.1155/2014/614014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
Abstract
The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids' life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.
Collapse
|
26
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
27
|
Yasinzai M, Khan M, Nadhman A, Shahnaz G. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives. Future Med Chem 2013; 5:1877-1888. [PMID: 24144417 DOI: 10.4155/fmc.13.143] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.
Collapse
Affiliation(s)
- Masoom Yasinzai
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | |
Collapse
|
28
|
Veiga-Santos P, Desoti VC, Miranda N, Ueda-Nakamura T, Dias-Filho BP, Silva SO, Cortez DAG, de Mello JCP, Nakamura CV. The natural compounds piperovatine and piperlonguminine induce autophagic cell death on Trypanosoma cruzi. Acta Trop 2013; 125:349-56. [PMID: 23228524 DOI: 10.1016/j.actatropica.2012.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023]
Abstract
The currently available treatments for Chagas disease show limited therapeutic potential and are associated with serious side effects. Our group has been attempting to find alternative drugs isolated from natural products as a potential source of pharmacological agents against Trypanosoma cruzi. Here, we demonstrate the antitrypanosomal activity of the amides piperovatine and piperlonguminine isolated from Piper ovatum against epimastigotes and intracellular amastigotes. We also investigated the mechanisms of action of these compounds on extracellular amastigote and epimastigote forms of T. cruzi. These amides showed low toxicity to LLCMK(2) mammalian cells. By using transmission and scanning electron microscopy, we observed that the compounds caused severe alterations in T. cruzi. These alterations were mainly located in plasma membrane and mitochondria. Furthermore, the study of treated parasites labeled with Rh123, PI and MDC corroborate with our TEM data. These mitochondrial dysfunctions induced by the amides might trigger biochemical alterations that lead to cell death. Altogether, our data evidence a possible autophagic process.
Collapse
Affiliation(s)
- Phercyles Veiga-Santos
- Programa de Pós-graduação em Ciências Farmacêuticas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tomatidine promotes the inhibition of 24-alkylated sterol biosynthesis and mitochondrial dysfunction in Leishmania amazonensis promastigotes. Parasitology 2012; 139:1253-65. [PMID: 22716777 DOI: 10.1017/s0031182012000522] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Leishmaniasis is a set of clinically distinct infectious diseases caused by Leishmania, a genus of flagellated protozoan parasites, that affects ~12 million people worldwide, with ~2 million new infections annually. Plants are known to produce substances to defend themselves against pathogens and predators. In the genus Lycopersicon, which includes the tomato, L. esculentum, the main antimicrobial compound is the steroidal glycoalkaloid α-tomatine. The loss of the saccharide side-chain of tomatine yields the aglycone tomatidine. In the present study, we investigated the effects of tomatidine on the growth, mitochondrial membrane potential, sterol metabolism, and ultrastructure of Leishmania amazonensis promastigotes. Tomatidine (0·1 to 5 μM) inhibited parasite growth in a dose-dependent manner (IC(50)=124±59 nM). Transmission electron microscopy revealed lesions in the mitochondrial ultrastructure and the presence of large vacuoles and lipid storage bodies in the cytoplasm. These structural changes in the mitochondria were accompanied by an effective loss of mitochondrial membrane potential and a decrease in ATP levels. An analysis of the neutral lipid content revealed a large depletion of endogenous 24-alkylated sterols such as 24-methylene-cholesta-5, 7-dien-3β-ol (5-dehydroepisterol), with a concomitant accumulation of cholesta-8, 24-dien-3β-ol (zymosterol), which implied a perturbation in the cellular lipid content. These results are consistent with an inhibition of 24-sterol methyltransferase, an important enzyme responsible for the methylation of sterols at the 24 position, which is an essential step in the production of ergosterol and other 24-methyl sterols.
Collapse
|
30
|
de Macedo-Silva ST, de Oliveira Silva TLA, Urbina JA, de Souza W, Rodrigues JCF. Antiproliferative, Ultrastructural, and Physiological Effects of Amiodarone on Promastigote and Amastigote Forms of Leishmania amazonensis. Mol Biol Int 2011; 2011:876021. [PMID: 22091415 PMCID: PMC3200143 DOI: 10.4061/2011/876021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/01/2011] [Accepted: 03/14/2011] [Indexed: 11/27/2022] Open
Abstract
Amiodarone (AMIO), the most frequently antiarrhythmic drug used for the symptomatic treatment of chronic Chagas' disease patients with cardiac compromise, has recently been shown to have also specific activity against fungi, Trypanosoma cruzi and Leishmania. In this work, we characterized the effects of AMIO on proliferation, mitochondrial physiology, and ultrastructure of Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values were 4.21 and 0.46 μM against promastigotes and intracellular amastigotes, respectively, indicating high selectivity for the clinically relevant stage. We also found that treatment with AMIO leads to a collapse of the mitochondrial membrane potential (ΔΨm) and to an increase in the production of reactive oxygen species, in a dose-dependent manner. Fluorescence microscopy of cells labeled with JC-1, a marker for mitochondrial energization, and transmission electron microscopy confirmed severe alterations of the mitochondrion, including intense swelling and modification of its membranes. Other ultrastructural alterations included (1) presence of numerous lipid-storage bodies, (2) presence of large autophagosomes containing part of the cytoplasm and membrane profiles, sometimes in close association with the mitochondrion and endoplasmic reticulum, and (3) alterations in the chromatin condensation and plasma membrane integrity. Taken together, our results indicate that AMIO is a potent inhibitor of L. amazonensis growth, acting through irreversible alterations in the mitochondrial structure and function, which lead to cell death by necrosis, apoptosis and/or autophagy.
Collapse
Affiliation(s)
- Sara Teixeira de Macedo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas, 373, CCS, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
31
|
Chawla B, Madhubala R. Drug targets in Leishmania. J Parasit Dis 2010; 34:1-13. [PMID: 21526026 DOI: 10.1007/s12639-010-0006-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/22/2010] [Indexed: 02/03/2023] Open
Abstract
Leishmaniasis is a major public health problem and till date there are no effective vaccines available. The control strategy relies solely on chemotherapy of the infected people. However, the present repertoire of drugs is limited and increasing resistance towards them has posed a major concern. The first step in drug discovery is to identify a suitable drug target. The genome sequences of Leishmania major and Leishmania infantum has revealed immense amount of information and has given the opportunity to identify novel drug targets that are unique to these parasites. Utilization of this information in order to come up with a candidate drug molecule requires combining all the technology and using a multi-disciplinary approach, right from characterizing the target protein to high throughput screening of compounds. Leishmania belonging to the order kinetoplastidae emerges from the ancient eukaryotic lineages. They are quite diverse from their mammalian hosts and there are several cellular processes that we are getting to know of, which exist distinctly in these parasites. In this review, we discuss some of the metabolic pathways that are essential and could be used as potential drug targets in Leishmania.
Collapse
Affiliation(s)
- Bhavna Chawla
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | | |
Collapse
|
32
|
Activity of the julocrotine, a glutarimide alkaloid from Croton pullei var. glabrior, on Leishmania (L.) amazonensis. Parasitol Res 2010; 107:1075-81. [PMID: 20661748 DOI: 10.1007/s00436-010-1973-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
The antiproliferative effect of julocrotine, an alkaloid isolated from Croton pullei var. glabrior (Euphorbiaceae), was studied in the macrophage amastigote and promastigote stages of the protozoan Leishmania (L.) amazonensis, which causes cutaneous leishmaniasis in the New World. Julocrotine showed a dose-dependent effect against the amastigote and promastigote forms, where 79 μM julocrotine inhibited promastigote growth by 54%, with an IC50 of 67 μM. To analyze the antiamastigote activity of the drug, murine peritoneal macrophages infected with L. amazonensis promastigotes were treated with different concentrations of julocrotine. An 80% inhibition of amastigote development was observed using 79 μM julocrotine for 72 h, with an IC50 of 19.8 μM. In addition, ultrastructural observation of the parasites showed a significant reduction in the number of amastigotes in the parasitophorous vacuoles and morphological changes in promastigotes, such as swelling of the mitochondrion, chromatin condensation, presence of membranous structures near the Golgi complex, and some vesicle bodies in the flagellar pocket. A colorimetric assay (MTT), which measures cytotoxic metabolic activity, showed that macrophages maintain their viability after treatment with the drug. These results suggest that julocrotine effectively inhibits the growth of parasites and does not have any cytototoxic effects on the host cell.
Collapse
|
33
|
Cabral MMO, Barbosa-Filho JM, Maia GLA, Chaves MCO, Braga MV, De Souza W, Soares ROA. Neolignans from plants in northeastern Brazil (Lauraceae) with activity against Trypanosoma cruzi. Exp Parasitol 2009; 124:319-24. [PMID: 19944690 DOI: 10.1016/j.exppara.2009.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/20/2009] [Accepted: 11/17/2009] [Indexed: 11/19/2022]
Abstract
Trypanosoma cruzi is the ethiological agent for Chagas disease in Latin America. This study aimed to test the trypanocidal effect of licarin A and burchellin isolated from plants in northeastern Brazil. These neolignans were tested on T. cruzi and on peritoneal macrophages, to evaluate drug toxicity. Epimastigote growth was inhibited in 45% with licarin A and 20% with burchellin with an IC(50)/96 h of 462.7 microM and 756 microM, respectively. Epimastigotes treated with licarin A presented swollen mitochondria and disorganized mitochondrial cristae, kDNA and Golgi complex. When treated with burchellin, they presented enormous autophagosomes and chromatin disorganization. Licarin A and burchellin were able to induce trypomastigote death with IC(50)/24 h of 960 microM and 520 microM, respectively. Although licarin A presented an IC(50) for trypomastigotes higher than for epimastigotes, both substances acted as therapeutic trypanocidal agents, because they were able to kill parasites without affecting macrophages. Due to our results, burchellin and licarin A need to be further analysed to observe if they may be used as alternative blood additive prophylaxis against Chagas disease, since it has been established that blood transfusion is an important mechanism in the transmission process.
Collapse
Affiliation(s)
- M M O Cabral
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365, 21045-900 Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
HONTORIA FRANCISCO, GONZÁLEZ MANGELES, SITJÀ-BOBADILLA ARIADNA, PALENZUELA OSWALDO, ALVAREZ-PELLITERO PILAR. Ketoconazole Inhibits the Growth and Development ofIchthyophonussp. (Mesomycetozoa) In Vitro. J Eukaryot Microbiol 2009; 56:484-91. [DOI: 10.1111/j.1550-7408.2009.00427.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs. Interdiscip Perspect Infect Dis 2009; 2009:642502. [PMID: 19680554 PMCID: PMC2721973 DOI: 10.1155/2009/642502] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/27/2009] [Indexed: 12/03/2022] Open
Abstract
Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB) that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a) statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b) bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c) zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS), which catalyzes the first committed step in sterol biosynthesis, (d) allylamines, inhibitors of squalene epoxidase, (e) azoles, which inhibit C14α-demethylase, and (f) azasterols, which inhibit Δ24(25)-sterol methyltransferase (SMT). Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures), and their effects on protozoan structural organization (as evaluted by light and electron microscopy) and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take place in the organization of the kinetoplast DNA network and on the protozoan cell cycle. In addition, apoptosis-like and autophagic processes induced by several of the inhibitors tested led to parasite death.
Collapse
|
36
|
Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 2009; 41:2069-80. [PMID: 19379828 DOI: 10.1016/j.biocel.2009.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
Without mitochondria, eukaryotic cells would depend entirely on anaerobic glycolysis for ATP generation. This also holds true for protists, both free-living and parasitic. Parasitic protists include agents of human and animal diseases that have a huge impact on world populations. In the phylum Apicomplexa, several species of Plasmodium cause malaria, whereas Toxoplasma gondii is a cosmopolite parasite found on all continents. Flagellates of the order Kinetoplastida include the genera Leishmania and Trypanosoma causative agents of human leishmaniasis and (depending on the species) African trypanosomiasis and Chagas disease. Although clearly distinct in many aspects, the members of these two groups bear a single and usually well developed mitochondrion. The single mitochondrion of Apicomplexa has a dense matrix and many cristae with a circular profile. The organelle is even more peculiar in the order Kinetoplastida, exhibiting a condensed network of DNA at a specific position, always close to the flagellar basal body. This arrangement is known as Kinetoplast and the name of the order derived from it. Kinetoplastids also bear glycosomes, peroxisomes that concentrate enzymes of the glycolytic cycle. Mitochondrial volume and activity is maximum when glycosomal is low and vice versa. In both Apicomplexa and trypanosomatids, mitochondria show particularities that are absent in other eukaryotic organisms. These peculiar features make them an attractive target for therapeutic drugs for the diseases they cause.
Collapse
|
37
|
Different cell death pathways induced by drugs in Trypanosoma cruzi: An ultrastructural study. Micron 2009; 40:157-68. [DOI: 10.1016/j.micron.2008.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 08/26/2008] [Indexed: 11/23/2022]
|
38
|
Torres-Santos EC, Sampaio-Santos MI, Buckner FS, Yokoyama K, Gelb M, Urbina JA, Rossi-Bergmann B. Altered sterol profile induced in Leishmania amazonensis by a natural dihydroxymethoxylated chalcone. J Antimicrob Chemother 2009; 63:469-72. [PMID: 19176591 DOI: 10.1093/jac/dkn546] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The effects of the antileishmanial chalcone 2',6'-dihydroxy-4'-methoxychalcone (DMC) on Leishmania amazonensis sterol composition and biosynthesis were investigated to obtain information about the mechanism of growth inhibition by DMC on this parasite. METHODS The interference of sterol biosynthesis by DMC was studied in drug-treated promastigotes by two different methods. (i) Newly synthesized sterols from parasites grown in the presence of [(3)H]mevalonate were analysed by thin layer chromatography (TLC)/fluorography. (ii) Total sterols extracted from the parasites grown with or without DMC were characterized by gas chromatography coupled to mass spectroscopy (GC/MS). RESULTS TLC and GC/MS analyses of sterols extracted from DMC-treated promastigotes revealed the accumulation of early precursors and a reduction in the levels of C-14 demethylated and C-24 alkylated sterols, as well as a reduction in exogenous cholesterol uptake. CONCLUSIONS This study demonstrates that the natural chalcone DMC alters the sterol composition of L. amazonensis and suggests that the parasite target is different from other known sterol inhibitors.
Collapse
Affiliation(s)
- Eduardo Caio Torres-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Vannier-Santos MA, Menezes D, Oliveira MF, de Mello FG. The putrescine analogue 1,4-diamino-2-butanone affects polyamine synthesis, transport, ultrastructure and intracellular survival in Leishmania amazonensis. Microbiology (Reading) 2008; 154:3104-3111. [DOI: 10.1099/mic.0.2007/013896-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Diego Menezes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Fernando G. de Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Brenzan MA, Nakamura CV, Prado Dias Filho B, Ueda-Nakamura T, Young MCM, Aparício Garcia Cortez D. Antileishmanial activity of crude extract and coumarin from Calophyllum brasiliense leaves against Leishmania amazonensis. Parasitol Res 2007; 101:715-22. [PMID: 17483964 DOI: 10.1007/s00436-007-0542-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Infections by protozoans of the genus Leishmania are a major worldwide health problem, with high endemicity in developing countries. The drugs of choice for the treatment of leishmaniasis are the pentavalent antimonials, which show renal and cardiac toxicity. As part of a search for new drugs against leishmaniasis, we evaluated the in vitro leishmanicidal activity of the (-) mammea A/BB. The compound (-) mammea A/BB is a coumarin-type mammea purified from a dichloromethane crude extract of leaves of Calophyllum brasiliense Cambess (Clusiaceae). The isolated compound was characterized using spectral analyses by UV, infrared, nuclear magnetic resonance of (1)H, (13)C, distortionless enhancement by polarization transfer, correlation spectroscopy, heteronuclear multiple bond correlation, and heteronuclear multiple quantum coherence. The compound (-) mammea A/BB showed significant activity against promastigote and amastigote forms of L. amazonensis, with IC(50) (50% inhibition concentration of cell growth) at a concentration of 3.0 and 0.88 mug/ml and IC(90) (90% inhibition concentration of cell growth) of 5.0 and 2.3 microg/ml, respectively. The coumarin (-) mammea A/BB showed no cytotoxicity against J774G8 macrophages in culture, when it was tested at high concentrations that inhibited promastigote forms. Electron microscopy studies revealed considerable ultrastructural changes when promastigote forms of L. amazonensis were treated with 3.0 microg/ml of the coumarin (-) mammea A/BB for 72 h. We observed significant changes such as mitochondrial swelling with concentric membranes in the mitochondrial matrix and intense exocytic activity in the region of the flagellar pocket. Other alterations included the appearance of binucleate cells and multiple cytoplasmic vacuolization. These results showed that (-) mammea A/BB is a potent growth inhibitor of L. amazonensis and caused important changes in the parasite's ultrastructure. This study provided new perspectives on the development of novel drugs with leishmanicidal activity obtained from natural products.
Collapse
|
41
|
Granthon AC, Braga MV, Rodrigues JCF, Cammerer S, Lorente SO, Gilbert IH, Urbina JA, de Souza W. Alterations on the growth and ultrastructure of Leishmania chagasi induced by squalene synthase inhibitors. Vet Parasitol 2007; 146:25-34. [PMID: 17367936 DOI: 10.1016/j.vetpar.2006.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 12/13/2006] [Accepted: 12/24/2006] [Indexed: 12/23/2022]
Abstract
Leishmaniasis is an important disease in widely dispersed regions of the world. In South America, visceral leishmaniasis (VL) is mainly caused by Leishmania chagasi. The morbidity associated with the infection is high, and death may occur in some untreated patients. Treatment has been based upon pentavalent antimonial drugs for more than half a century and problems, including development of resistance to antimonials and lack of efficacy against VL/HIV co-infections, have emphasized the need for new drugs. Squalene synthase (SQS) is an essential enzyme for the biosynthesis of protozoal sterol molecules. In this work, nineteen synthetic quinuclidines, potentially inhibitors of SQS, were tested against promastigote forms of L. chagasi and the IC50 values of the compounds were determined. The most active compounds had IC50 values of around 30 nM and induced complete growth arrest and cell lysis at sub-micromolar concentrations. We analyzed the morphological structure of the parasites treated with these compounds by transmission electron microscopy of thin sections. Treated parasites showed significant ultrastructural changes, which varied from discrete alterations to total destruction of the cells, depending on the drug concentration and the time of incubation. One important change observed was a typical swelling of the unique and highly branched mitochondrion, where the inner membrane lost its organization. There was an increase in the number of autophagosomal structures. Changes in the organization of the nuclear chromatin and alterations in the flagellar pocket and flagellar membrane were also observed.
Collapse
Affiliation(s)
- Ana Claudia Granthon
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Bloco G-subsolo, Ilha do Fundão, CEP 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Palmié-Peixoto IV, Rocha MR, Urbina JA, de Souza W, Einicker-Lamas M, Motta MCM. Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids. FEMS Microbiol Lett 2006; 255:33-42. [PMID: 16436059 DOI: 10.1111/j.1574-6968.2005.00056.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Some protozoa of the Trypanosomatidae family have a close relationship with an endosymbiotic bacterium. As the prokaryote envelope has a controversial origin, a sterol 24-methyltransferase inhibitor (20-piperidin-2-yl-5alpha-pregnan-3beta,20-diol; 22,26-azasterol) was used as a tool to investigate lipid biosynthetic pathways in Crithidia deanei, an endosymbiont-bearing trypanosomatid. Apart from antiproliferative effects, this drug induced ultrastructural alterations, consisting of myelin-like figures in the cytoplasm and endosymbiont envelope vesiculation. Concurrently, a dramatic reduction of 24-alkyl sterols was observed after 22,26-azasterol treatment, both in whole cell homogenates, as well as in isolated mitochondria. These effects were associated with changes of phospholipid composition, in particular a reduction of the phosphatidylcholine content and a concomitant increase in phosphatidylethanolamine levels. Lipid analyses of purified endosymbionts indicated a complete absence of sterols, and their phospholipid composition was different from that of mitochondria or whole protozoa, being similar to eubacteria closely associated with eukaryotes.
Collapse
Affiliation(s)
- Isabella Vieira Palmié-Peixoto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Scarisbrick JJ, Chiodini PL, Watson J, Moody A, Armstrong M, Lockwood D, Bryceson A, Vega-López F. Clinical features and diagnosis of 42 travellers with cutaneous leishmaniasis. Travel Med Infect Dis 2006; 4:14-21. [PMID: 16887720 DOI: 10.1016/j.tmaid.2004.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/13/2004] [Indexed: 11/17/2022]
Abstract
BACKGROUND Leishmania species that occur within different geographical areas may cause different clinical manifestations, virulence and drug sensitivity. Patients/Methods. All patients with a clinical diagnosis of cutaneous leishmaniasis seen at the Hospital for Tropical Diseases from 1997 to 2000 were identified and clinical details recorded onto a database, with emphasis on clinical presentation, risk factors, travel history and laboratory diagnosis. RESULTS Forty-two patients were identified, 23 of whom had travelled to New World and 19 to Old World countries. Clinical presentation typically consisted of a single nodule with ulceration. In 50% infection was caused by L. (Viannia) braziliensis. PCR was performed in specimens from 34 patients and species identification was possible in 32 cases (sensitivity 94%), the two PCR negative patients had amastigotes demonstrated by histology and culture. Patients were treated with established therapies. Seventy one percent were cured by treatment, 12% had a spontaneous cure, 7% were lost to follow-up and the remaining 10% required a second-line therapy. No relapses were reported during a mean follow-up period of 27 months. CONCLUSIONS Our study highlights the need for comprehensive investigations and the advantages of PCR in the diagnosis of patients with suspected leishmaniasis in non-endemic regions of the world.
Collapse
Affiliation(s)
- J J Scarisbrick
- Department of Dermatology, Middlesex Hospital, Mortimer Street, London W1N 8AA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Braga MV, Magaraci F, Lorente SO, Gilbert I, de Souza W. Effects of inhibitors of Delta24(25)-sterol methyl transferase on the ultrastructure of epimastigotes of Trypanosoma cruzi. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2005; 11:506-15. [PMID: 17481329 DOI: 10.1017/s143192760505035x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 02/10/2005] [Indexed: 05/15/2023]
Abstract
Trypanosoma cruzi is the ethiological agent of Chagas disease. New compounds are being developed based on the biosynthesis and function of sterols, because T. cruzi has a requirement for specific endogenous sterols for growth and survival. Sterol biosynthesis inhibitors (SBIs) are drugs commonly used against fungal diseases. These drugs act by depleting essential and specific membrane components and/or inducing the accumulation of toxic intermediary or lateral products of the biosynthetic pathway. In this work we present the effects of WSP488, WSP501, and WSP561, specific inhibitors of Delta24(25)-sterol methyl transferase, on the ultrastructure of T. cruzi epimastigotes. All three drugs inhibited parasite multiplication at low concentrations, with IC50 values of 0.48, 0.44, and 0.48 muM, respectively, and induced marked morphological changes including (a) blockage of cell division; (b) swelling of the mitochondrion, with several projections and depressions; (c) swelling of the perinuclear space; (d) presence of autophagosomes and myelin-like figures; (e) enlargement of the flagellar pocket and of a cytoplasmic vacuole located in close association with the flagellar pocket; (f) detachment of the membrane of the cell body; and (g) formation of a vesicle at the surface of the parasite between the flagellar pocket and the cytostome. Our results show that these drugs are potent in vitro inhibitors of growth of T. cruzi.
Collapse
Affiliation(s)
- Marina V Braga
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-Bloco G, Ilha do Fundão, 21949-900, Rio de Janeiro-RJ, Brasil
| | | | | | | | | |
Collapse
|
45
|
Menezes D, Valentim C, Oliveira MF, Vannier-Santos MA. Putrescine analogue cytotoxicity against Trypanosoma cruzi. Parasitol Res 2005; 98:99-105. [PMID: 16283411 DOI: 10.1007/s00436-005-0010-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 08/23/2005] [Indexed: 01/12/2023]
Abstract
Trypanosoma cruzi is the etiological agent of American trypanosomiasis. Most of the available data on trypanosomatid parasites were obtained from African trypanosomes. Parasitic protozoa polyamine metabolism and transport pathways comprise valuable targets for chemotherapy. T. cruzi cannot synthesize putrescine, but its uptake from the extracellular milieu can promote parasite survival. Nevertheless, little is known about the cell biology of this diamine in T. cruzi. Here we notice that the putrescine analogue 1,4-diamino-2-butanone (DAB) inhibited T. cruzi epimastigotes' in vitro proliferation and produced remarkable mitochondrial destruction and cell architecture disorganization, as assessed by transmission electron microscopy. Mitochondrial damage was confirmed by MTT reduction. We decided to analyze the oxidative stress undergone by DAB-treated parasites. Thiobarbituric-acid-reactive substances were measured to assess lipid peroxidation. Analogue effects were dose-dependent; 5 mM DAB only slightly enhanced peroxidation, whereas 10 mM DAB significantly (P < 0.05) diminished it. These data indicate that putrescine uptake by this diamine auxotrophic parasite may be important for epimastigote axenic growth and cellular organization.
Collapse
Affiliation(s)
- D Menezes
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Rua Waldemar Falcão 121, 40.295-001 Brotas, Salvador, Brazil
| | | | | | | |
Collapse
|
46
|
Rodrigues JCF, Urbina JA, de Souza W. Antiproliferative and ultrastructural effects of BPQ-OH, a specific inhibitor of squalene synthase, on Leishmania amazonensis. Exp Parasitol 2005; 111:230-8. [PMID: 16198340 DOI: 10.1016/j.exppara.2005.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 08/10/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Parasites of the Leishmania genus require for the growth and viability the de novo synthesis of specific sterols as such as episterol and 5-dehydroepisterol because cholesterol, which is abundant in their mammalian hosts, does not fulfill the parasite sterol requirements. Squalene synthase catalyzes the first committed step in the sterol biosynthesis and has been studied as a possible target for the treatment of high cholesterol levels in humans. In this work we investigated the antiproliferative and ultrastructural effects induced by 3-(biphenyl-4-yl)-3-hydroxyquinuclidine (BPQ-OH), a specific inhibitor of squalene synthase, on promastigote and amastigote forms of Leishmania amazonensis. BPQ-OH had a potent dose-dependent growth inhibitory effect against promastigotes and amastigotes, with IC(50) values 0.85 and 0.11 microM, respectively. Ultrastructural analysis of the treated parasites revealed several changes in the morphology of promastigote forms. The main ultrastructural change was found in the plasma membrane, which showed signs of disorganization, with the concomitant formation of elaborated structures. We also observed alterations in the mitochondrion-kinetoplast complex such as mitochondrial swelling, rupture of its internal membrane and an abnormal compaction of the kinetoplast. Other alterations included the appearance of multivesicular bodies, myelin-like figures, alterations of the flagellar membrane and presence of parasites with two or more nuclei and kinetoplasts. We conclude that the BPQ-OH was a potent growth inhibitor of L. amazonensis, which led to profound changes of the parasite's ultrastructure and might be a valuable lead compound for the development of novel anti-Leishmania agents.
Collapse
Affiliation(s)
- Juliany C F Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade, Federal do Rio de Janeiro, CCS-Bloco G, Ilha do Fundão, 21949-900 Rio de Janeiro-RJ, Brazil
| | | | | |
Collapse
|
47
|
Tiuman TS, Ueda-Nakamura T, Garcia Cortez DA, Dias Filho BP, Morgado-Díaz JA, de Souza W, Nakamura CV. Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob Agents Chemother 2005; 49:176-82. [PMID: 15616293 PMCID: PMC538891 DOI: 10.1128/aac.49.11.176-182.2005] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The in vitro activity of parthenolide against Leishmania amazonensis was investigated. Parthenolide is a sesquiterpene lactone purified from the hydroalcoholic extract of aerial parts of Tanacetum parthenium. This isolated compound was identified through spectral analyses by UV, infrared, (1)H and (13)C nuclear magnetic resonance imaging, DEPT (distortionless enhancement by polarization transfer), COSY (correlated spectroscopy), HMQC (heteronuclear multiple-quantum coherence), and electron spray ionization-mass spectrometry. Parthenolide showed significant activity against the promastigote form of L. amazonensis, with 50% inhibition of cell growth at a concentration of 0.37 microg/ml. For the intracellular amastigote form, parthenolide reduced by 50% the survival index of parasites in macrophages when it was used at 0.81 microg/ml. The purified compound showed no cytotoxic effects against J774G8 macrophages in culture and did not cause lysis in sheep blood when it was used at higher concentrations that inhibited promastigote forms. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis with gelatin as the substrate showed that the enzymatic activity of the enzyme cysteine protease increased following treatment of the promastigotes with the isolated compound. This finding was correlated with marked morphological changes induced by parthenolide, such as the appearance of structures similar to large lysosomes and intense exocytic activity in the region of the flagellar pocket, as seen by electron microscopy. These results provide new perspectives on the development of novel drugs with leishmanicidal activities obtained from natural products.
Collapse
Affiliation(s)
- Tatiana Shioji Tiuman
- Departamento de Análises Clínicas, Universidade Estadual de Maringá, Bloco I-90 Sala 123 CCS, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Borges VM, Lopes UG, De Souza W, Vannier-Santos MA. Cell structure and cytokinesis alterations in multidrug-resistant Leishmania (Leishmania) amazonensis. Parasitol Res 2004; 95:90-6. [PMID: 15592939 DOI: 10.1007/s00436-004-1248-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Multidrug-resistant Leishmania (Leishmania) amazonensis may be obtained by in vitro selection with vinblastine. In order to determine whether this phenotype is linked to structural alterations, we analyzed the cell architecture by electron microscopy. The vinblastine resistant CL2 clone of L. (L.) amazonensis, but not wild-type parasites, showed a cytokinesis dysfunction. The CL2 promastigotes had multiple nuclei, kinetoplasts and flagella, suggesting that vinblastine resistance may be associated with truncated cell division. The subpellicular microtubule plasma membrane connection was also affected. Wild-type parasites treated with vinblastine displayed similar alterations, presenting lobulated and multinucleated cells. Taken together, these data indicate that antimicrotubule drug-selected parasites may show evidence of the mutation of cytoskeleton proteins, impairing normal cell function.
Collapse
Affiliation(s)
- V M Borges
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, FIOCRUZ, Salvador, BA, Brazil
| | | | | | | |
Collapse
|
49
|
Santa-Rita RM, Henriques-Pons A, Barbosa HS, de Castro SL. Effect of the lysophospholipid analogues edelfosine, ilmofosine and miltefosine against Leishmania amazonensis. J Antimicrob Chemother 2004; 54:704-10. [PMID: 15329361 DOI: 10.1093/jac/dkh380] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Analysis of the effect of edelfosine, ilmofosine and miltefosine on Leishmania amazonensis and of potential targets of these lysophospholipid analogues. METHODS Quantification and ultrastructural analysis of the effect of lysophospholipid analogues on promastigote forms and on infected peritoneal macrophages, and flow cytometry analysis of treated promastigotes labelled with propidium iodide and rhodamine 123 (Rh123). RESULTS The lysophospholipid analogues presented potent antiproliferative activity with IC50/3 days of 1.9-3.4 microM for promastigotes and 4.2-9.0 microM for intracellular amastigotes. Treatment with these analogues in Schneider medium for 1 day led to a dose-dependent decrease in Rh123 fluorescence, an effect more accentuated in edelfosine-treated parasites, suggesting interference with the potential of the mitochondrial membrane. In both forms of L. amazonensis, edelfosine induced extensive mitochondrial damage, multinucleation and, in promastigotes, also led to plasma membrane alterations, formation of autophagic structures and membranous arrangements inside the flagellar pocket. CONCLUSIONS The alkylglycerophosphocholines edelfosine and ilmofosine were more active than the alkylphosphocholine miltefosine against promastigotes and intracellular amastigotes of L. amazonensis, and ultrastructural and flow cytometry data indicate the mitochondrion as a target of edelfosine.
Collapse
Affiliation(s)
- Ricardo M Santa-Rita
- Dept. de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21045-900, Rio de Janeiro-RJ, Brazil
| | | | | | | |
Collapse
|
50
|
Lorente SO, Rodrigues JCF, Jiménez Jiménez C, Joyce-Menekse M, Rodrigues C, Croft SL, Yardley V, de Luca-Fradley K, Ruiz-Pérez LM, Urbina J, de Souza W, González Pacanowska D, Gilbert IH. Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 2004; 48:2937-50. [PMID: 15273104 PMCID: PMC478520 DOI: 10.1128/aac.48.8.2937-2950.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/29/2003] [Accepted: 03/29/2004] [Indexed: 11/20/2022] Open
Abstract
This paper describes the design and evaluation of novel azasterols as potential compounds for the treatment of leishmaniasis and other diseases caused by trypanosomatid parasites. Azasterols are a known class of (S)-adenosyl-L-methionine: Delta24-sterol methyltransferase(24-SMT) inhibitors in fungi, plants, and some parasitic protozoa. The compounds prepared showed activity at micromolar and nanomolar concentrations when tested against Leishmania spp. and Trypanosoma spp. The enzymatic and sterol composition studies indicated that the most active compounds acted by inhibiting 24-SMT. The role of the free hydroxyl group at position 3 of the sterol nucleus was also probed. When an acetate was attached to the 3beta-OH, the compounds did not inhibit the enzyme but had an effect on parasite growth and the levels of sterols in the parasite, suggesting that the acetate group was removed in the organism. Thus, an acetate group on the 3beta-OH may have application as a prodrug. However, there may be an additional mode(s) of action for these acetate derivatives. These compounds were shown to have ultrastructural effects on Leishmania amazonensis promastigote membranes, including the plasma membrane, the mitochondrial membrane, and the endoplasmic reticulum. The compounds were also found to be active against the bloodstream form (trypomastigotes) of Trypanosoma brucei rhodesiense, a causative agent of African trypanosomiasis.
Collapse
|